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The Eulerian variational principle for the Vlasov-Poisson-Ampere system of equations in a general
coordinate system is presented. The invariance of the action integral under an arbitrary spatial
coordinate transformation is used to obtain the momentum conservation law and the symmetric
pressure in a more direct way than using the translational and rotational symmetries of the system.
Next, the Eulerian variational principle is given for the collisionless drift kinetic equation, where
particles’ phase-space trajectories in given electromagnetic fields are described by Littlejohn’s guid-
ing center equations [R. G. Littlejohn, J. Plasma Phys. 29, 111 (1983)]. Then, it is shown that, in
comparison with the conventional moment method, the invariance under a general spatial coordinate
transformation yields a more convenient way to obtain the momentum balance as a three-
dimensional vector equation in which the symmetric pressure tensor, the Lorentz force, and the mag-
netization current are properly expressed. Furthermore, the Eulerian formulation is presented for the
extended drift kinetic system, for which, in addition to the drift kinetic equations for the distribution
functions of all particle species, the quasineutrality condition and Ampere’s law to determine the
self-consistent electromagnetic fields are given. Again, the momentum conservation law for the
extended system is derived from the invariance under the general spatial coordinate transformation.
Besides, the momentum balances are investigated for the cases where the collision and/or external

source terms are added to the Vlasov and drift kinetic equations. Published by AIP Publishing.

https://doi.org/10.1063/1.5031155

I. INTRODUCTION

So far, a large number of numerical simulations have
been performed to investigate neoclassical and turbulent
transport in toroidal plasmas.'™ As a modern theoretical
technique for deriving basic kinetic model equations of such
simulations, the variational principle*™” is used because the
derived equations possess favorable conservation properties
for long-time simulations to pursue evolutions of plasma pro-
files resulting from transport processes. Also, useful numeri-
cal schemes for plasma simulation satisfying the conservation
properties have been developed by directly utilizing the varia-
tional formulation rather than numerically approximating the
basic equations derived from the variational principle.*”'! In
recent years, background flow profiles are regarded as one of
key factors which influence magnetic plasma confinement
and large-scale gyrokinetic simulations are actively done to
investigate momentum transport processes which determine
the flow profiles.'>™"> Thus, pressure tensors or momentum
transport fluxes need to be accurately evaluated because they
play a critical role for the momentum balance in both neo-
classical and turbulent transport theories.'®*

In Ref. 6, the Lagrangian variational formulation for the
electromagnetic gyrokinetic system is presented from an
approximate reduction of the Vlasov-Poisson-Ampére sys-
tem which is equivalent to the Vlasov-Darwin system®> in
which such rapid phenomena as the electromagnetic waves
with the speed of light ¢ can be removed from the system
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(the terminology ““Vlasov-Poisson-Ampere system” has been
customarily used instead of the “Vlasov-Darwin system” in
the literature on the gyrokinetic theories®*°). It is shown for
the Vlasov-Poisson-Ampere system that, in the presence of the
magnetic field, the canonical momentum conservation law
derived from the space translational symmetry contains the
asymmetric pressure tensor. In Ref. 27, the angular momentum
conservation law derived from the rotational symmetry and
additional complicated procedures of the Belinfante-Rosenfeld
type*® were used to obtain the symmetric pressure tensor from
the asymmetric canonical pressure tensor and to derive the
same momentum conservation law as given in Ref. 25.

In this work, the variational formulations for the Vlasov-
Poisson-Ampere system and the drift kinetic system are
presented in the invariant forms under general spatial coordi-
nate transformations in analogy with the theory of general
relativity.*® For this purpose, the variational formulations here
are completely based on the Eulerian picture’*=* in which the
spatial-coordinate dependence of the particle and field parts
of the Lagrangian density can be more equally treated than in
another type of formulation using the Lagrangian picture par-
tially for the particle part.>?’=> Detailed descriptions about
Lagrangian and Eulerian variational formulations are found in
a recent paper by Brizard and Tronci.”® The Eulerian method,
which was pioneered by Newcomb® to formulate the magne-
tohydrodynamics (MHD) equations and is used in the present
paper, was also called the Euler-Poincaré reduction procedure

Published by AIP Publishing.
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re:ce*,ntly.31’32’34’36 Here, in our Eulerian formulation, all the
governing equations for these systems also take the invariant
forms and the invariance of the action integrals can be utilized
to derive the momentum conservation laws and/or the
momentum balances as three-dimensional vector equations.
The resultant momentum balance equations contain the sym-
metric pressure tensors which have 3 x 3 symmetric matrix
components. These symmetric pressure tensor components
are derived from taking the variation of the Lagrangian den-
sity with respect to the metric tensor components which
appear due to the use of the general spatial coordinate system.
The symmetry of the resultant pressure tensor is a natural
result because the metric tensor is symmetric. Thus, the deri-
vation of the symmetric pressure tensors shown in the present
paper is more direct than the Belinfante-Rosenfeld-type tech-
nique and other previous methods. Furthermore, for all sys-
tems considered here, not only the momentum conservation
laws but also the Belinfante-Rosenfeld type formulas®’-*®
relating the symmetric pressure tensors to the asymmetric
canonical pressure tensors are simultaneously derived from
the invariance of the action integrals under general spatial
coordinate transformations.

It is also found that the formulation presented here for
deriving the momentum conservation law is more convenient
than the conventional method based on taking moments of
the basic kinetic equation especially for the drift kinetic
system.?” Normally, only the component of the momentum
balance equation in the direction parallel to the magnetic
field is derived from the parallel moment of the drift kinetic
equation although it is not trivial what moment should be
taken for the gyrophase-averaged distribution function to
obtain the perpendicular momentum balance. On the other
hand, the method based on the invariance with respect to the
general spatial coordinate transformation can be applied to
derive the momentum balance equations in both parallel and
perpendicular directions simultaneously even for the drift
kinetic system.

Normally, based on Noether’s theorem,” the momentum
conservation law in a certain direction is derived when a given
system has a translational symmetry in that direction. Here, it
should be noted that the invariance under the general spatial
coordinate transformation holds more generally than the trans-
lational symmetry. Even in the case where the latter property
is not satisfied, the former property can be valid and used to
derive the momentum balance equation which does not take a
conservative form. As shown in Sec. III, the drift kinetic sys-
tem in the given electromagnetic fields corresponds to the
above-mentioned case. Thus, the momentum balance equation
can be obtained for the drift kinetic system with general mag-
netic geometry. When self-consistent electromagnetic fields
are treated as the solutions of the equations given simulta-
neously with the drift kinetic equations from the variational
principle, the explicit dependence on the spatial coordinates
is removed from the action integral, and accordingly the
momentum conservation law is derived for the total system
consisting of the charged particles and fields (see Sec. IV).

The rest of this paper is organized as follows. In Sec. II,
the Eulerian formulation of the variational principle for the
Vlasov-Poisson-Ampere system is presented. There, the
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same results as in Ref. 27 are reproduced although the gen-
eral coordinates are used to write the equations in the invari-
ant form and derive the momentum conservation law in a
more direct way than in Ref. 27. In Sec. III, the Eulerian var-
iational principle is applied to the drift kinetic system, for
which the collisionless drift kinetic equation and the momen-
tum balance equation are obtained. In this system, which is
immersed in the strong magnetic field, trajectories of
charged particles are described by Littlejohn’s guiding center
equations.” In Sec. IV, the variational principle for the drift
kinetic system is extended so that the quasineutrality condi-
tion and Ampere’s law can be derived simultaneously with
the drift kinetic equations for all particle species to deter-
mine the electromagnetic fields self-consistently with the
distribution functions. The momentum conservation law
for this extended drift kinetic system is derived as well. In
Sec. V, it is shown how the momentum conservation and bal-
ance derived in Secs. II-IV are modified when the collision
terms are added to the basic kinetic equations there. Finally,
conclusions are given in Sec. VI. In Appendix A, the
Eulerian variational principle is presented for the Vlasov-
Poisson system and its momentum balance is derived. The
energy conservation law in the Vlasov-Poisson system is
also obtained in Appendix B. In Appendix C, the energy bal-
ance equation and the energy conservation law are shown for
the drift kinetic systems described in Secs. III and IV.

Il. VLASOV-POISSON-AMPERE SYSTEM

Here, the Vlasov-Poisson-Ampere system?®’ is consid-
ered as an example of kinetic systems, for which the
Eulerian variational principle is presented. Also, it is shown
for this system how to obtain the momentum conservation
law from the invariance of the action integral under general
coordinate transformations.

A. Eulerian formulation of the variational principle in
general coordinates

The distribution function on the phase space for particle
species a is denoted by F,(x',v',7) where (x'),_,,; and
(') i—1.2 3 are the position and velocity coordinates of the parti-
cle, respectively, and the number of particles of species a in the
phase-space volume element d*xd>v = dx'dx’dx3dv' dv’dv® is
given by F,(x',v',1)dxd’v. Here, (x'),_, , 5 represent a gen-
eral spatial coordinate system which can be either a Cartesian
or any other curved coordinate system. However, in the present
paper, we assume that the position vector r is a function of
only the spatial coordinates (x' )i=123 and it is independent of
time . In the given spatial coordinate system, (1’ )i:1’2_3 are
defined as contravariant components of the velocity vector by
using (9r/dx'),_, , 3 as the basis vectors.

In the Lagrangian picture, the motion of a particle of
species a in the phase space is described by representing the
position and velocity of the particle at time ¢ as the functions

[xizL(x(n)?08710;l)vv;L(xgvvg’to;t)]v (D

which satisfy the initial conditions at time #,
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x'aL()Hlovvgvto;tO) :xé)’ UlaL(x&UgatO?tO) = U6- )

Using the Lagrangian representations of the particle’s
motion given in Eq. (1), the distribution function at time ¢ is
related to that at time ¢y by

Fa(xi,v[,t) = JdSXOJdBUOFa(xg7706nat0)
x 8 [ = (0, o 03 0)]
x & [vi — ULL(xg’, vy, to; t)] 3)

We next represent the particle’s velocity and accelera-
tion in the Eulerian picture by

wh (X0, (), )

which are related to those in the Lagrangian picture by

u;x(x;nL(xg, v?ﬁ fo; t)v va1L<x87 1987 lo; t)a t) = XZL(ng vg> to; 1),
”iw( aL(xSv US? to; t)’ UZIL(xgv US, fo; [)7 t) - I)LL(XS, Ugv to; t)'

)

Here, f = Of (X', vf, 1)/t stands for the time derivative of
an arbitrary function f(xf, vf, 1) with (xf, vff) kept fixed.
Using Egs. (3) and (5), we can show that the distribution
function F,(x',v’,¢) satisfies the continuity equation in the
six-dimensional phase space

0F, 0

o T on (Falty,)

0

+ o0 (Fqu,,) =0. (6)

In the present paper, we use the summation convention that
an index repeated in a term [such as seen in Eq. (6)] repre-
sents summation over the range {1, 2, 3}.

