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Abstract. A global kinetic simulation model of collisional impurity transport is

developed for evaluating the radial particle flux of tungsten impurity in the edge region

of a tokamak plasma. Here, the plasma including the impurity and the background

ion is presupposed to be quasi-steady. The simulation model is based on the drift-

kinetic equation of the impurity affected by the friction force and the thermal force,

which were formulated in the previous study [Homma Y. et al 2016 Nucl. Fusion 56

036009]. The model is implemented in a drift-kinetic δf simulation code. We find

that the magnetic drift term in the drift-kinetic equation causes the “global effect”

on the impurity transport. Here, the global effect means that the solution δfZ of the

drift-kinetic equation (and also the radial particle flux) on a magnetic flux surface is

influenced by the values of the solution δfZ all over the edge region.
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1. Introduction

When the plasma facing components of fusion reactors are made of tungsten (W), the

accumulation of W impurity in the core of the toroidal plasma is one of the most

critical issues for operating the fusion reactors due to their excessive radiative cooling.

Therefore, understanding of the impurity transport process from the divertor region

towards the core and assessment of the accumulation level in the core are very important.

In order to predict the impurity accumulation precisely, it is necessary to develop

appropriate theoretical and numerical models for simulating the transport process.

In the present paper, we will discuss collisional transport, in particular, neoclassical

transport of W impurity for evaluating the radial particle flux of the W impurity in the

edge region of a tokamak plasma. In collisional transport phenomena in the edge region,

multiple time scales of Coulomb collisions between plasma particles often appear [1]. For

the modelling of the collisional impurity transport, one of the most difficult problems is

how to handle excessive differences among the multiple time scales because the transport

simulation becomes time-consuming. Here, the plasma including the W impurity and

the background ion is presupposed to be quasi-steady.

For mitigating the cooling, the number density nZ of the W impurity is required to

be 104-105 or more times smaller than the number density ni of the background ion in the

edge region [2, 3]. When the radial particle flux of the W impurity is estimated in this

situation, the Coulomb collisions have multiple time scales. Suppose, for instance, that

the number densities and the temperatures of the background ion and the W impurity

are ni ∼ 3×1019 m−3, nZ ∼ 1×1015 m−3, and Ti ∼ TZ ∼ 100 eV, then the characteristic

time scales are given as the deflection time between the W impurity and the background

ion τZi
D ∼ 8 × 10−6 s, the deflection time between the W impurities τZZ

D ∼ 4 × 10−2

s, the slowing down time τs ∼ 9 × 10−2 s, etc. Here, the charge number of the W

impurity is assumed as Z = +4 under low electron temperature compared to Ti, and

the background ion is set to deuteron (D+). It should be noted that these characteristic

time scales depend on the value of Z as shown below in equations (7), (10), and (13).

Such an excessive difference among the characteristic time scales causes the

difficulty in executing a kinetic simulation of the collisional impurity transport. It is

not practical to execute the kinetic simulation treating time evolution of all the species

of plasma particles, which consist of W impurities having various charge numbers,

background ions, electrons, and the others. Hence, the equations to be solved for

investigating collisional transport properties of the W impurity having a charge number

Z should be simplified. In this paper, a drift-kinetic simulation model is developed

for evaluating the radial particle flux of the W impurity, which is caused by Coulomb

collisions, in the edge region of a tokamak plasma.

The simulation model is constructed as follows. First, it is natural that the Coulomb

collision between the W impurity and the electron is ignored in the evaluation of

the radial particle flux because of the excessive small mass ratio of the electron to

the W impurity. On the other hand, as treated in previous studies [4, 5, 6, 7], the
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Coulomb collision between the W impurity and the background ion is considered in the

evaluation. Conversely, effects of the Coulomb collision between the background ion

and the W impurity on the distribution function fi of the background ion are ignored

by taking account of the fact that nZ is 104-105 times smaller than ni. In this case,

the distribution function fi is determined independently of the distribution function

fZ of the W impurity, and fi is assumed to be represented by using the 13-moments

approximation [5]. Here, the collisionality of the background ion in the edge region is

assumed to be in the Pfirsch-Schlüter (PS) regime. Referring to the previous studies, in

the present paper the Coulomb collision between the W impurity and the background ion

and the self-collision of the W impurity are taken into consideration in the drift-kinetic

equation of the W impurity. Here, the Coulomb collisions between W impurities having

various charge numbers are usually ignored under the trace impurity approximation

[5, 6, 7, 8, 9]. In order to check the influence of disregarding these Coulomb collisions,

the self-collision of the W impurity having a charge number Z is purposely left in the

present simulation model. As shown below, the validity of ignoring the self-collision is

confirmed in the evaluation of the radial particle flux.

From the previous studies, it is known that the Coulomb collision between the W

impurity and the background ion is interpreted as the friction force and the thermal

force acting on the impurity particles along magnetic field lines. In the previous studies

[5, 6], a full-orbit particle simulation of the collisional impurity transport was performed

for evaluating the radial particle flux of the W impurity across a magnetic flux surface

in the edge region in a circular tokamak field. In the full-orbit particle simulation,

full-orbits of the W impurity particles, which include their gyro-motions and start

from the initial positions distributed uniformly on the magnetic flux surface, are traced

under considering only the binary Coulomb collision between the W impurity and the

background ion. Here, the distribution function of the background ion is set by using

the 13-moments approximation, which is the same as equation (3) shown below, and the

distribution function of the W impurity evolves with time from the Maxwellian function.

It is shown that the radial particle flux evaluated in the full-orbit particle simulation

is basically consistent with the theoretical estimate obtained under considering two

neoclassical effects, i.e., the neoclassical inward pinch and the neoclassical temperature

screening effect [6, 10]. These neoclassical effects originate from the friction force and

the thermal force on the W impurity particles in the parallel directions. Here, the

friction and the thermal forces are formulated in [6].

On the other hand, we should note that the global effect, which originates from

finite orbit widths of the W impurity guiding centres across the neighbouring magnetic

flux surfaces, is ignored in the theoretical estimate. The orbit width of a W impurity

guiding centre is estimated as ≲ 1 cm. The finite orbit widths in tokamak plasmas do

not usually cause unignorable differences from the conventional neoclassical estimates,

as is also shown in appendix. When considering the friction and the thermal forces, the

global effect caused by the finite orbit widths appears after the relaxation time of the

parallel flow velocity of the W impurity, as seen below. Here, the parallel flow velocity
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is directly related to the strength of the friction force. The relaxation is characterised

by the slowing down time, and the relaxation time is ten or more times longer than the

slowing down time if the time evolution of fZ starts from the Maxwellian function. This

point has not been sufficiently taken into account in the previous studies. Therefore, in

this paper we investigate how strongly the global effect impacts on the radial particle

flux of the W impurity, by developing the solver of the drift-kinetic equation.

Here, the global effect is caused by the magnetic drift term in the left-hand side

of the drift-kinetic equation. This term is taken into consideration in a global code in

general, for example, PERFECT [11], XGC0 [12], etc. For example, in PERFECT code,

the linearised Fokker-Planck (FP) operator is used for representing Coulomb collisions.

In general, a simulation of the relaxation of the parallel flow velocity is highly time-

consuming in the case of employing the linearised FP operator. In this paper, in order

to reduce the calculation cost of the transport simulation on the slowing down time

scale, the simple formula of the friction force and the thermal force, which is mentioned

below in equation (5), is employed for treating the Coulomb collision between the W

impurity and the background ion.

For explaining the global modelling of the impurity transport on the slowing down

time scale and showing the simulation results affected by the global effect, this paper

is organised as follows. In section 2, the global modelling based on the drift-kinetic

equation of the W impurity is shown, and the model is implemented in the drift-kinetic

δf simulation code, KEATS [13, 14]. The global effect on the radial particle flux is

examined in benchmarks of the simulation code. The summary and discussions are given

in section 3. In appendix, the difference between the local and the global modelling is

explained in detail. Here, the theoretical estimate is reproduced by the local model.

2. Transport modelling based on drift-kinetic equation

2.1. Global simulation model

Both of the distribution functions of the W impurity and the background ion, fZ and fi,

are assumed to be quasi-steady. The drift-kinetic equation of the W impurity is given

as {
∂

∂t
+
(
v∥ + vd

)
· ∂

∂x
+ v̇∥

∂

∂v∥

}
fZ = C(fZ , fi) + C(fZ , fZ) + S, (1)

where v̇ = 0, v̇∥ = −{B∗ · (µ/mZ)∇B}/B∗
∥ [15, 16], C(fZ , fi) is the Coulomb collision

term between the W impurity and the background ion D+, C(fZ , fZ) is the self-collision

term of the W impurity, and S is the source/sink term. The parallel and drift velocities

are given as v∥ = v∥B
∗/B∗

∥ and vd = {(µ/Ze)b × ∇B}/B∗
∥ [15, 16]. The magnetic

moment µ is represented as µ = mZv⊥
2/2B, v⊥ =

√
v2 − v∥2, B

∗ = B+(mZv∥/Ze)∇×b,

B∗
∥ = b·B∗, b = B/B is the unit vector of magnetic field B, B = |B|, e is the elementary

charge, and the W mass is written by mZ . The electric field E is ignored and is set to

E = 0.



Global modelling of tungsten impurity transport based on drift-kinetic equation 5

When both fZ and fi are quasi-steady, these distribution functions are close

to Maxwellian functions. Here, the Maxwellian functions of the impurity and the

background ion are given as fM,Z and fM,i, respectively. Decomposing the distribution

functions fZ and fi to fZ = fM,Z + δfZ and fi = fM,i + δfi, the impurity-ion collision

term C(fZ , fi) is expressed as

C(fZ , fi) = C(fM,Z , fM,i) + C(fM,Z , δfi) + C(δfZ , fM,i) + C(δfZ , δfi)

≈ C(fM,Z , δfi) + C(δfZ , fM,i). (2)

The first term C(fM,Z , fM,i) is zero when the temperature of the impurity is the same

as the temperature of the background ion. Hereafter, C(fM,Z , fM,i) = 0. The fourth

term C(δfZ , δfi) is ignored because this term is negligibly small compared to the other

terms. When the background ion is highly collisional, the distribution function fi is

given by using the PS flow velocity VPS
i,∥ = V PS

i,∥ b and the PS heat flux qPS
i,∥ = qPSi,∥b in the

13-moments approximation [5]. Here, the 13-moments approximation of fi is expressed

as [17]

fi(x,v) ≈ ni

(
1

πvth,i2

)3/2

exp

{
− w2

vth,i2

}[
1−

(
1− 2w2

5 vth,i2

)
2qPS

i,∥ ·w
Tinivth,i2

]
, (3)

where w = v −VPS
i,∥ , mi is the ion mass, and vth,i =

√
2Ti/mi is the thermal speed of

the background ion. Under the conditions of |V PS
i,∥ /vth,i| ≪ 1 and |qPSi,∥ /Tinivth,i| ≪ 1,

the distribution function fi is decomposed as

fi(x,v) ≈ fM,i + δfi(x,v;V
PS
i,∥ ,q

PS
i,∥ ). (4)

As shown in [6], using equation (4), the Coulomb collisional force RZi,∥ = RZi,∥b, which

consists of the friction force and the thermal force acting on the impurity particles along

magnetic field lines, is approximately given as

RZi,∥ ≈ −C1
nimi

τs

(
VZ,∥ −VPS

i,∥
)
+Rth,∥, (5)

where Rth,∥ is deduced as Rth,∥ ∼ −C2 (mi/3.16Tiτs)q
PS
i,∥ , VZ,∥ = VZ,∥b is the parallel

flow velocity of the impurity:

VZ,∥ = V
(1)
Z,∥ =

1

nZ

∫
d3v v∥ δfZ , (6)

which should satisfy |VZ,∥/vth,Z | ≪ 1, vth,Z =
√
2TZ/mZ is the thermal speed of the

impurity, and τs is the slowing down time:

τs =
12π3/2

√
2

√
mi Ti

3/2ϵ0
2

nZZ2e4 ln Λ
. (7)

Here, ϵ0 is the electric constant and lnΛ is the Coulomb logarithm. The coefficients C1

and C2 are given as C1 ≈ 0.9 and C2 ≈ 1.89, which are evaluated in [6]. Therefore, the

term C(fM,Z , δfi), which is called the field-particle collision term CZi
F fM,Z , is modelled

by using the total force RZi,∥ as follows [16],

CZi
F fM,Z := C(fM,Z , δfi) ≈

RZi,∥v∥
nZTZ

fM,Z . (8)
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The term C(δfZ , fM,i) is called the test-particle collision term CZi
T δfZ :

CZi
T δfZ := C(δfZ , fM,i). (9)