The action integral / to describe the Vlasov-Poisson-
Ampere system is written as

15 15
= J dtL = J er dx L, (7)
Vv

4 |

where the Lagrangian L is defined by the spatial integral of the
Lagrangian density £ over the volume V and L is given by

EEZJd3UFa(xi,vi,t)La+£f. 8)

Here, the single-particle Lagrangian L, for species a is writ-
ten in the Eulerian picture as

Lo [t (o, 0", 1), (3, 1), A (¥ 1), 35 ()]

= {mag,-j(x”)vi + e—uAj(x”, t)} uék.(x"7 v" 1)
p ;

1 .
[yt + eato )| ©
Note that the single-particle Lagrangian given by Eq. (2) in
Ref. 27 is reproduced from Eq. (9) when replacing x', v', and
u'_in Eq. (9) with the corresponding Lagrangian representa-
tions ¥/, v’ , and %, .
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The field Lagrangian density £, on the right-hand side
of Eq. (8) is given by

£f|: A1) e A ), g (), =
- /o [N 00001 _ sl
8 8n Ox' Y 87

xB'(x", t)B (x", 1) +%g’j(x”)ViAj(x”,t)]. (10)

Equation (10) is obtained by using the general phase-space
coordinates (x', v') to express the field Lagrangian density
given by Eq. (3) in Ref. 27.

The contravariant components (Bi),:1,2,3 of the magnetic
field are expressed in terms of the covariant components
(A;)i=12 of the vector potential as

ijk n
B, 1) = e OAR(X", 1) an

Vel v

and the components V;A; (i, j=1, 2, 3) of the covariant
derivative of the covariant vector A; are defined by

O0A;(x"
SO penan )

ViAj(x", 1) o

where the Levi-Civita symbol is denoted by

€ijk = €ijk
L ((i,),k) =(1,2,3),(2,3,1),(3,1,2))
-1 ((la]ak) = (1a3a2)7(27173)1(31271)) (13)

0 (otherwise),

the determinant of the metric tensor matrix is given by
g(x) = det[g,j(x”)], (14)

and the Christoffel symbols l"f/. (i,j,k =1,2,3) are defined
by38 )

(") = g (T ("),

1o |O80(x") | Ogu(x")  Ogy(x")
28 () Oxt + Ox/ oxl |’

15)

The covariant and contravariant components of the metric
tensor components are denoted by g; and g, respectively,
and they satisfy

g g = 0, (16)

where 5} represents the Kronecker delta defined by

i 1 (i:j)
5={o {2h )

We now consider the virtual displacement of the par-
ticle’s trajectory in the phase space, which is represented by
the variations of the Lagrangian representations of the par-
ticle’s position and velocity in Eq. (1) as
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o, (X vl tos 1), OUL, (X Ut t). (18)

The variations in the position and velocity are represented in
the Eulerian picture by

5xf,E(x”',vm,t), 51);E(x”’,vm,t), (19)

which are related to those in the Lagrangian picture by

Oy (X, (X, U, f05 1), Uy (X5, U, 03 1), 1) = 0xgy (X5, UG, 10 1),
OVl (o0 (XG5 UG o3 1), Uy (X5, VG 203 1), 1) = Sl (X5, UG, 03 2).-
(20)

Making use of Eq. (5) to consider the variations in the par-
ticle’s velocity and acceleration which result from the virtual
displacement denoted by Eq. (18), we obtain

; 0 0 0 ;
i _ (= j i
5uax (8 + I'tilx 6 Jj +u Uy 81)’) 5xaE

<5'X{1Ea J + 5U/E 81)1) Ugy

0 0 0 D
5uav = <5 + ufzxm + I't{w 81}]) 5vaE
AW
(5)(;5 O UZE 8—1)/) Ugps
where Eq. (20) is used as well. Here, ou’,_ . and du’, represent
the variations in the functional forms of u . and u',, respec-

tively, and the parts of variations in u’, and u!,, caused by the
changes in their arguments are not included in éu', and du,.
We also find from Egs. (3) and (20) that the variation in the
distribution function due to the virtual displacement of the
trajectory shown in Eq. (18) is given by

0

OFy = =5 (F

0
) s Fddy). @)

We further consider that the spatial functional forms
of the electrostatic potential ¢, the covariant components
A; of the vector potential, and the field 4 associated with
the Coulomb gauge condition [see Eq. (36)] are virtually
varied by d¢, 0A;, and o/ in addition to the virtual dis-
placement of the particle’s phase-space trajectory.

Consequently, the action integral defined by Eq. (7) with
B 3 3
ol = J dtJd de*vF,,
2,

Eq. (8) is varied by
G»
(4) (2} o (2)
dt) \oui, b\ B ),
6}
+J dsz%[M(—zeaJd%Fu —Z/—qus)
141 a
‘ e é* OBy /g ;0A
+0A; (Z ; Jd Fau

+oa V8 VA + 81, (23)
dne

4 Ox 47tcg ox/
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where (OL,/0x'), and (OL,/0v'), represent the deriva-
tives of L, in x’ and ¢/, respectively, with U kept fixed in L,.
The definitions of the operators (d/df), and A are shown later
in Egs. (30) and (37), respectively, and

5}
51,,:ZJ dtjd3de3 L‘; (F gLI oxlp )
41

a

0 - OL, . - 0 - 0L,
— 4S5y — W
+axj (Faufzx aui 5xaE> + 81.)1 (Fa av a , 5‘xaE>:|

@ VB 509 s J
+Lerd*xa—xl { p® ¢+<\/§B+ g)

i 9hOd 1. 1
X 0Ay + ox; (%a—ia—j —~ BB, + gvjAf> H (24)

is the part which can be determined from the values of the
variations 0x! ;, ¢, and dA; on the boundaries of the integral
region because of the divergence theorem.

We now show that the Vlasov-Poisson-Ampere system
obeys the Eulerian variation principle. Namely, F,, ¢, and A;
are determined from the condition that 6/ = O for arbitrary
variations dx! ., 6v! ., 8¢, JA;, and 6. which vanish on the
boundaries of the integral region. First, it is found from Eq.
(23) that 61 /v’ ; = 0 gives

oL, o
F, (81.7’) . = Famagij(uilx - U/) =0, (25)

which is rewritten as
Fuul, =F.'. (26)

Here, we should note that ui,x =1/ is derived from Eq. (26)
under the condition that F, # 0. However, since u!  enters
Eq. (6) in the form of the product F,u , it does not cause
any trouble to simply write

ax’

W =4 27

from now on instead of Eq. (26) even without assuming F,
# 0. This simplification of omitting F, will also be done
below in the processes where the equation for u’, [see Eq.
(34)] is derived.

We next use 6//0x! ; = 0 to obtain

d oL,
(dl) Pai = (W) ua"., (28)

where the covariant vector component p,; of the canonical
momentum and the time derivative (d/df), along the motion
of the particle of species a in the phase space are defined by

Pai = <8Ld> = magijvj + e_aAz (29)
oul . c
and
d 0 0 0
() —54- “‘8k+ ‘”6"’ (30)

respectively. From Eq. (30), we also have
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d : . d . .
I Ll . 1
( d_t) ax = U, ( d_t)av = U, 31D

Equation (28) can be rewritten as the covariant form of
Newton’s motion equation in the general coordinate system

. 1 .
my (M[m‘ + Fika’vk) =e, (E,' + ; \/ge,‘ijIBk) s (32)
where the covariant component E; of the electric field is

defined by

L 0p 10A;

E,‘ = _— .
oxi ¢ Ot

(33)

The contravariant form of Newton’s motion equation is
obtained from Eq. (32) as

7

It should be noted that the Levi-Civita symbol ik = €ijk
[see Eq. (13)] can be regarded as either a contravariant ten-
sor density of weight 1 or a covariant tensor density of
weight —1. Then, ,/ge;x and €/*/,/g represent covariant
and contravariant tensors, respectively, which are used in
the Lorentz force terms on the right-hand side of Eqgs. (32)
and (34)

Substituting Eqs. (27) and (34) into Eq. (6) yields the
Vlasov kinetic equation

. . 1€k
my (uin + I v ) =e¢,| E Jrz—gvak . (34)

OF, 0 .
— (Fv
a *aw )
0 T T e -
+8_U] Fa{—l“jkv’v +m—a<E —l—zﬁu,Bk)} =0.
(35)

As noted after Eq. (27), F,, appears as a factor in the equa-
tions 01 /dxi . = 81 /6v’ . = 0 although it is omitted in writing
Egs. (27), (28), (32), and (34). This omission of F,, does not
make a difference in deriving the Vlasov equation in Eq.
(35) by substituting the motion equations, Eqgs. (27) and (34)
into Eq. (6) because u'and u’, enter Eq. (6) in the form of
the products F,u! and Fu',.

We use 6I/64 = 0 to obtain the Coulomb (or transverse)
gauge condition

L olver) _

Poisson’s equation is derived from 6//6¢ = 0 as
0 ( ;00 S [0
A = — Y —_— = —4 a Fa,

and 0I/0A; = 0 gives

€% OBy,

___|_g_”%—4_n i
V8 X cov ¢

7 (38)
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where ;' represents the ith contravariant component of the
current density vector defined by

. 1 .
j= 7@72 e Jd% Ful,. (39)

The transverse (or solenoidal) part of Eq. (38) is written as
Ampere’s law

i 9B, 4
g (40)
/8 0¥ c

where ji. represents the ith contravariant component of the
transverse part of the current density vector. Note that an
arbitrary vector field a can be written as a = a; + ap, where
the longitudinal (or irrotational) part a, and the transverse
(or solenoidal) part ay satisfy V xa; =0 and V -ar =0,
respectively.*?

Equations (35), (37), and (40) are the governing equa-
tions for the Vlasov-Poisson-Ampere system. Thus, the same
system of equations as shown in Ref. 27 are reproduced in
the present work although the equations here are represented
using the general spatial coordinates (x'),_ 5 and the con-
travariant velocity vector components (Ui)i%1.2.3' Using Eq.
(37), the longitudinal part of Eq. (38), and the charge conser-
vation law obtained from Eq. (35), we obtain

o OEp;
— =4, =— , 41
ov Tt ot “D
where E;; = —0¢/Ox' represents the longitudinal electric
field given by the electrostatic potential. Then, we can put®’
o¢
A=— 42
ar’ (42)

which is used hereafter. Then, we find that Egs. (37), (38), (40),
and (41) give the Darwin model® as noted in Refs. 6 and 27

B. Transformation of spatial coordinates

We now consider the transformation of the spatial coor-
dinates written as
K= x  E (), (43)
where the infinitesimal variation in the spatial coordinate x’
is denoted by &(x") which is regarded as an arbitrary func-
tion of only the spatial coordinates. Under the transformation
of the spatial coordinates, the velocity components (U"),-:]’Z3
are transformed as the contravariant vector components.
Thus, the velocity component ¢ in the transformed coordi-
nate system is written as
1 n
o= ) i (44)
ox
where the infinitesimal variation dv' in the velocity compo-
nent is given by

o AEW)
ov' = — /. 45
B (45)
Here and hereafter, we use 0 - - to represent the variation
associated with the infinitesimal spatial coordinate
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transformation which should be distinguished from the varia-

tion 0 - - - due to the virtual displacement treated in Sec. IT A.
The electrostatic potential is a scalar which is invariant

under the transformation of the spatial coordinates

¢/(x/n’ t) = ¢(xn’ t)' (46)

Here, we define the variation d¢ in the functional form of ¢
due to the spatial coordinate transformation by

Sp(x", 1) = ¢/ (X", 1) — p(x", 1). 47)

Note that the spatial arguments of ¢’ and ¢ are the same as
each other on the right-hand side of Eq. (47) while they are
different in Eq. (46). Then, substituting ¢’ (X", 1) ~ ¢'(x",1)
+E(MOP (K1) )Ox' ~ ¢ (X", 1) + E(F)OP(x", 1) /Ox  into
Eq. (46) and using Eq. (47), we obtain

< Ip(x", 1)

Op(x" 1) = —5’()6”)7

(L)1), (48)

where L: denotes the Lie derivative® associated with the
vector field (&). In the same way as in Eq. (48), the variation
d/ in another scalar variable /A is written as

aA(x", 1)

Ox!

AN 1) = —E(x")

—(LeA) (X", 1). (49)

In the transformed spatial coordinates, the covariant vector
components of the vector potential are written as

J
Al £) = %Aj(x”, f). (50)

In the same way as in Eq. (47), we define the variation 0A; in
the functional form of A; due to the spatial coordinate trans-
formation by

OAI(", 1) = AL, 1) = A", 1), (51)
Substituting the formulas ~ A/(x", 1) ~ Al(x", 1) + & (x")

DA (x",1)/0x and O/ JOX'T ~ & — D& (x")/Ox' into Eq. (50)
and using Eq. (51), we obtain

SAi(x”,l‘) _ _éj(){,) 8A,-(§§,t) _ af(;g:f")Aj(xn’t)

= - (LfAl) (xn’ t)a (52)

where we see that the Lie derivative L: can be used again to
represent 0A;.

The contravariant vector components E', the covariant
metric tensor components g;, and the contravariant tensor
components g’j are transformed as

oxt

E/i(x/nat) - ax]' Ej(xnvt)7
. Oxk ox!
l-j(x' ,t) zwﬁgk/(x",t), (53)
. O OxY
1j (. In I Pk
8 ()C 1t) _axk 8x1g (xn7t)'

Then, following the procedures similar to those used in
deriving Eqgs. (48) and (52), the variations in the functional
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forms of E', gj» and g’j due to the spatial coordinate transfor-
mation are derived as

_ . OE  9F
L D — 9 i
OE' = —L:E' = =& B +8ij,

< g O ot
5g’] = _Légll = _ék ax]i - Oxi 8kj — wgika

= -V — Vg,
i agh o0& . od
Lol — k2o T ki T ik
t& ¢ 8xk+8xkg +8xkg ’

=V v (54)

5gi —

The transformation of the spatial coordinates given by
Eq. (43) changes the Lagrangian representations of the tra-
jectory of the particle’s motion in the phase space as
X (X0, 00 103 1) = Ko (X5, 1, 103 £) + € (x5 (55, 0 103 1)),
UZL(xg', Ug', lo; t) = UlaL(xgv Ug? fo; t) + n'(xZZ(xS, Ug> lo; t)a

Uy (X6, 15, 103 1)) (55)
where the particle’s position and velocity at time 7, are writ-
ten in the transformed coordinates as

xg = xé) + éi(xé)n%
i iy i (56)
vy = vy +1'(xg', vg))-

Since v' is the contravariant vector component, its variation
1" caused by the change &' in the spatial coordinate x' can be
written as

IE (x) o
ox

N ") = (57)

In the transformed coordinate system, the distribution
function is given by

FL (01 = Jd3x6 Jd%gF;(xg’, vy, 1)
30,7 NI
x & [T — v (o t0;1)]
37,/ VRN
) [v’ — vy (xg', vy to;t)] (58)
Here, the initial distribution functions F/ (x{, vy, 1)
and F,(x(, v), o) in the transformed and original coordinate

systems are related to each other by F/(x(, vy,
to)d>x{yd> vy = Fo(xf, 08, to)d>xod> v, from which we obtain

/i i -1
GxQ det 6_09 )
ax ) \ o

(59)

F,(xg', vy, 0) = Fa(xg, v, 10) [det(

The variation 0F, in the functional form of the distribution
function due to the spatial coordinate transformation is
defined by

F (X" 0" 1) = F ("0, 1) + 0F (X", 0", 1). (60)

a
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Then, using Egs. (55), (58), (59), and (60), we obtain

< 0

B ,
5Fa:_$(Fa§j)_$(Fanl)- (61)

The relations between the Eulerian and Lagrangian represen-
tations of the particle’s velocity and acceleration shown in
Eq. (5) are rewritten in the transformed coordinate system as
i /) /) /) /1 /i / .10 /) /;
ualx(xm(xon’ Uon7 lo; t)v va”Z(xon? Uonv lo; t)’ t) = xa'L(xO", Uon» lo; t)’

ugv(x; (x0n> UO » Lo t)v vZZ(xg', UO » fos Z)v t) = i)gL(x/Onv vglv to; t)'

(62)
We also write
Wl (0" 1) = U (X0 1) + dul (X 0", 1),
ugv(x", V") = uiw()c”7 v ) + Sufw(x” v, t) (63)

to define Su!_and du’  as the variations in the Eulerian func-
tional forms of the particle’s velocity and acceleration,
respectlvely Using Egs. (55), (62), and (63), we find that
oul and ou', are written as

- - Q&
( 8x7+17]807>

ax — Tax 8xj
_ 0 9\ . 0

i r_ ]
Ol (”J o T e au/) 1 (é o

C. Derivation of the momentum conservation law

We can use F! (x",0™,1),ul (X", 0",1), ¢’ (x"",1),AL(x"1),
and g@-(x’”,t) in Egs. (7)~(10) to define the action integral I’
in the transformed coordinates (x,v™). Then, using Egs.
(48), (49), (52), (54), (61), and (64) we find that the variation
0I=I'—I in the action integral is written as

- [af 2

P S o
+oo {fj(ng — @ — v, Fil) }} , (65)

9\ .
+n’%>ugu (64)

where the canonical momentum vector density P/ and the
canonical pressure tensor density IT/ are defined by

P’ngkZJd% gL ZJdXUF (maui+i—f1Aj) (66)

ax a

and
7 = ¢*(I1,)},
. AL, oLy  0¢
= gk 3WF, i 7@_
g(Zﬂ:Jdu uwak + Ly — 50065 ant

oLy
~ 9(0A,/ox) )

= Jd%Fauf (m,,v" + i—f‘Af> + g §"(E}Er — B*By)
a

ﬁ i l_k d _l% d
+4n EEL+\/_B,VAk oot VA 67)
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respectively. The symmetric tensor density ©®Y and the third-
rank tensor density F7* are defined by

- OL, 8£~ 0 oLy
i = 3 = (=
© ‘2@1 S A T <a<agzy/axk>)]

= ZJd%F mav'v) + f[ (EXEp; + B*By)

L i pipy L <13E1 jOEL
4n (ELEL + B'B') — dne A ot A or
OE,
,j r OL Lk
A= )] (68)
and
. . oL oL
Fit = =2 L,
O0(0Ar/Ox")  — 0(0gj/Ox')
_ V8 [Af(ViAk — VAT + 19¢ (gA* — g*Al) |, (69)
4n c Ot

respectively. In deriving Eq. (65), Egs. (27), (28), (36), (37),
and (38), which are derived from the variational principle in
Sec. I A, are also used.

The symmetry condition

e/ =0 (70)

is naturally confirmed in Eq. (68) because the symmetric
metric tensor density components g;; are used for differenti-
ating the Lagrangian density £ in the definition of @7, It
should be noted that, in Eq. (68), partial derivatives with
respect to g;; need to be carefully done because 3 x 3 metric
tensor components g; are not completely independent of
each other due to the constraint g; = g;;. Here, for an arbi-
trary function f of g;;, the notation 9f/Jg;; is defined such that
the infinitesimal variations dg;; in g;; give rise to the variation
of = (0f10g;)dg;; in f where both dg; and 0f/0g; must be
symmetric under exchange of the indices i and 7,2 For exam-
ple, we have Ogi/0g; = 1(8,0)+ &,0)) according to the
above-mentioned definition. In the same manner, derivatives
with respect to 8g,»j/8xk shown in Egs. (68) and (69) are
defined taking into account the symmetry under exchange of
the indices i and j.

We see from Eq. (69) that the third-rank tensor density
components F7* is anti-symmetric with respect to exchang-
ing the superscripts i and k

Fik — _phit, (71)
Using Eq. (71) and the commutation condition
ViV = ViV, (72)
we obtain
V, Vi F* = 0. (73)

Note that the commutation condition in Eq. (72) is valid
because the three-dimensional real space considered here is
a flat one with no curvature. For a general curved space, the
Riemann curvature tensor R . is used to write®®



102506-8 Sugama et al.

ViViV! = Vi ViVl =RL, V™, (74)
where V™ is the mth contravariant component of an arbitrary
vector field. Then, we find

ViViF* — Vv
= Ry P+ R} F"™ 4 Ry P

= —RyF"" + Ry = 0, (75)

where Eq. (71) and the properties of the Riemann tensor
R}y = —Rjyes Rpe = R}, = Rep) are used. Thus, we find
the interesting fact that Eq. (73) is valid even in the curved
space when Eq. (71) is satisfied.