It should be noted that the characteristic time scale of CZi
T δfZ is significantly smaller

than the time scale of CZi
F fM,Z , as shown in section 1. This fact indicates difficulty in

executing the impurity transport simulation with both terms CZi
F fM,Z and CZi

T δfZ . On

the other hand, the term CZi
T δfZ has been usually ignored in the impurity transport

analysis in a tokamak magnetic field, as shown, for example, in [4, 7]. In fact, in a

circular tokamak field, the particle simulation including the binary Coulomb collision

between the impurity and the background ion is not contradictory to the theoretical

estimate obtained by taking account of only the total force RZi,∥ [6]. As shown in

section 2.3, we also confirm that the term CZi
T δfZ does not play an important role as

far as evaluating the radial particle flux of the impurity in the circular tokamak field,

when the test-particle collision term is represented as CZi
T δfZ = νZi

D L (δfZ) for the

sake of simplicity of the confirmation. Here, L is the Lorentz scattering operator and

νZi
D ∼ 1/τZi

D is the deflection frequency of the impurity-ion collision:

νZi
D (v) = ν̂Zi

ϕ(xi)−G(xi)

x3
Z

, (10)

where ν̂ab = nbe
2
ae

2
b ln Λ/(4πϵ

2
0m

2
av

3
th,a), ϕ(x) is the error function erf(x), G(x) =

{ϕ(x)− xϕ′(x)}/2x2, xa = v/vth,a, eZ = Ze, and ei = e [16].

The self-collision term is expressed as

C(fZ , fZ) ≈ C(fM,Z , δfZ) + C(δfZ , fM,Z). (11)

The higher order term C(δfZ , δfZ) is negligibly small compared to the other terms and

is ignored in this paper. Therefore, the self-collision term is written as C(fZ , fZ) =

CZZ
F fM,Z + CZZ

T δfZ , where CZZ
F fM,Z := C(fM,Z , δfZ) and CZZ

T δfZ := C(δfZ , fM,Z) are

called the field-particle and the test-particle collision terms, respectively. The self-

collision term is usually considered not to play an important role in the impurity

transport in a tokamak magnetic field. In section 2.3, the validity of ignoring the

self-collision term is confirmed. For the sake of simplicity of the confirmation, the test-

particle collision term is given as

CZZ
T δfZ = νZZ

D (v)L (δfZ), (12)

where νZZ
D ∼ 1/τZZ

D is the deflection frequency of the self-collision:

νZZ
D (v) = ν̂ZZ

ϕ(xZ)−G(xZ)

x3
Z

. (13)

In this case, the field-particle collision term CZZ
F fM,Z is given by the model operator

which ensures the local momentum conservation property for the impurity-impurity

collision, as shown in [16], i.e.,

CZZ
F fM,Z = νZZ

D (v)
mZ

TZ

v · u fM,Z , (14)
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where the vector u is given as

u =

∫
d3v νZZ

D (v)v δfZ

/∫
d3v νZZ

D (v)
mZv

2

3TZ

fM,Z . (15)

From the discussions above, we have the following transport modelling:

DδfZ
Dt

=

{
− D

Dt
+ CZZ

F + CZi
F

}
fM,Z , (16)

where D/Dt := ∂/∂t + (v∥ + vd) · ∂/∂x + v̇∥∂/∂v∥ − CZZ
T . Here, the role for the

source/sink term S in the time evolution of δfZ is ignored for the sake of benchmarks

for comparing the simulation results with the results in the previous study [6]. The

distribution function fZ = fM,Z + δfZ evolves with time from the Maxwellian function

fM,Z , i.e., δfZ = 0 at t = 0 in equation (16). The condition of |δfZ/fM,Z | ≪ 1, which

means that |δnZ/nZ | ≪ 1, |δTZ/TZ | ≪ 1, and |VZ,∥/vth,Z | ≪ 1, should be satisfied in

this modelling. Here, δnZ and δTZ are given as

δnZ =

⟨∫
d3v δfZ

⟩
(17)

and

δTZ =
1

nZ

⟨∫
d3v

{
1

3
mZv2 − TZ

}
δfZ

⟩
, (18)

where · means the time-average and ⟨ · ⟩ is defined as ⟨ · ⟩ = (1/δV)
∫
δV · d

3x. The

small volume δV lies between the neighbouring magnetic flux surfaces. The two-weight

δf method [18, 19] is applied to solve equation (16) as follows:

Dg

Dt
= 0,

Dw

Dt
= − Dp

Dt
+

p

fM,Z

CZZ
F fM,Z +

p

fM,Z

CZi
F fM,Z , (19)

Dp

Dt
=

p

fM,Z

DfM,Z

Dt
.

The marker distribution function is expressed as g and the weight functions are w

and p, which satisfy wg = δfZ and pg = fM,Z . The marker particles, which are

sample particles in the Monte-Carlo method, trace the guiding centre orbits. Here,

the motions of the marker particles are given by the first equation of (19). As given

from the second equation of (19), if the self-collision term can be ignored, then the

time evolution of the weight w is given by integrating the following equation: dw/dt =

−dp/dt+(RZi,∥v∥/nZTZ) p, where d/dt := ∂/∂t+(v∥+vd) ·∂/∂x+ v̇∥∂/∂v∥. Note that

the term dp/dt is the contribution of (v · ∇r) ∂fM,Z/∂r and the term (RZi,∥v∥/nZTZ) p

is the contribution of C(fM,Z , δfi). Here, r is a label of the magnetic flux surfaces.

The simulation model described by equation (19) is implemented in the drift-kinetic δf

simulation code, KEATS [13, 14]. Benchmarks of the simulation code are shown in the

next section.
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2.2. Benchmarks of the simulation code

Setting of simulation conditions is given as follows. The magnetic configuration used

in benchmarks of the simulation code is set to a circular tokamak field, which is

essentially the same as in the previous study [6]. The major radius of the magnetic

axis is Rax = 3 or 12 m, the minor radius of the toroidal plasma is a = 1 m, and

the strength of the magnetic field on the magnetic axis is Bax = 3 T. The circular

tokamak field B = BRR̂ + Bφφ̂ + Bz ẑ is given by BR = Baxz/qR, Bφ = −BaxRax/R,

and Bz = −Bax(R − Rax)/qR in the cylindrical coordinates (R,φ, z). Here, the

safety factor q is set to q = q(r) = max{q0, 2πBaxr
2/(µ0RaxI2)}, q0 = q(r/a = 0.1),

r =
√
(R−Rax)2 + z2 is the minor radius, µ0 is the magnetic permeability, and I2 = 1.2