Since the action integral is invariant under an arbitrary
transformation of the spatial coordinates, 6/ shown in Eq.
(65) vanishes for any ¢; so that we obtain the momentum
conservation law

OPI,
ot

+ V07 =0 (76)

and the relation of the symmetric pressure tensor density ©Y
to the asymmetric canonical tensor density IT”

0¥ =Y — v, Fk. (77)

Equations (76) and (77) are derived from the conditions that
the integrands at the interior and boundary points shown on
the right-hand side of Eq. (65) should vanish, respectively.
Combining Eq. (73) with Eq. (77) leads to

Vv.0Y = v,I1Y, (78)

which can be used to rewrite the momentum conservation
law in Eq. (76) as

oP! .
a;c + VI17 = 0. (79)

In Ref. 27, the momentum conservation law, Eq. (79),
including the asymmetric canonical momentum tensor den-
sity, Hi,f , is derived from the space translational symmetry of
the action integral [ before the relation of the Belinfante-
Rosenfeld type symmetric pressure tensor ©7 to 1'[? in Eq.
(77) is obtained from the rotational symmetry of / to derive
the other momentum conservation law, Eq. (76). On the other
hand, in the present work, both the momentum conservation
law, Eq. (76), and the relation of 07 to Hg, Eq. (77), are
derived at once from the invariance of / under general spatial
coordinate transformations including the space translation and
rotation. We should also note that Eq. (76) can be further mod-
ified into a more physically familiar form of the momentum
conservation law as shown in Eq. (33) of Ref. 27.

It is shown in Appendix A that, reducing the field
Lagrangian density given by Eq. (10) to the more simplified
one defined in Eq. (A3) and regarding the vector potential in
Eq. (9) as a fixed time-independent field, the governing equa-
tions for the Vlasov-Poisson system can be obtained from
the Eulerian variational principle in the same manner as
shown for the Vlasov-Poisson-Ampere system. As pointed
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out by Qin ez al.,** when governing equations for a simpli-
fied system are obtained by applying a certain approximation
to a Lagrangian for another system, the exact energy and
momentum conservation laws in the simplified system
should be derived from the symmetry properties of the
approximate Lagrangian and they generally disagree with
those obtained by just making a similar approximation to the
conservation laws in the original system. The momentum
balance and the energy conservation law in the Vlasov-
Poisson system are derived in Appendixes A and B, respec-
tively, where they are found to agree with those given by
Qin et al.*®

lll. DRIFT KINETIC SYSTEM

In this section, the Eulerian variational principle is
presented for the collisionless drift kinetic equation which
governs the time evolution of the phase-space distribution
function of guiding centers of charged particles in the strong
magnetic field. The invariance of the drift kinetic system
under an arbitrary spatial coordinate transformation is used to
obtain the momentum balance as a three-dimensional vector
equation in which the symmetric pressure tensor, the Lorentz
force, and the magnetization current are properly included.

A. Eulerian variational principle for derivation of the
collisionless drift kinetic equation

We here start with defining the action integral for the
drift kinetic system by

t) 5]
Ipx = J dtLpgx = J de d3x Lpk, (80)
Vv

n 131

where the Lagrangian density is written as
Lok = Jd%F(xl‘, vy, 1,0, 1) Lac. (81)

The guiding center position is represented in terms of the
general spatial coordinates (xi)i:1,2’3, for which the metric
tensor is given by g;;. The velocity component of the guiding
center along the magnetic field line, the magnetic moment,
and the gyrophase angle are denoted by vy, u, and 1, respec-
tively. The integral with respect to the velocity space varia-
bles (v), u,¥) is denoted by

Jd3v = r@ dv) Jm du+d19, (82)
—00 0

and the Lagrangian for the single guiding center is given by
; 0A;
LGC |:U y Uy Ll;, Uy, (pbaAi)a—? ) gl/:|
X
e N ; | iome
= [EAj(x J1) 4 moyb' (X", 1) g(x )} w, + 5 Ha
1
- {Emuz + puB(x", 1) + ep(x", I)} . (83)

Here, the unit vector parallel to the magnetic field is written
as
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i l(xnv t)
b'(x",1) = 84
(.X ? ) B(.Xn, t) ) ( )
where the field strength is given by
B(,1) = /gy BI (", 0BI(x", 1), (85)

and the ith contravariant component B’ of the magnetic field
is expressed in Eq. (11). The Lagrangian Lsc shown in Eq.
(83) represents Littlejohn’s guiding-center Lagrangian® writ-
ten using the general spatial coordinates and the Eulerian
picture.

We now describe the particle’s motion in the
Lagrangian picture by representing the guiding center posi-
tion coordinates, parallel velocity, magnetic moment, and
gyrophase at time ¢ as the functions x} (xf, U0, tos Vo, o3 1),
UHL(X& V05 Hos 1907 fo; t), ,UL(XS, Ujjo, Ho, 1907 fo; t), and ﬂL(XSa
Ujo, to, Yo, to; t), rtespectively, where xg, vjo, fo, and o
denote their values at the initial time 7. Then, the distribu-
tion function F(x', v, 4,9, 1) at time ¢ is related to that at
time f( by

F(Xi,UH,’u”ﬂJ) :J d3)€()Jd3l)()F(X6n,UH0,/lO,’l9()7[(])
Vo

x 83 [x —x (xf)",vno,uo,ﬁo,to;t)]
% 6 [v) = v (g, vjos Ko, Do, o3 )]
5[/1 - HL(xglaU|\0,H07190Jo§f)]
0 [9 = IL(x5', v)jo, o> Yo, to; 1) (mod 27) |,
(86)

where [d*vo = [*_dvjo [," dug §d. In the Eulerian pic-
ture, the temporal change rates of the guiding center position,
parallel velocity, magnetic moment, and gyrophase are
denoted by the functions u'(x", Ul 105 8), g (7 0
1,0, 1), uy (X" vy, 1,9, t), and wy (X, vy, 1, 9, t), respectively,
and they are related to those in the Lagrangian picture by

X (3%,1)”0,,“0,190,1‘0, )a
U\|L(XO»U||oyﬂoﬂ90,to7 1),
,Ll (XOaUHOmumﬁOath )7
19 (xgavaluOvﬁOvtO;t)v

u,’v;-(XZn7UHLaﬂL719L7 )
oy (X' O, g, O, 1) =
u,u(xTaUHLmuLaﬂLv )
uﬂ(leaUHLnuLvﬁLa )

(87)

where f = of (X3, V)0, to> Vo, 1) /Ot represents the time deriva-
tive of an arbitrary function f(xg,vjo, 4o, Do,t) Wwith
(X3, U0, to, o) kept fixed. It can be shown from Egs. (86)
and (87) that F satisfies

oF 0 ;
g P+

0
8t 8j (FMH)+_

) 9
(Fuy,) + - 55

8 H au (Fuﬂ) =0.

(88)

The virtual displacement of the particle’s trajectory in the
(x, vy, 1,9 space is represented by the variations of the
Lagrangian representations of the particle’s motion as dx;
(X85 V)05 Ho» Yo, 205 1), S0 (X5, D)j0, Mo, Do, T3 1), Ot (X6, U)o,
Ho, Yo, to;t), and 0L (x§, vjo, Ho, Vo, to; 1). The variations in
the guiding center position, parallel velocity, magnetic
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moment, and gyrophase are represented in the Eulerian pic-
ture by Ooxp (X", vp, 1, 9,1), Ovyp(X",vp, 1w, 9, 1), Sup(x", vy,
t,9,t), and 6Yg(x", vy, u, 9, ), which are related to those in
the Lagrangian picture by

5xiE(x2", ULy My, VL, ) = 5x2(x8,v|‘0, Ho, Jo, to; 1),
ooy (X], UL, iy, Try 1) = 0L (X, Ujos Mo, Do, to3 1),
Oug (X[, v, iy, Ipst) = 5%()(0717“07#0»1907107 1),
OVE(X]', v, iy, Dry t) = SUL(XG, U)o, Mo, Do o3 2). (89)

Using Egs. (87) and (89), the variations in the functional
forms of uf(, Uy, Uy, and uy due to the virtual displacement
of the particle’s trajectory are given by

oul = (a—ku’r 0 + u, 0 +u 0 + uy 8)5)5'
o tod " au Mo )T E
<5x’Ea 5+ ovjE aa + opg 88 + 00 ;)

5”0\\ = <§+u§%+u0%+uu%+uy%> oV
<5x’Ea ’+51)H588 +5,uEaa + 0Ug ;9) Iy,

ouy = (g u’xaa] + 1ty 88 +uy 88 +uy ;) Otg
<5x’Ea 1+5UE86| +(>ME88 + 0k 8819) "

ouy = (3 JF”]xaa, + uy, 88 +u, 86 + uy (%) 0V
<5x’ —|—5UHE88 +5#Eaa +519E§l9> 9. (90)

The variation in the distribution function due to the virtual
displacement of the particle’s trajectory is written by using
Egs. (86) and (89) as

8 8 0
9 (ko9 91
~ 3 E)- oD

Using Egs. (88), (90), and (91) we find that the variation in
the action integral /px due to the virtual displacement of par-
ticle’s trajectory is written as

g oL d (0L ‘
_ 3 3 GC v GC i
o =[] v (%) 4 (%) Lo
OLee OL¢c (aLGC>
F F
’ <3|>5'E <6u )f“ﬁ {
d (OLgc 0 OLgc ; GLGC

i (e ) e o =G ) |
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0 - (OLgc . ; OLgc

— < Ful | —=6x, + ——=09
+8x7{ X(au; By E>}

0 OLge . OLgc .

— < Fu,, | ——0x% +——01
+81)H { oy ( 814;. Tt Ouy E)}

9 { Fu, (aLGC oxi. + OLcc 519E> }

ou ou, Oy
) Oloe . OLge

where ((’)LGC/E)x")w (aLgc/aUH)u, (aLgc/a/J)u, and (aLgc/
d9),, denote the derivatives of Lgc in X', v)|, i, and 9, respec-
tively, with (i, uy) kept fixed in Lgc, and the time deriva-
tive along the particle’s trajectory is represented by

0
7+l/lyuaiv”+uuaflu+uq97. (93)

We now use the Eulerian variational principle which implies
that the collisionless drift kinetic equation for the distribution
function F can be derived from the condition that d/px = 0
for arbitrary variations dxj, Ov|, Op, and 6k which vanish
on the boundaries of the integral region. We first use
dlpk /0xi; = 0 to obtain

d 8LGC>
Epl - < Xl u7 (94)

where p; represents the covariant vector component of the
canonical momentum defined by

OL e e . n
pi= 8;C = ;A,-(x”,t) + mu)b;(x", 1) E;A. (X", v),1). (95)

1

We should note that the distribution function F is included as
a factor in 0/pk /dx; = 0 although it is omitted from Eq. (94)
for simplicity in the same way as done in Sec. II A. This
omission of F is also done in the other equations obtained
below from 0/px = 0 although it does not make a difference
in deriving the resultant collisionless drift kinetic equation in
Eq. (109). We can rewrite Eq. (94) as

o1 . OB
muy, by = e(E,- +Z\/§6,jku§B k) — ,u%7 (96)

where the modified electric and magnetic fields are defined by

dp 10AT
E=————— 97
! ox' ¢ ot ©7)
and
. €k A
Bi=——*k (98)
V8 0¥
respectively.