MA in the case of Rax = 3 m or 0.3 MA in the case of Rax = 12 m. Note that the case

of Rax = 12 m is considered in the benchmark of comparison between the simulation

result and the theoretical estimate under the assumption of large aspect ratio. For the

sake of simplicity of the benchmarks, the number density and the temperature of the

impurity are set to nZ = n0 − (n0 − na)r/a and TZ = Ti. Here, n0 = 0.86 × 1015 m−3

and na = 1.2n0. The number density and the temperature of the background ion are

assumed to be ni = 3× 1019 m−3 and Ti = 100 eV. In addition, the gradients of ni and

Ti are considered as ∂ lnni/∂r = −1/5a and ∂ lnTi/∂r = −1/5a. The PS flow velocity

and the PS heat flux of the background ion are given as V PS
i,∥ ≈ (2q/nieB)(dpi/dr) cos θ

and qPSi,∥ ≈ (5qniTi/eB)(dTi/dr) cos θ, where pi = niTi and θ is the poloidal angle given

by R − Rax = r cos θ and z = r sin θ. The marker particles used in the simulations are

distributed initially and uniformly in the region of r/a < 1.05 in the torus. The marker

particles are absorbed when arriving at the wall of the calculation box, which is set to

|R− Rax|/a < 1.5, 0 < φ/2π < 1, and |z|/a < 1.5 for all the simulations. The function

g in equation (19) is given approximately by the distribution function of the marker

particles. In the simulations in this paper, the charge number of the W impurity is set

to Z = +4, which is the same value as in the previous study [6].

We should note that the charge number Z depends on the electron temperature. If

the electron temperature is ∼ 100 eV, then the charge number Z of W impurity is ∼ 14,

as shown in [20]. Here, the number density of electrons is set to ne ∼ 3×1019 m−3. In the

previous study [6], the charge number Z was set to be 4 because the full-orbit particle

simulation is highly time-consuming. Here, the calculation cost of the full-orbit particle

simulation is strongly related to the gyrofrequency of the W impurity particle. Setting

of the ionization stage Z = +4 corresponds to the case that the electron temperature

is ∼ 10 eV. For the sake of applicability of the benchmarks, the charge number Z is

also set to be 4 in this paper. This is because the simple formula of the friction and

the thermal forces in equation (5) was confirmed in the case of Z = +4 in the previous

study [6]. The purpose of the benchmarks is to check the developed code and to show

the difference between the simulation result and the theoretical estimate under almost

the same simulation conditions as in the previous study [6]. This is also because of

clarifying the improvement of the present simulation study from the previous study.
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The difference mentioned above, which is caused by the global effect, is not peculiar to

the case of Z = +4.

If the distribution function of the impurity is very close to the Maxwellian function,

i.e., fZ ≈ fM,Z , then the parallel flow velocity of the impurity is approximately given

as VZ,∥ = V PS
Z,∥ ≈ (2q/nZZeB)(dpZ/dr) cos θ [21], where pZ = nZTZ . Note that V PS

Z,∥ has

the opposite direction to V PS
i,∥ because of the difference between the gradients of pZ and

pi. Then, the theoretical estimate of the radial particle flux, which is derived in the

previous study [6], is written as⟨
Γtheory
r

⟩
=

2q2

miΩ2
i τs

{
C1

Z

dpi
dr

− C1 ni

Z2 nZ

dpZ
dr

− 5

2× 3.16

C2 ni

Z

dTi

dr

}
(20)

under the approximations of the large aspect ratio and VZ,∥ = V PS
Z,∥ , where Ωi = eB/mi.

The first benchmark is the check whether the simulation under the following

constraint is consistent with the theoretical estimate. Here, the constraint is that instead

of equation (6), V PS
Z,∥ is substituted into VZ,∥ in the evaluation of the term CZi

F fM,Z (i.e.,

equation (8)). In the simulation, the radial particle flux is given as

⟨Γr⟩ =
⟨∫

d3v (v · ∇r) fZ

⟩
=
⟨
Γ(0)
r

⟩
+
⟨
Γ(1)
r

⟩
, (21)

where v = v∥+vd,
⟨
Γ
(0)
r

⟩
=
⟨∫

d3v (v · ∇r) fM,Z

⟩
, and

⟨
Γ
(1)
r

⟩
=
⟨∫

d3v (v · ∇r) δfZ
⟩
.

Here,
⟨
Γ
(0)
r

⟩
should be zero. As shown in figure 1, we confirm that the simulation

results of
⟨
Γ
(0)
r

⟩
and

⟨
Γ
(1)
r

⟩
are in agreement with the theoretical estimates. This

result is obtained regardless of the time t.

The parallel flow velocity VZ,∥ should be determined by the distribution function of

the impurity, as shown in equation (6), and thus the radial particle flux of the impurity

is recalculated without the constraint of VZ,∥ = V PS
Z,∥ in the evaluation of equation (8).

In the case of t/τs ≲ 1, which is set in the previous study [6] in order to confirm the

validity of the simple formula (5) by the full-orbit particle simulation, the radial particle

flux
⟨
Γ
(1)
r

⟩
is close to the theoretical estimate, as shown in figure 2. This is because

fZ ∼ fM,Z and VZ,∥ ∼ V PS
Z,∥ even in the recalculation without the constraint.

2.3. Drift-kinetic simulation beyond the condition of t/τs ≲ 1

After t/τs ∼ 1, we see the differences between the previous and the present studies.

The radial particle flux
⟨
Γ
(1)
r

⟩
leaves slowly from the theoretical estimate and relaxes

after ten or more times longer than the slowing down time τs, as shown in figure 3.

From this result, it is seen that the simulation result of
⟨
Γ
(1)
r

⟩
differs visibly from

the theoretical estimate after a sufficient amount of time. Here, we confirm that

|δnZ/nZ |, |δTZ/TZ | ≲ 1/20 in the simulation, and that the number of the marker

particles which are absorbed at the wall of the calculation box is less than 9 × 10−3

% of the total amount (= 6.4× 107). The mechanism of the relaxation shown in figure

3 is explained by the time integral of the weight w along the guiding centre orbits
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across the neighbouring magnetic flux surfaces. Considering the case of a fixed initial

velocity, the periods of the passing particles and the trapped particles become long in

general as the initial positions of the guiding centres in the core are close to the edge

of r/a = 1. Thus, the relaxation is affected by the different periods depending on the

initial positions. Note that it is most important to evaluate the radial particle flux by

the sufficiently relaxed δfZ because the distribution function fZ = fM,Z + δfZ should be

quasi-steady in the simulation model proposed in this paper. Note also that, as shown

in figure 4, the radial particle flux after the sufficient time in the simulation does not

depend on the self-collision term.