Next, dlpk /ovyr = 0 is used to obtain

OLgc o ip -
( 5o ) - m(uxb, _ UH) —0, (99)

from which we have
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b = v). (100)
Furthermore, dlpg/our = 0 and 3l pg/0U; = 0 yield
OL
Gy "M, —B=0 (101)
on ), e
and
d 8LGC mc aLGC)
dt((?uﬁ) e (819 w (102)
respectively.
Equations (96) and (100)—(102) are rewritten as
u=— v B*i—i—cﬁljkb»(Ea—B—E*) (103)
* T Bj I Vg \eaxk TH) I
B " OB
muy = ?ﬁ (eEi — ,uaxi), (104)
u, =0, (105)
and
B
uy =2 =0, (106)
mc
where
| =B"bi. (107)

Equations (103) and (104) are obtained by taking the vector
and scalar products between the magnetic field and Eq. (96),
respectively. Also, using Eq. (93), we can write

(1t u)_<d_x"dﬂd_ﬂd_19>
ot B0 ) e dr v dede )

Then, with the help of Eq. (108), it is clearly confirmed that
Egs. (103)—(106) represent the same guiding center motion
equations as derived by Littlejohn from the guiding center
Lagrangian. We can verify that the right-hand sides of Egs.
(103)—(106) are all independent of ¢ and that the magnetic
moment y is an invariant of motion as seen from Eq. (105).

Substituting Egs. (103)—(106) into Eq. (88) and taking
its average with respect to the gyrophase ¢, the collisionless
drift kinetic equation is derived as

oOF 0 (.1 . €% (1 0B )
8l‘+8X'<FB* UHB +C\/§bj<eaxk_Ek ‘|>

(108)

[
o (- B" OB
— | F—=\|eEl —u—) | =0,
+5‘UH ( mBW (e ! 'u8x’>>
where F denotes the gyrophase-averaged distribution function
_ +d§
F=¢0—F
2n

B. Transformation of spatial coordinates

(109)

(110)

Here, in the same way as in Sec. II B, the infinitesimal
transformation of the spatial coordinates is given by Eq. (43)
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and the infinitesimal variation & in the spatial coordinate x’
is again regarded as an arbitrary function of only the spatial
coordinates. However, it should be noted that the other varia-
bles (v, u,¥) are independent of the choice of the spatial
coordinates because they are defined from the relation of
the velocity vector to the direction of the local magnetic
field. This is in contrast to the case of Sec. II B where the
velocity components (v")i:1,2,3 are transformed as the con-
travariant vector components under the spatial coordinate
transformation.

The spatial coordinate transformation given by Eq. (43)
changes the Lagrangian representation of the guiding center
position as

XZ(.)C&”,U”(),[J()J?QJQ;I‘) :xl[;(xgaUHO’HOﬂ?OJO;l‘)
+ il(xzi(x}&U\|071u071903[0;t))5 (111)

where x{j = xi) + g (x() represents the guiding center position
at time #y, in the transformed spatial coordinates. The
distribution function is written in the transformed coordi-
nates as

F/(xga U5 Ky 191 I)

= J d*x, Ja’3vo F'(xg", 00, o, Do, f0)
Vo

x & [x" — X} (", 00, ko Vo, fo; Z)}
x 6 o) = o (", vj0s Ho: Do, 103 1)]
X & — pp (x0", vjos to» Yo, o3 1)]

x &[0 — IL(xg", vjo, o, Vo, 103 1) (mod 27) | (112)

The initial distribution functions F'(xg', vjo, 4o, Jo, %) and
F(x§,vj0, Mo, Do, o) in the transformed and original coordi-

nate systems are related to each other by F'(xy', vjjo, io, Yo,
to)d*xty = F(x, U0, Ho, Yo, t0)d>xo, which is rewritten as

0
(113)

oxi\ |
F'(x§'s 00, Ho> Yo, f0) = F (G 0jos Ho, Yo fo) [det <5X?>]

The variation OF in the functional form of the distribution
function F' due to the spatial coordinate transformation is
defined by

F' (oo, p,0,8) = F (X vy, 1,0, 8) + 0F (X vy, 1,9,1). (114)

Then, it is shown by using Eqs. (111)—(114) that 0F can be
represented by

0

OF = — —
0 ox/

(FE). (115)
In the same way as seen in Sec. II B, the variations in the
functional forms of ui, Uy, Uy, Uy, ¢, A;, and g d_ue; to the
spatial coordinate transformation are denoted by du,, duy,
Ouy, ouy, 6¢, 6A;, and dg;;, respectively. They can be repre-
sented by using the Lie derivative L as
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. 4 out. o
T __ 1 — _ z X >

Oy = ~Lal =~ 5 0 g
5 Leuy, = Ot

Uy = —Lely = _é Wv

< Ou

ouy, = —Leuy = —é’a—;,

duy = —Leuy = —& %L;f (116)

The expressions of d¢, 0A;, and 5g,-j in terms of the Lie
derivative are shown in Eqgs. (48), (52), and (54),
respectively.

C. Derivation of the momentum balance equation

We can use Egs. (80)—(83), (115), and (116) to derive
the action integral 1), = Ipx + dlpx in the transformed spa-
tial coordinates. Here, the variation 6/pk in the action inte-
gral due to the spatial coordinate transformation is written as

_ 12 . o i
5IDK = J dtJVdSX |:é]JjDK + % <§]T5K):| s (1 17)

3

where the vector density J{)K and the tensor density TgK are
defined by

, A 9
Jpx = g* Jd3v {at (Fmuoby) + \/§6k,mBl

e 0 OLGC
SRt — — ([F—¢
x {c e 8x”( 8(8A,,,/8x”)>}

L
—eFE; +2V, (ngm M)} (118)
8g/m
and
, ) - OL OL OL
Ti = ot | Py F |y Z26C _ 5, 9LGC _ 9LGe 4
pk = 8§ Jdv |:ux 8u§ 8kl Dgn A, k
OLgc (8Ak 8A,>
e (222 11
T o0a,jov) \oxd o) | (19

respectively. In deriving Eq. (117), we also need to use Eqgs.
(94), (99), (101), and (102) obtained from the Eulerian varia-
tional principle in Sec. IIT A.

Note that the action integral Ipx is invariant under the
spatial coordinate transformation and accordingly lpg
shown in Eq. (117) vanish for any ¢;. Then, the integrands
at the interior and boundary points on the right-hand side
of Eq. (117) must vanish separately. Thus, we obtain
Jhx = 0 and T}, = 0. Substituting Eq. (83) into Eq. (118),
the momentum balance equation is obtained from J},; = 0
as

. . ..
% (mNVg”b’) =eN <E] + 27§Vk31> —V:P7,  (120)

where

N = Jd3vF, NV = Jd%FuH (121)
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and

. F
NV¥ = Jd3vFuk —&—Eek’/i (Jd% —
e \/§

y |:_:ubj + 2 (), = (w) bt }D

are used. We see that the inertia term in the momentum bal-
ance equation, Eq. (120), contains only the parallel momen-
tum component while the electric current eNV* in the
Lorentz force term consists of the guiding-center current and
the magnetization current*® as shown in Eq. (122). The sym-
metric pressure tensor density P/ on the right-hand side of
Eq. (120) is defined by

(122)

OLgc

— PU 4 nij
CGL )
8g,~j A

Pi = 2Jd3vF (123)

where PZGL is given in the Chew-Goldberger-Low (CGL)
form™*!

Pl = Jd%F[muﬁb"bf + uB(g" — b"b")}, (124)
and 7’/ is the non-CGL part written as
i = Jd%quH (D), + @) b].  (29)

Here, the perpendicular component of the guiding center veloc-
ity is represented by (u,)', = u’ — u*bib'. The symmetric pres-
sure tensor given by Eq. (123) with Egs. (124) and (125) agrees
with that given by Eq. (19) in Ref. 37. The CGL pressure tensor
shown in Eq. (124) contains the scalar (or isotropic) part, which
represents background pressure, and the anisotropic part, the
magnitude of which is considered to be smaller than the back-
ground pressure by the factor ~p/L in the neoclassical transport
theory. Here, p and L represent the gyroradius and the equilib-
rium gradient scale length, respectively. On the other hand, the
magnitude of the non-CGL pressure tensor defined in Eq. (125)
is regarded as ~(p/L)*.

We next substitute Eq. (83) into Eq. (119). Then, the
other condition, T}, = 0, derived from putting é/px = 0 in
Eq. (117) can be written as

PY = Pi 4 DY, (126)
where P” is the symmetric pressure tensor given by Eq.
(123) and PY is defined by

0L . . )
’ ajf - Jd%Fu; <mv|b’ +§Af>. (127)

Pl = g/de3UFu

Here, P/ is an asymmetric tensor density representing the
transport of the canonical momentum. The difference DY
between P and PY is written as

o oL oL 0A,  OA
Di = k d3 Fl— GCA GC ' (_k_])
g J v [ oA, T 50a /o) \ o ok

= Jd%F[— Su;Aj + mva"(ux)jL + uB(g" — bibj)} .

(128)
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IV. DRIFT KINETIC SYSTEM WITH SELF-CONSISTENT
FIELDS

In this section, not only the drift kinetic equations but
also the equations for self-consistently generated electromag-
netic fields are treated as constituents of the governing equa-
tions of the extended drift kinetic system. The Eulerian
variational principle is used to present all the governing
equations and to derive the momentum conservation law sat-
isfied by them. The energy conservation law in the extended
drift kinetic system is derived in Appendix C where
the energy balance in the drift kinetic system considered in
Sec. 111 is also obtained.