As shown in figure 5, the parallel flow velocity of the impurity in the simulation after

the sufficient time changes for reducing
∣∣∣VZ,∥ − V PS

i,∥

∣∣∣, i.e., for reducing the friction force,

which is the first term in equation (5), especially in the edge region of r/a ≳ 0.8. As a

result, the negative radial particle flux is reduced by the thermal force unchanged after

the sufficient time. Here, the roles of the friction and the thermal forces are discussed

in the previous study [6]. Note that the time evolution of the weight w is given as

dw/dt ≈ −dp/dt + (RZi,∥v∥/nZTZ) p, and that the thermal force, which is the second

term in equation (5), is independent from δfZ . It is known that the neoclassical inward

pinch is caused by the friction force, and the neoclassical temperature screening effect

originates mainly from the thermal force [6, 10].

The poloidal dependence of the radial particle flux is illustrated in figure 6. This

result shows the inflow of the impurity from the top part of the torus and the outflow

from the bottom part. This is consistent with the results in [6, 7]. Here, the poloidal

dependence is given from Γ
(1)
r =

∫
d3v (v · ∇r) δfZ . The function δfZ = wg is

evaluated from the time integral of the following equation along the guiding centre

orbits: dw/dt ≈ −dp/dt+ (RZi,∥v∥/nZTZ) p.

We should note that the self-collision term does not play an important role in all

the results shown in figures 4, 5, and 6. Therefore, the self-collision term is negligible for

the evaluation of the radial particle flux of the impurity in the circular tokamak field.

Hereafter, the self-collision term is ignored.

The impurity has a finite orbit width of its guiding centre, which is typically ≲ 1

cm. The time evolution of the weight w is given by integrating dw/dt = −dp/dt +

(RZi,∥v∥/nZTZ) p along the guiding centre orbit across the neighbouring magnetic flux

surfaces. Note that δfZ is represented as δfZ(t,x,v) =
∑

j wj(t) δ(x−xj(t)) δ(v−vj(t)),

where wj(t) is the weight w of the j-th marker particle and the guiding centre orbit of

the j-th marker particle is expressed as (xj(t),vj(t)). Hence, the evaluation of δfZ
on an arbitrary magnetic flux surface cannot be independent from the friction and the

thermal forces, which are given by equations (5) and (6), on the neighbouring magnetic

flux surfaces because the orbit width is non-zero. Here, this friction force depends on

the values of δfZ on the neighbouring magnetic flux surfaces through the parallel flow

velocity VZ,∥. It is natural that the evaluation of the radial particle flux depends on

the simulation conditions in the region of r/a > 1, which can be defined by the initial

distribution of the marker particles used in the simulation without the self-collision
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term in this paper. In fact, for example, when the region where the marker particles

are initially distributed changes from r/a < 1.05 to r/a < 1.20, the flux
⟨
Γ
(1)
r

⟩
and

the parallel flow velocity VZ,∥ in the quasi-steady state of δfZ become changed as shown

in figures 7 and 8. In addition, the changes of
⟨
Γ
(1)
r

⟩
and VZ,∥ from the theoretical

estimates become large as the magnetic flux surface of evaluating δfZ is close to the

boundary of r/a = 1.05 or 1.20, and also become small for separating the boundary

from the edge of r/a = 1. Therefore, the solution δfZ (and also the flux
⟨
Γ
(1)
r

⟩
) on a

magnetic flux surface is influenced by the simulation conditions and the values of the

solution δfZ all over the edge region including the region of r/a > 1. In this paper, this

is called the global effect on the impurity transport. If the finite orbit width is ignored in

the simulation, the difference between the simulation result and the theoretical estimate

disappears, as shown in appendix.

Finally, we investigate the effect of the test-particle collision term CZi
T δfZ , which

is ignored in the benchmarks above. It is difficult to calculate directly the value of

the flux
⟨
Γ
(1)
r

⟩
including the effect of CZi

T δfZ because the simulation becomes highly

time consuming. Instead of the direct calculation, the effect of CZi
T δfZ = νZi

D L (δfZ) is

investigated asymptotically, i.e., the cases of (νZi
D /100)L (δfZ) and (νZi

D /10)L (δfZ) are

examined. From the asymptotic investigation, the radial particle flux of the impurity

is not strongly affected by the test-particle collision term CZi
T δfZ , as shown in figure 9.

Here, if t/τs ≲ 1, it is possible to perform the simulation for the case of νZi
D L (δfZ), and

thus the result is shown in figure 9(a). There is no significant dependence of the fluxes⟨
Γ
(1)
r

⟩
on the term CZi

T δfZ at t/τs ≲ 1, and also after the sufficient time. Note that

the slowing down time τs is sufficiently longer than the deflection time τZi
D , as shown in

section 1. It is confirmed that the test-particle collision term CZi
T δfZ is negligible for

the evaluation of the flux
⟨
Γ
(1)
r

⟩
in the circular tokamak field.

3. Summary and discussion

The global modelling of tungsten impurity transport is developed for evaluating the

radial particle flux
⟨
Γ
(1)
r

⟩
of the impurity in the edge region of a tokamak plasma,

based on the drift-kinetic equation of the impurity having a charge number Z. The

number density of the impurity is required to be 104-105 times smaller than the number

density of the background ion in the edge region. Thus it is not practical to execute a

kinetic simulation treating time evolution of all the species of plasma particles because

of the excessive differences between the characteristic time scales. Hence, the collisional

transport model should be simplified. The distribution function fi of the background

ion is assumed to be determined independently of the distribution function fZ of the

impurity, and fi is represented by using the 13-moments approximation. Here, the

collisionality of the background ion is in the Pfirsch-Schlüter regime. The Coulomb

collision between the impurity and the background ion is simplified by the friction force

and the thermal force on the impurity particles in the parallel directions. The model is
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implemented in the drift-kinetic δf simulation code, KEATS [13, 14]. It is confirmed that

the radial particle flux is dominated by the friction force and the thermal force acting

on the impurity particles along magnetic field lines. The radial diffusion caused by the

self-collision of the impurity and the test-particle collision between the impurity and the

background ion does not play an important role for evaluating the flux
⟨
Γ
(1)
r

⟩
. These

results are consistent with the results in the previous study [6]. The knowledge obtained

in [6] is confirmed for the trace impurity with the low charge number. However, its

application range is not clear yet. More research is needed to investigate the application

range under various conditions of the magnetic configuration, the number density of the

impurity and so on.

In addition to the knowledge obtained in the previous studies [5, 6], it is found that

the global effect caused by the guiding centre motions is not negligible in the evaluation

of the flux
⟨
Γ
(1)
r

⟩
. After the sufficient time t/τs ≳ 10, the distribution function fZ relaxes

sufficiently, and the flux
⟨
Γ
(1)
r

⟩
in the drift-kinetic δf simulation differs visibly from the

theoretical estimate obtained under ignoring the global effect, as shown in figure 3. Here,

τs is the slowing down time. The solution δfZ of the drift-kinetic equation (and also the

radial particle flux
⟨
Γ
(1)
r

⟩
) on a magnetic flux surface is influenced by the simulation

conditions and the values of the solution δfZ all over the edge region including the region

of r/a > 1, as shown in figures 7 and 8. This global effect is caused by the magnetic drift

term in the left-hand side of equation (16) including the friction force and the thermal

force. See also appendix.

We should note the following. As shown in appendix, the value of
⟨
Γ
(1)
r

⟩
does

not depend on the values themselves of the orbit widths, where the typical orbit width

is, for example, the banana width of a particle moving at the thermal speed. On the

other hand, the relaxation time of parallel flow velocity is affected by the orbit widths

because of the mechanism of the global effect explained in section 2.3. If the charge

number Z ≫ 1, then the typical orbit width ∆orbit is quite small, and the relaxation

time is extremely long compared to the slowing down time τs. When ∆orbit → 0, the

relaxation time becomes ∞. Then the global effect is practically negligible because the

global effect appears after the relaxation time, as shown in figure 3, and because the

relaxation time that is longer than the discharge time is meaningless. When the electron

temperature is > 100 eV, the global effect on the W accumulation might be negligible,

depending on the discharge time. On the other hand, if the electron temperature around

the edge of r/a = 1 is sufficiently low, for example, the order of ∼ 10 eV, then the global

effect on the impurity transport around the edge should be considered because the radial

particle flux changes visibly from the theoretical estimate.

In the edge region of the tokamak plasma in this paper, the friction and the thermal

forces strongly affect the time evolution of the distribution function fZ . On the other

hand, when the impurity transport is considered in the edge region of a helical plasma

in a low collisionality regime, the test-particle collision between the impurity and the

background ion, C(δfZ , fM,i), and the collisions between the impurities having various
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charge numbers Z and Z ′, C(fZ , fZ′), should not be ignored in the evaluation of the

radial particle flux because of the neoclassical diffusion caused by the helical ripples

(e.g., recall the neoclassical transport in the 1/ν regime). In addition, effects of an

ambipolar electric field should also be considered in the helical plasma [22]. There

also are other topics. For example, the evaluation of the radial particle flux requires

appropriate simulation conditions in the core and the region of r/a > 1, which should be

determined by the collisional transport between the scrape-off layer and the core region.

Further investigations regarding these topics will be performed in the near future.
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Appendix. Local and global modelling of impurity transport

The neoclassical transport theory is based on the drift-kinetic equation and usually

employs the assumption of ignoring the magnetic drift term (v− v∥b) · ∂ δfZ/∂ x in the

left-hand side of equation (16) [16, 21], where v = v∥ + vd. This assumption is often

called the zero magnetic drift (ZMD) limit [23, 24]. The drift-kinetic equation in the

ZMD limit is expressed as{
∂

∂t
+ v∥b · ∂

∂x
+ ξ̇

∂

∂ξ

}
δfZ = S0(fM,Z) + CZi

F fM,Z , (A1)

where ξ̇ = d(v∥/v)/dt is approximately represented as ξ̇ = −{(1 − ξ2)v/2B}b · ∇B in

this model, v̇ = 0, and ∇ = ∂/∂x. The term S0 is given as S0 = −(v · ∇r) ∂fM,Z/∂r,

r is a label of the magnetic flux surfaces, and fM,Z = fM,Z(r, v). Note that the right-

hand side in equation (A1) is the same as in the right-hand side of equation (16).

Here, the terms CZZ
T δfZ and CZZ

F fM,Z in (16) are ignored in (A1). This initial value

problem (A1) with the condition δfZ = 0 at t = 0 can be solved independently on each

magnetic flux surface because the equations of motion include ṙ = 0 in the left-hand

side of (A1). When magnetic flux coordinates are used in a solver of the problem (A1),

the solver should be based on the numerical methods given in [23, 24]. On the other

hand, in KEATS code in this paper, Eulerian coordinates are used for describing the

configuration space. The 5-dimensional phase space is written as ζ = (u1, u2, u3, v, ξ),

where u1 = R−Rax, u
2 = z, and u3 = −φ. Here, (R,φ, z) is the cylindrical coordinates.

In equation (A1), the equations of motion are described as

du1

dt
= vξb1, (A2.a)

du2

dt
= vξb2, (A2.b)

du3

dt
= vξb3, (A2.c)

dv

dt
= 0, (A2.d)

dξ

dt
= − (1− ξ2)v

2B
b · ∇B, (A2.e)

where bk = b · ∇uk and k = 1, 2, 3. These equations of motion do not satisfy the

Liouville’s theorem, i.e., the compressibility of the phase-space volume is produced as

∇ζ · ζ̇ = vξb1/(Rax + u1), where ∇ζ = ∂/∂ζ. As shown in [23, 24], the time evolution of

the weights w and p are given as

dw

dt
= (∇ζ · ζ̇)w +

(
p

fM,Z

)
S0 + CZi

F p, (A3.a)

dp

dt
= (∇ζ · ζ̇) p. (A3.b)

Here, the marker particles are distributed initially and uniformly in the region of
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r/a < 1.05. The model mentioned above is often called the local model [23, 24], and in

this model the function δfZ is evaluated independently on each magnetic flux surface

having the small volume δV . As a matter of course, the radial particle flux
⟨
Γ
(1)
r

⟩
evaluated by using KEATS code based on the local model is in agreement with the

theoretical estimate (20) after sufficient time (t/τs ≳ 6 in this case), as shown in figure

A1. Here, the simulation conditions in figure A1 are the same as in section 2.2. Hence,

the difference between the simulation result and the theoretical estimate in figure 4 (and

also in figure A5 shown below) is caused by the magnetic drift term in the left-hand

side of equation (16). This fact provides definite evidence of the global effect, which

originates from the finite orbit widths of guiding centres, as explained in section 2.3.