A. Quasineutrality and Ampére’s law combined with
drift kinetic equations

We here combine the quasineutrality condition and
Ampere’s law with the drift kinetic equations in order to
simultaneously determine the electromagnetic fields and the
distribution functions for all particle species. The action inte-
gral Ipgp for deriving all the governing equations is written
as

1 1
Ipkr = J dt Lpxr = J dl‘J d3x£DKF7 (129)
n h Vv
where the Lagrangian density Lpkr is given by
8
Lokr =Y Jd3v FuLoca — %BZ. (130)

a

Here, the subscript a represents the particle species. It is seen
from Eq. (130) that Lpgr contains the summation of the drift
kinetic Lagrangian densities [see Eq. (81)] over all species
and the magnetic energy density with the minus sign.

We now virtually let the trajectories of particles for all
species, the electrostatic potential, and the vector potential
vary infinitesimally. Then, the resulting variation 8/pgp in
the action integral Ipg is expressed as

Olpkr = Z le dtj d3de3vF <%)
a Jh Vv ¢ Ox' u
d ILgca i OLGcq
- <E)a< O, >}5X“E N ( )| ) Pl
OLge (3LGCa> (d) OLGcq
+< o )f““”{ 0 ), \at) \ o
5}
X 50a5] + J dtJd3x [&p e, Jd%Fa

n

e[ 5 )
+0A; Z? dUF,,Mw—E@(Bk—4TLMk)

a

“+0lpkry, (131)

where (d/dt), denotes the time derivative along the trajectory
of the particle of species a [see Eq. (93)], dlpkr), represents
the part which is written as the boundary integrals, and
M, = gklM[ is the kth covariant component of the
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magnetization vector. The kth contravariant component of
the magnetization vector is defined by

1
Mk = —ZJd%Fa —ub* +
V&

a

aU\

(uax)]i>. (132)

The magnitude of the second term in the integrand on the
right-hand side of Eq. (132) is smaller than that of the first
term by the factor ~p/L. Except for this small correction,
Eq. (132) agrees with the well-known expression of the mag-
netization vector.*’

For each particle species a, the same motion equations
as shown in Eqs. (103)—(106) are derived from &lpkr/ox!
= 5IDKF/5UHaE = 5IDKF/5,uaE = 511)1(1:/51945 =0 and accord-
ingly the same collisionless drift kinetic equation as Eq.
(109) is obtained for the gyrophase-averaged distribution
function F, = §F,dv/(2n).

The remaining governing equations of the system, namely,
the quasineutrality condition and Ampere’s law are derived
from 0lpxr/o¢p = 0 and Sl pir/0A; = 0, respectively, as

Zeazva = Zea Jd3vFa =0 (133)
and
.. OB 4r .
ok 2k 134
o e (134)

where the ith contravariant component of the electric current
vector density is defined by

. . oM
= EeaNaV(’, = 2% Jd3vFau;x + ce’-’ka—xjk.

It is noted that the definitions of the density N, and the flow
velocity V! which appear in Egs. (133) and (135), are already
shown in Eqgs. (121) and (122), respectively.

(135)

B. The momentum conservation law

We now consider the transformation of the spatial coor-
dinates given by Eq. (43) again. Under the spatial coordinate
transformation, the variables (v, i, ) are kept fixed as noted
in Sec. III B. In the same way as in Egs. (115) and (116), the
spatial coordinate transformation causes the variations in the
distribution function F, and the functional forms of
(Wl o, Uay, Ugy) Which are written as

— o .
F,=——(F,& 1
5y = = (Fud) (136)
and
<o o aél jaufn, o j utlvH
Ol ”xgié ox "’ Othar ¢ ox '’
-Ou, OUgy
_ g Ak jZ7a
5”{1/1 = 5 B ) 5”1119 6 o (137)

The variations in ¢, A;, and g;; due to the spatial coordinate
transformation are shown in Egs. (48), (52), and (54),
respectively.
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Using the expressions of these variations described
above, we find that the variation 6/pgp in the action integral
Ipkr caused by the spatial coordinate transformation is writ-
ten in the form

- 12 9 l
51[)[([: = J dtJ |:éjJDKF + — (f TZJ)KF):| (138)
,l Ox!
Here, .IEKF is given by
; P,
Jhr = a’“ +Vv,0! (139)

where Pﬁo, and @j’m represent the total momentum vector den-

sity and the total symmetric pressure tensor density defined by
=S [@or, Zoce _ dPoFmaugb/ (140
tot = g] Z UlFq Ouk_ - Z U aMmgU) ( )

and

©!, =0 + 6},

tot —

(141)

respectively. It should be noted that, in Eq. (140), the vector
potential part of the canonical momentum does not contrib-
ute to the total momentum because of the quasineutrality
condition, Eq. (133). The first term on the right-hand side of
Eq. (141) is the particle part of the pressure tensor density
defined by

@’f—zzjcﬁ

which consists of the CGL part,

OL GCa

—P'éGL —+ n’A, (142)

Plo =Y Jd%Fa [muuﬁbw + uB(g — bib’)} . (143)

a

and the non-CGL part,

nl = Z Jd3vFamavH [bf(uax)fl + (u,,x)"lbi]. (144)

a

Equations (142), (143), and (144) are just the species sum-
mation of Egs. (123), (124), and (125), respectively. The sec-
ond term on the right-hand side of Eq. (141) is given by

0/=2_"— 0 (—£B2> zﬁ(B_zgu

— BB/ 145
0gij 87 47 \ 2 >’ (143)

which represents the Maxwell stress tensor due to the mag-
netic field with the opposite sign. It is clear that ©7 | ®”
®/, Pl . and n/ are all symmetric with respect to the
iriterchange of the superscripts i and j. )

The contravariant (i, j)-component T} of the tensor
density appearing on the left-hand side of Eq. (138) is writ-
ten as
ViF i,

ij ij
Tpgr = tut -0, -

(146)

where the total asymmetric canonical pressure tensor density
Hifo, and the third-rank tensor density F i are defined by
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. OL OL
= ik oF i GCa A GCa'
Mo = ¢ ZJ (” k| Vi 5o, Jow)
0 (V2 2) j V8 g
Al———— | B —¢"x=B
Vi 10(8A,/6x1) (8n & 8n

= Z Jd3UFauZX <mav|b/ + e?aAj)

ilm
+ 5 (B, — 4nM,,)VIA, — g7 V8 g (147)
47 81
and
oL 0 NG
Fik=al doF, GCa : <32>
& l ZJ oA, jox) T 0(0A Jox) \8x
6ikm i
=S A(B, —4nM 14
An ( m T m)7 ( 8)

respectively. We can immediately see that F po ¥ satisfies

A i (149)

from which we have

Vi ViFi = (150)
in the same way as in Eq. (73)
Since the action integral /pg is invariant under the spa-
tial coordinate transformation, dlpgr written in Eq. (138)
vanishes for any ¢;. Thus, the integrands at the interior and
boundary points shown on the right-hand side of Eq. (138)
should vanish separately, so we obtain Jj oxr = 0 and
KF = 0. We find from Egs. (139) and (146) that J’DKF =0
represents the total momentum conservation law

P
a t0f+v®11 _0

r i (151)

and TgKF = 0 gives the relation of the total symmetric pres-
sure tensor density ®;fm to the total asymmetric canonical

pressure tensor density H,o,

®l, =TI, — ViFiy. (152)
Combining Egs. (150) and (152) shows
\Y, ®Z,, =V; H;’O, (153)

We clearly see that the relations between the two types of
the pressure tensors shown in Egs. (152) and (153) take the
same forms as those given by Egs. (77) and (78) in Sec. I1 C,
respectively.

It is noted that the momentum conservation law similar
to Eq. (151) was derived by Brizard and Tronci®® for the
guiding-center Vlasov-Maxwell system. In their model, the
electromagnetic fields are determined by the full Maxwell
equations including the Maxwell displacement current so
that their system contains such rapid phenomena as the elec-
tromagnetic waves with the speed of light and the Maxwell
stress due to the electric field. They also derived the symmet-
ric pressure tensor including the same particle part as given
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by Eqgs. (142)—(144) although they modified the magnetiza-
tion term in the canonical momentum conservation law to
transform the asymmetric pressure tensor to the symmetric
one. Thus, their derivation is different from our direct deriva-
tion of the symmetric pressure tensor by taking the variation
with respect to the metric tensor.

It is instructive here to consider the momentum conser-
vation law, Eq. (151), in the equilibrium limit where the dis-
tribution functions are assumed to take the local Maxwellian

form, F, = Na(ma/ZnTa)S/2 exp [— (% mavﬁ + ,uB) /T.] (note

that, precisely speaking, this local Maxwellian distribution
function is not the exact stationary solution but the zeroth-
order one of the drift kinetic equation in the gyroradius
ordering and that the deviation from the local Maxwellian
appears in the first-order solution). Then, it is found from
Eqgs. (142)—(144) that ®I’f = Pg, where P = > NI, We
now use the conventional vector notation to rewrite Eq.
(151) in the equilibrium state (9/0t = 0) as
VP—L(VXB)XBZO, (154)
4n
where Eqgs. (141) and (145) are used. In addition, Ampere’s
law in Eq. (134) is used to obtain the familiar force balance
equation in the magnetohydrodynamics (MHD) equilibrium

1
P= EJ x B, (155)
where the current density is given by Eq. (135) as
J=> e Jd%Fauax + ¢V x M. (156)

This formula is called the magnetization law:*° the current is
represented by the sum of the flow of guiding centers and the
curl of the magnetization M [Eq. (132)], which are given by
the first and second terms on the right-hand side, respec-
tively. As shown in Ref. 40, it is found from using the local
Maxwellian distribution functions that the sum of the per-
pendicular components of the first and second terms on the
right-hand side of the above magnetization law gives the dia-
magnetic current, (c¢/B*)(B x VP). Recall that the perpen-
dicular component (u,,), of the guiding center velocity and
the magnetization M are both produced from gyrations of
particles around magnetic field lines. Even though finite
gyroradius effects are not described by the guiding center
distribution functions F, alone, such effects are partly
included in (u,), and M which help express the current
properly and recover the familiar force balance equation in
the MHD equilibrium as shown above.