Note that the finite orbit widths of guiding centres across the neighbouring magnetic

flux surfaces are generated by the magnetic drift term.

We should note that the magnetic drift term in the left-hand side of the drift-kinetic

equation (16) does not usually cause unignorable differences from theoretical estimates

based on the local model ignoring the magnetic drift term. For example, when the terms

of the friction and the thermal forces and the self-collision terms are ignored in equation

(16), the parallel flow velocity V
(1)
Z,∥ −

⟨
V

(1)
Z,∥

⟩
and the parallel heat flux q

(1)
Z,∥ −

⟨
q
(1)
Z,∥

⟩
in the simulation based on (19) are in good agreement with the theoretical estimates,

i.e., the Pfirsch-Schlüter (PS) flow velocity and the PS heat flux, as shown in figure A2.

Here, V
(1)
Z,∥ = (1/nZ)

∫
d3v v∥ δfZ and q

(1)
Z,∥ =

∫
d3v {(1/2)mZv

2 − (5/2)TZ} v∥ δfZ . In the

simulation in figure A2, the profiles of the number density nZ and the temperature TZ

are set to nZ = n0 − (n0 − na)r/a and TZ = T0 − (T0 − Ta)r/a, where n0 = 0.86× 1015

m−3, T0 = 119.05 eV, na = 1.2n0, and Ta = 0.8T0. This result also confirms that the

PS flow velocity and the PS heat flux are given from the contribution of δfZ generated

by the term S0 = −(v · ∇r) ∂fM,Z/∂r in the right-hand side of equation (16).

The term CZi
F p is associated with the friction and the thermal forces (5).

Considering CZi
F p, the weight w becomes different from w in the case of ignoring CZi

F p.

Through the function δfZ = wg, the parallel flow velocity V
(1)
Z,∥ differs from the PS flow

velocity, as shown in figures 5 and 8. It should be noted that in the simulation based

on the local model in figure A1, the parallel flow velocity is negligibly affected by the

term CZi
F p, as shown in figure A3(a). This result means that the parallel flow velocity in

the local model is well approximated by the PS flow velocity, and thus the assumption

of using the PS flow velocity is confirmed to be appropriate in the theoretical estimate.

In order to compare the parallel flow velocities in the cases of considering and ignoring

CZi
F p in the local model, V

(1)
Z,∥ −

⟨
V

(1)
Z,∥

⟩
in the case of ignoring CZi

F p is also shown in

figure A3(b).

We should note that the label of the magnetic flux surfaces, in particular, in the

circular tokamak field is given by r =
√

(u1)2 + (u2)2. In this case, it is possible to

consider a solver employing the coordinates (r, θ, ϕ, v, ξ), where ϕ = u3 and θ is given

by cos θ = u1/r and sin θ = u2/r. The guiding centre orbit in the 4-dimensional phase

space ζ = (θ, ϕ, v, ξ) satisfies ∇ζ · ζ̇ = 0 because of ṙ = 0 [23, 24], and thus the time



Global modelling of tungsten impurity transport based on drift-kinetic equation 16

evolution of the weights w and p in this modelling are given as

dw

dt
=

(
p

fM,Z

)
S0 + CZi

F p, (A4.a)

dp

dt
= 0. (A4.b)

Here, the marker particles satisfying the equations above are distributed initially and

uniformly on selected magnetic flux surfaces in the region of r/a < 1. We confirm that

the radial particle flux
⟨
Γ
(1)
r

⟩
evaluated by using KEATS code based on another local

modelling above is in agreement with the theoretical estimate (20) after sufficient time,

as shown in figure A4. Here, the simulation conditions in figure A4 are the same as in

figure A1.

Finally, for understanding the difference between the “local” and the “global”

models in this paper, the equations of motion and the time evaluation of the weights w

and p in the global model (19) based on equation (16) are described as follows:

du1

dt
= v · ∇u1, (A5.a)

du2

dt
= v · ∇u2, (A5.b)

du3

dt
= v · ∇u3, (A5.c)

dv

dt
= 0, (A5.d)

dv∥
dt

= −

(
µ

mZB∗
∥

)
B∗ · ∇B, (A5.e)

dw

dt
= − dp

dt
+ CZi

F p, (A5.f)

dp

dt
=

p

fM,Z

dfM,Z

dt
. (A5.g)

As shown in section 2.1, v = v∥ + vd, v∥ = v∥B
∗/B∗

∥ , vd = {(µ/Ze)b × ∇B}/B∗
∥ ,

µ = mZv⊥
2/2B, v⊥ =

√
v2 − v∥2, B

∗ = B+(mZv∥/Ze)∇×b, and B∗
∥ = b ·B∗ [15, 16].

The self-collision terms are ignored. The simulation result of
⟨
Γ
(1)
r

⟩
based on this global

model in the case of Rax/a = 12 is shown in figure A5. Here, the marker particles are

distributed initially and uniformly in the region of r/a < 1.05. The simulation result

in the case of Rax/a = 12 is in agreement with the simulation result in the case of

Rax/a = 3. Hence, the value of
⟨
Γ
(1)
r

⟩
does not depend on the values themselves of

the orbit widths. In the concept of the global effect on the impurity transport, it is

important that the orbit widths are non-zero, as explained in section 2.3. Note that the

relaxation time of parallel flow velocity depends on the orbit widths, where the typical

orbit width is, for example, the banana width of a particle moving at the thermal speed.

In fact, in figure A5 the relaxation time in the case of Rax/a = 3 is approximately two
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times in the case of Rax/a = 12 because the typical orbit width in the case of Rax/a = 3

is approximately one half of the typical orbit width in the case of Rax/a = 12.
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Figure 1. The theoretical estimate of the radial particle flux is illustrated by the

black dashed line. The radial particle fluxes
⟨
Γ
(0)
r

⟩
and

⟨
Γ
(1)
r

⟩
in the simulation are

shown by the blue and red solid lines, respectively. Here, the major radius Rax is set

to 12 m and the PS flow velocity V PS
Z,∥ is substituted into VZ,∥ in the evaluation of the

field-particle collision term CZi
F fM,Z .
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Figure 2. The radial particle fluxes
⟨
Γ
(1)
r

⟩
in the simulation at t/τs ∼ 0.5 and 1.0

are shown by the blue and red solid lines, respectively. The theoretical estimate of the

radial particle flux is illustrated by the black dashed line. Here, the major radius Rax

is set to 3 m.
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Figure 3. The relaxation of the radial particle flux
⟨
Γ
(1)
r

⟩
in the simulation is shown

by the solid lines. In this case, δfZ relaxes sufficiently after t/τs ≈ 10. The theoretical

estimate of the radial particle flux is illustrated by the black dashed line. Here, the

major radius Rax is set to 3 m.
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Figure 4. The radial particle fluxes
⟨
Γ
(1)
r

⟩
in the simulation with and without the

self-collision term are shown by the black dashed line and the red solid line, respectively.

The theoretical estimate of the radial particle flux is illustrated by the blue solid line.

Here, the major radius Rax is set to 3 m.
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Figure 5. The parallel flow velocities VZ,∥ of the impurity at r/a ≈ 0.7, 0.8, and 0.9 in

the simulations for the case of figure 4 are illustrated in figures (a), (b), and (c). Here,

the parallel flow velocities in the simulations with and without the self-collision term

are shown by the black dashed lines and the red solid lines, respectively. The velocity

VZ,∥ in the simulation in the case that all the Coulomb collision terms are ignored is

given by the blue solid lines. In this case, the relation that VZ,∥ −
⟨
VZ,∥

⟩
= V PS

Z,∥ is

satisfied. Note that the PS flow velocity of the background ion is V PS
i,∥ ≈ −75.7 cos θ

m/s at r/a ≈ 0.8.
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Figure 6. The poloidal dependence of the radial particle flux Γ
(1)
r =

∫
d3v (v ·∇r) δfZ

at r/a ≈ 0.8 in the simulation is illustrated for the case of figure 4. Here, the poloidal

angle is given by θ. The results of the simulations with and without the self-collision

term are shown by the black dashed line and the red solid line, respectively.
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Figure 7. When the marker particles are distributed initially and uniformly in the

region of r/a < 1.20, the radial particle flux
⟨
Γ
(1)
r

⟩
is shown by the blue solid line.

On the other hand, the flux
⟨
Γ
(1)
r

⟩
for the case in which the marker particles are

distributed initially and uniformly in the region of r/a < 1.05 is shown by the red

solid line. The self-collision term is ignored in all the simulations in this figure. The

theoretical estimate of the radial particle flux is illustrated by the black dashed line.

The major radius Rax is set to 3 m.
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Figure 8. The parallel flow velocities VZ,∥ of the impurity at r/a ≈ 0.7, 0.8, and 0.9 in

the simulations in figure 7 are illustrated in figures (a), (b), and (c). Here, the parallel

flow velocities in the simulation with the marker particles distributed initially and

uniformly in the region of r/a < 1.20 are shown by the blue solid lines. On the other

hand, the parallel flow velocities in the simulation with the marker particles distributed

initially and uniformly in the region of r/a < 1.05 are shown by the red solid lines.

The parallel flow velocities in the case of ignoring the friction and the thermal forces

are illustrated by the black dashed lines, which are independent from the simulation

conditions in the region of r/a > 1. In this case, the relation that VZ,∥−
⟨
VZ,∥

⟩
= V PS

Z,∥
is satisfied.
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Figure 9. The radial particle fluxes
⟨
Γ
(1)
r

⟩
in the simulations with the test-

particle collision term CZi
T δfZ for the cases of (νZi

D /100)L (δfZ), (νZi
D /10)L (δfZ),

and νZi
D L (δfZ) are shown by the green, red, and black solid lines, respectively. The

flux
⟨
Γ
(1)
r

⟩
in the simulation without CZi

T δfZ is illustrated by the blue solid lines. The

self-collision term is ignored in all the simulations in these figures. The theoretical

estimate of the radial particle flux is illustrated by the black dashed lines. (a) The

simulation results at t/τs ∼ 0.25 and (b) the results in the sufficiently relaxed states.

Here, the marker particles are distributed initially and uniformly in the region of

r/a < 1.05. The major radius Rax is set to 3 m.
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Figure A1. The radial particle flux
⟨
Γ
(1)
r

⟩
in the ZMD limit is shown by the red

solid line. The theoretical estimate of the radial particle flux is illustrated by the black

dashed line. Here, the major radius Rax is set to 12 m.
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Figure A2. (a) The parallel flow velocity V
(1)
Z,∥ −

⟨
V

(1)
Z,∥

⟩
evaluated at r/a ≈ 0.8 in

the simulation based on (19) is illustrated by the red solid line. The PS flow velocity

V PS
Z,∥ ≈ (2q/ZenZB) (dpZ/dr) cos θ is shown by the black dashed line. (b) The parallel

heat flux q
(1)
Z,∥ −

⟨
q
(1)
Z,∥

⟩
evaluated at r/a ≈ 0.8 in the simulation based on (19) is

illustrated by the red solid line. The PS heat flux qPS
Z,∥ ≈ (5qnZTZ/ZeB) (dTZ/dr) cos θ

is shown by the black dashed line. Here, the terms of the friction and the thermal forces

and the self-collision terms are ignored in these figures. The major radius Rax is set

to 12 m.
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Figure A3. (a) The parallel flow velocity V
(1)
Z,∥ −

⟨
V

(1)
Z,∥

⟩
evaluated at r/a ≈ 0.8

by using KEATS code based on the local model in the case of considering CZi
F p is

illustrated by the red solid line. This parallel flow velocity is calculated in the case of

figure A1. (b) The parallel flow velocity V
(1)
Z,∥ −

⟨
V

(1)
Z,∥

⟩
evaluated at r/a ≈ 0.8 by using

KEATS code based on the local model in the case of ignoring CZi
F p is illustrated by

the red solid line. Here, the local model in these figures is described by equations (A2)

and (A3). The PS flow velocity V PS
Z,∥ is shown by the black dashed lines. The major

radius Rax is set to 12 m.
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Figure A4. The radial particle flux
⟨
Γ
(1)
r

⟩
in the ZMD limit with ṙ = 0 is shown by

the red solid line. The theoretical estimate of the radial particle flux is illustrated by

the black dashed line. Here, the major radius Rax is set to 12 m.
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Figure A5. In the case of Rax/a = 12, the radial particle flux
⟨
Γ
(1)
r

⟩
evaluated by

using KEATS code based on the global model is shown by the red solid line. In the

case of Rax/a = 3, the flux
⟨
Γ
(1)
r

⟩
evaluated by using KEATS code based on the global

model, which is shown in figure 4, is illustrated by the blue solid line. The theoretical

estimate of the radial particle flux is shown by the black dashed line.