V. EFFECTS OF COLLISIONS

We here investigate how collisions influence the
momentum conservation laws and the momentum balance
equation shown in Secs. I C, III C, and IV B when the colli-
sion term is added to the right-hand sides of the Vlasov and
drift kinetic equations. The effects of the collision term
added to the right-hand side of Eq. (35) were already studied
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in Ref. 44 where it was shown how to evaluate the correction
of the energy and momentum conservation laws due to the
collision and other source terms. According to the prescrip-
tion given in Ref. 44, the modified conservation laws are
obtained from the original ones with the time derivative of
the distribution function being replaced as

OF, OF,
or ot

— Ka; (157)

where /C, is the term added to the right-hand side of the
kinetic equation to represent the rate of change in the distri-
bution function F, due to Coulomb collisions and it may also
include other parts representing external particle, momen-
tum, and/or energy sources if any.

When I, is added to the right-hand side of Eq. (35), Eq.
(157) is applied to the momentum conservation law in Eq.
(76), where the term OP. /0t contains ., OF,/0t as seen
from Eq. (66). Then, we find that the resulting momentum
balance equation is given by Eq. (76) with making the
replacement

P OPI e,
—= € — o, [ mat) + A ).
o o ;J vk (m M c >

In the case where K, is given by the Coulomb collision oper-
ator (such as the Landau operator) which satisfies the conser-
vation laws of the particles’ number (f d*vK, = 0) and the
momentum (3, [ d*vK,m,/ = 0), the velocity space inte-
gral vanishes in Eq. (158) and we have the momentum con-
servation law in the same form as that for the case of K, = 0.
Also, it is noted in Ref. 44 that, even if K, contains some
external source parts other than the collision term, the charge
conservation law requires the condition Za e, fd%v K.,=0
which implies the correction term proportional to A’ vanishes
in Eq. (158).

Next, let us consider the case where K is added to the
right-hand side of the drift kinetic equation, Eq. (109), for a
given particle species, in which the subscript representing
the particle species is omitted. Here, K is regarded as
gyrophase-averaged. Applying Eq. (157) to this case, we find
that the momentum balance equations are derived from Eq.
(120) with the following replacement:

(158)

% (mNVg|‘bj) — g (mNVg”bj) — JdSU /le)”b/. (159)
The parallel component of this derived momentum balance
equation agrees with Eq. (18) in Ref. 37 where its perpendic-
ular components are not derived. We see from Eq. (159) that
the effect of I on the momentum balance equation for the
single particle species is written as fd%lCvab/ . When £ is
given by the Coulomb collision operator, [ d vlCmvaf rep-
resents the collisional transfer of the parallel momentum
from the other particle species to the given species.

Since the momentum balance equation obtained by
substituting Eq. (159) into Eq. (120) is always valid for the
distribution function which is the solution of the drift kinetic
equation including /C, it is also valid for each particle species
even when the quasineutrality condition and Ampere’s law
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are additionally imposed for the self-consistent fields as in
Sec. IV. Furthermore, we can use Eq. (157) in Eq. (151) to
see how the total momentum conservation law for the drift
kinetic system in the self-consistent fields is modified by
adding /C, to the drift kinetic equation for the particle species
a. The resultant momentum balance equation is given from
Eq. (151) by putting

J
8P§m _ apmt _ Z Jd3U}CamaU\|bj~

ot ot (160)

This corresponds to the species summation of Eq. (159).
When C, represents the Coulomb collision operator in the
zero-gyroradius limit, it satisfies Zajd% Kamqv = 0 and
the momentum conservation law takes the same form as in
Eq. (151). Note that the momentum conservation in
Coulomb collisions is satisfied locally at the colliding par-
ticles” position which differs from the guiding-center posi-
tion. Therefore, if the finite gyroradius effect is taken into
account, y fd3vKamav“ does not generally vanish for the
gyrophase-averaged collision operator I, at the fixed
guiding-center position, which includes the classical trans-
port processes.**

VI. CONCLUSIONS

In this work, Eulerian variational formulations for kinetic
plasma systems are presented. As examples, the Vlasov-
Poisson-Ampere system and the drift kinetic systems are
investigated. For the drift kinetic system, the additional case
is also considered in which the quasineutrality condition and
Ampere’s law are included as supplementary governing equa-
tions to describe the self-consistent fields.

For all cases treated here, general spatial coordinates are
used to represent the action integrals and the governing equa-
tions which take the forms being invariant under an arbitrary
(time-independent) transformation of spatial coordinates.
Furthermore, the invariance of the action integral under the
spatial coordinate transformation is made use of to derive the
momentum conservation laws and/or the momentum balance
in which the functional derivatives of the Lagrangians with
respect to the metric tensor components yield the proper
symmetric pressure tensors more directly than conventional
techniques using translational and rotational symmetries or
taking the moments of the kinetic equations.

It is also clarified how the momentum balances are influ-
enced by adding the collision and/or external source terms to
the kinetic equations. Since the invariance under the spatial
coordinate transformations is valid independently whether
the system has symmetric geometry or not, the present
formulation can be applied to kinetic studies of plasmas con-
fined in general magnetic configurations including nonaxi-
symmetric systems such as stellarators and heliotrons.*> For
example, the momentum balance equations derived here for
the drift kinetic system are considered useful for verifications
of accuracy of numerical simulations using Littlejohn’s guid-
ing center equations to study neoclassical transport processes
in various magnetic geometries. The extension of the present
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study to the gyrokinetic system is now in progress and the
results will be reported elsewhere.
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APPENDIX A: MOMENTUM BALANCE IN THE VLASOV-
POISSON SYSTEM

We here consider the Vlasov-Poisson system, in which
the electrostatic approximation holds; the magnetic field is
externally given as a time-independent one, By(x) =V
x Ay (x), and the electric field is written in terms of the elec-
trostatic potential ¢(x, #) as E(x,7) = —V¢(x,). The action
integral Iyp to describe the Vlasov-Poisson system is given
by

153 15)
Iyp = J dtLyp = J dtJ d*x Lyp, (A1)
151 h \%4
where the Lagrangian density Lyp is written as
Lyp = Z Jd3u Fg(xi7 v, t)La + Lypy. (A2)

a

Here, the single-particle Lagrangian L, for species a is
defined by Eq. (9) where the covariant components A;(x", 1)
of the vector potential are replaced with the time-
independent ones Ag;(x"). The field Lagrangian density Lyps
is written in the general spatial coordinates (xi)i:1,2,3 as

_V g(xn) zj( n) 8¢(X",t) a¢(x”,t)
87 g7 (X .

Lver = Oxt Ox/

(A3)

In the same way as in Sec. Il A, we now consider the virtual
displacement of the particle’s trajectory, for which the varia-
tions in the particle’s position and velocity are represented in
the Eulerian picture as ox'; and v’ , respectively [see Eq.
(19)]. The electrostatic potential field ¢ is also virtually var-
ied by d¢. However, since the vector potential Ay, is fixed,
its virtual variation dA,; does not appear. Then, the variation
in the action integral Iy is given by

~ 3 3 i 8La
Slyp=> | dt|d’x|d*vF,|oxi, o
a t Ugx

(@), (6} - oel(5)
dt) ,\Oul,, aE\ Qi o

153
3 _ 3 _@
+J dtJd x5¢< Zeajd vFa—7 A¢> + 0lypy,

n a

(A4)

where Ol p;, represents the part which is determined from the
values of ox'; and d¢ on the boundaries of the integral
region. In deriving Eq. (A4), Egs. (21) and (22) are used.
Imposing the condition that d/yp = 0 for arbitrary variations

Phys. Plasmas 25, 102506 (2018)

oxi ., 0v' -, and 8¢ which vanish on the boundaries, the same
equations as those in Egs. (35) and (37) are obtained in the
same manner as shown in Sec. II A. Recalling that, in the
present case, E; = —0¢/0x" because of dA/0t =0, we con-
firm the fact that Egs. (35) and (37) resulting from d/y» = 0
form the governing equations of the Vlasov-Poisson system.

To derive the momentum balance in the Vlasov-Poisson
system, we next consider the infinitesimal spatial coordinate
transformation as shown in Eq. (43) of Sec. II B. In the same
way as in Sec. II B, the variations in v, ¢, Fy, u;x and ufw
due to the spatial coordinate transformation are denoted by
gvi, 5(]5, OF - 5uf1x, and (_5u2v, respectively, which are defined
by Egs. (45), (48), (61), and (64) We should note that the
spatial coordinate transformation also causes the variations
in the metric tensor components [see Eq. (54)] as well as the
variation 0Ag; in the functional form of the contravariant
component Ay of the externally given vector potential,
where dA; is written in the same form as in Eq. (52)

o ox Y

0Ap = —¢& = —L:Ag;. (AS5)
This is contrast to the case that 0A(; does not appear in con-
sidering the virtual variations to derive the governing equa-
tions of the Vlasov-Poisson system from o6lyp = 0. Using
Eqgs. (48), (54), (61), (64), and (AS), it is found that the varia-
tion 61yp in the action integral Iy due to the spatial coordi-
nate transformation is written as

- f2 . b .
151 \%4 X
where J('/P and Tg,, are given by
. OP/ 0 oL . .
Fop = —L+A)— d*vF, " Y — F)
e =g T Aog <ZJ apag ) TV :
OP/ , .
=—+VIl' - F), (A7)
ot
and
i l.. i . OL
T, =TIV —nf—A{)Z:Jd%FaaA;, (A8)

respectively. The conditions, 6//dx’, = 61 /6v’; = 0 and 61/
0¢p=0, from which the Vlasov kinetic equation and
Poisson’s equation are derived, are also used in deriving Eq.
(A6). In Eq. (A7), P/ and P/(',_ are the kinetic and canonical
momentum densities which are defined by

P = Z Jd3vFamavj

a

(A9)

and

pi=g* ZJCP vF, gjk“ — ZJCF vF, (mav/ +ec—f'A{)> , (A10)

ax

respectively, and FJL represents the Lorentz force given by
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. [ O0An 8AO,~) J s . 0L,
F, =gY — — d’vF,
L=8 <8x’ ok Z oA

Eikl [P}
:7§ Z?Jd3UFavk B(]/,
a

where By = gUBé7 Bj = (¢"*/,/3)(0Ao/0x), and 0L,/
Ao = (eq/c)t* are used. Using the continuity equation
derived from the Vlasov kinetic equation, we can confirm
that the right-hand side of the first line in Eq. (A7) equals the
last line. In addition, Eqgs. (A7) and (A8) contain the sym-
metric pressure tensor ITV and the canonical pressure tensor
H? which are defined by

. AL, OLyps
n =2 uF,
(ZJ . 8gz'j+ 0gij )

a

Sugama et al.

(Al1)

=Y Jd3vFamav’v’ +j4/—f (g—EfELk - E’LE’L) (A12)
a

2
and
- 0L, Od OLvpr
v = k 3 Fa 1 _ f i
(=g (;Jd Pl Guk T ok 8(8¢/8x’)>
L V8 iju 09 09
8n Oxk Ox!
= Z d3UF,,vi m,ll/Jre—aA'g
2 C
i o
+4—\/f (ngﬁELk — E’LE’L>, (A13)

respectively, where Ei = g¢UE;; and Ep; = —0¢/0x' are
used.

Because of the invariance of the action integral Iyp
under the general spatial coordinate transformation, olyp
vanishes for any ¢, and accordingly, we have J{,, = 0 and
TYp =0 from Eq. (A6). The momentum balance in the
Vlasov-Poisson system is obtained from J},, = 0 as

opP! . .
VIl =F,
o L

(A14)
which agrees with that shown by Qin et al*® Another condi-
tion Ty, = 0 gives the relation between the symmetric pres-
sure tensor l‘_[_ij and the canonical pressure tensor Hif The
validity of T{, = 0 is also easily verified from Egs. (A8),
(A12), (A13), and OL,/0Aq; = (e/c)v'.

APPENDIX B: ENERGY CONSERVATION IN THE
VLASOV-POISSON SYSTEM

In this appendix, we consider the energy balance in the
Vlasov-Poisson system. The energy conservation laws for
the Vlasov-Poisson-Ampere system and the Boltzmann-
Poisson-Ampere system are shown in Refs. 27 and 44,
respectively. In contrast to the case in Appendix A where the
momentum balance in the Vlasov-Poisson system is derived,
we do not need to use the general spatial coordinate system
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here. So we now use only the Cartesian coordinate system
and represent three-dimensional vectors in terms of boldface
letters. Either a Lagrangian or an Eulerian variational formu-
lation can be used for the derivation of the energy balance
although we here follow the Eulerian formulation to treat the
variation of the action integral under translation in time. The
infinitesimal time translation is represented by transforming
the time coordinate as

! =t+e, (B1)

where € is an infinitesimal constant. The time translation
causes the variations J,Jyp in the action integral Iyp, where
Iyp is defined in Eq. (A1) and 9,/yp is written as

" oL
_ 3 vpP Z 3
5,1\/1) = J[] Jvd X|€ ot + : Jd v
OL, OL,
X {5tFa 'La +Fa(m 5tuax +Wm 5tuav
OL, OLvps
+%5z¢) } + Ve V5r¢} . (B2)

In this appendix, we use J,--- to represent the variations
associated with the time translation. The variations in u,
= (Uyy)iz1230 Wav = (Uyy);—1 23, ¢» and F, due to the time
translation are written as

_ Oug _ Oug _ 99
Oy, = —¢€ or Oy = —¢€ o’ 0 = _GE (B3)
and
oF 0 0
5fF = —EE =€ I:& . (Fu,,x) + g . (Fuav)} s (B4)

respectively, where Eq. (6) is used. Then, substituting Egs.
(B3) and (B4) into Eq. (B2) and using 0lyp/dxg = olyp/
ovg = 0 and dlyp/d¢ = 0, we obtain

2 OEvp. 0
_ 3. ZVPe | 2
5t1VP = —€ J Jvd X( It ) QVPL') ) (BS)

&

where the canonical energy density Eyp. and the canonical
energy flux Qyp. are defined by
|2

1 E
Evpe = ZJd%Fa (Emv2 +ea¢> —% (B6)

a

and

R A ) _ 199
QVPC_ZI:Jd vFa<2mv +e.p v im0 E., (BT

respectively. Here, the electrostatic electric field is repre-
sented by E; = —V¢.

Since the Lagrangian density Lyp defined in Eq. (A2)
for the Vlasov-Poisson system depends on time ¢ only
through the functions u,,, F,, and ¢ which are all determined
by the variational principle (see the Appendix A), the action
integral Iyp given in Eq. (Al) is invariant under the time
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translation. Therefore, J,/yp vanishes for an arbitrarily cho-
sen integral region [¢, ;] X V and accordingly, the integrand
in Eq. (BS) also vanishes. Thus, we obtain the local energy
conservation law written as

86 VPc
ot

OEvp
ot

0 0
& : vac = & : QVP =0, (B8)

where the energy density £yp and the energy flux Qyp are

defined by

E
Evp = ZJd%F S | 8;' (B9)

and

_ sr (Lo ) 9 OE,
va—gjd vFa(va et |Vt o

respectively. Poisson’s equation shown in Eq. (37) is also used

for deriving Eq. (B8). The local energy conservation law

shown in Eq. (B8) agrees with that obtained by Qin e al.*

(B10)

APPENDIX C: ENERGY BALANCE IN THE DRIFT
KINETIC SYSTEM

The energy balance in the drift kinetic system is consid-
ered in this appendix. The infinitesimal time translation
shown in Eq. (B1) causes the variations J,/px in the action
integral Ipg, where Ipg is defined in Eq. (80), and d/pg is
written as

t I
Odpk = J J d’x eaﬁDK + Jd3v F OLac dou,
fn JV 8t aux

OL
+“5,u19) + 5,F'LGCH. (C1)
Bqu

In the same way as in Appendix B, we here use o,--- to
denote the variations associated with the time translation.
We also use the Cartesian coordinate system and represent
three-dimensional vectors in terms of boldface letters. The
variations in u, = (u”'x,)i:hm, Uy, Uy, Uy, and F due to the
time translation are written as

(911)( auLH

5,ux 657 51””“ = al‘
ou ou,

511/{” = 67:, 5,uu = —€ 8; , (C2)

and
oF 0 0
5,F 65 € &'(FuX)_Fa_zz”(Fu””)
0 0
4 () + 3 (). ©

respectively, where Eq. (88) is used. Substituting Eqgs. (C2)
and (C3) into Eq. (C1) and using dlpg/oxg = 0 [Eq. (94)],
olpk /ovje = 0 [Eq. (99)], olpk/oug = 0 [Eq. (101)], and
0lpk /0¥ = 0 [Eq. (102)], we can rewrite 0,/pg as

Phys. Plasmas 25, 102506 (2018)

g 0 0
_ 3 19 (| 3 9. 3 _
Odpx = €Jtl Jvd x[@t <Jd UF5>—|—8X <Jd ch‘Iulﬂ,

(C4
where the guiding center velocity u, is given by Eq. (103)
and & represents the energy of the single particle (or the
guiding-center Hamiltonian Hsc) defined by

OL OL 1
& =Hge E£~ux+£u19 — Lge :—mvﬁ+uB+e¢.
814/,9 2

ou,
(C5)

Since the Lagrangian density Lpx = jd%FLGC depends on
time ¢ through not only the functions (F, u,, uy) determined
by the variational principle but also the given electromag-
netic fields, d,/px does not vanish but it should be equal to

153
eJ Jd%Jd%F(ang) , (C6)
n JV u

where (OLgc/0), represents the derivative of Lgc in time ¢
with the variables (u,, uy) kept fixed. Then, the local energy
balance equation is derived from equating Eq. (C4) with Eq.
(C6) and noting that the integral region [#;, ;] X V can be
chosen arbitrarily. Besides, in the same way as explained in
Sec. V, we can see how the energy balance is modified when
the term /C representing collisions and/or external sources is
added to the drift kinetic equation. The resultant energy bal-
ance equation including the effect of /C is written as

8 3 a 3 _ 3 .
5 (Jd st> o (Jd vFEuX) - Jd v(FE+KE),

(C7)

where the rate of change in the particle’s energy is given by

g _ (aLcc) o 6(],’7 OB e OA*

“or Mo T M o ©5
The energy balance equation shown in Eq. (C7) agrees with
Eq. (11) in Ref. 37.

We now consider the case of Sec. IV where not only the
distribution functions for all particle species but also the
electromagnetic fields are determined by the governing equa-
tions which obey the variation principle. Then, the variation
in the action integral Ipgr [see Eq. (129)] under the time
translation is written as

0.l :JQJ dx e%-i-ZJd%
 pkF Sy o

ot Tt

OLGcq 3LGCa

X {5tFa “Leca +Fa (auﬂ Orllgy au—mgétuaﬂ
aLGCa 3LGCa
A
8(]5 o + -0y ) }
OB /3) 8(5,A)
9(0Ajox)  ox |’ ©)

where Uy, 01y, and O,F, are given by using Egs. (C2)
and (C3) for the particle species ¢ while d,¢ and 6,A are
given by
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(C10)

In the same way as in deriving Eq. (C4), we use the condi-
tions for the particle’s trajectory given by Eqgs. (94), (99),
(101), and (102) for each species a as well as the additional
conditions for the self-consistent fields given by 0lpgr/d¢
= 0 [Eq. (133)] and dlpgr/0A; = O [Eq. (134)] in order to
rewrite Eq. (C9) as

f2 Oy O
Odpkr = —¢ Jrl Jvd3x( 8; d + & : th) )

where the total energy &, and the total energy flux Q,,, are
defined by

(C11)

2

1 B
Ewt = Z Jd3vFa (Emuﬁ + .UB> +3-

a

(C12)

and

Q, = Z Jd%Fa (%mv2 + ,uB) U, +é(E x H), (C13)
respectively. Here, the magnetic intensity field H is defined
by H =B — 47M with the magnetic induction field B and
the magnetization vector field M = (M')._,,, [see Eq.
(132)] associated with the gyromotion of particles. It is noted
that, in Eq. (C12), the contribution of the electrostatic energy
does not appear because »_, fd3v F.e,¢ = 0 holds due to
the quasineutrality condition. We also see from Eq. (C13)
that the total energy flux Q,,, contains the kinetic energy
flow due to the guiding center motion and the Poynting vec-
tor (¢/4n)(E x H).

Since the Lagrangian density Lpkr for the present sys-
tem depends on time 7 only through the distribution functions
and the electromagnetic fields which are determined by the
variational principle, the action integral Ipg given in Eq.
(129) is invariant under the time translation. Therefore, not-
ing that the integral region [¢;, ;] X V can be arbitrarily cho-
sen in Eq. (C11), it follows that the integrand should vanish,
which leads to the local energy conservation law.
Furthermore, when the term K, representing collisions and/
or external sources is added to the drift kinetic equation for
each particle species a, we can follow the procedure
described in Sec. V again to obtain the total energy balance
equation

85 tot
ot

o 1
+ Q,, = ;Jd%lca <§m02| + ,uB>, (C14)

where the condition Za e, jd3v K+ = 0 described after Eq.
(158) in Sec. V is used as well. The right-hand side of Eq.
(C14) vanishes when K, represents the collision operator
which satisfies the conservation law of the kinetic energy.
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