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Abstract. A new kinetic-magnetohydrodynamic (MHD) hybrid simulation model
where the gyrokinetic particle-in-cell simulation is applied to both thermal ions
and energetic particles is presented. Toroidal Alfvén eigenmodes destabilized by
energetic ions in tokamak plasmas are simulated with the new simulation model.
Energy channeling from energetic ions to thermal ions through Alfvén eigenmodes
is demonstrated by the simulation. The distribution function fluctuations and the
resonance condition are analyzed for both thermal ions and energetic ions. The strong
energy transfer between the particles and the Alfvén eigenmode and the strong particle
transport occur when the following conditions are satisfied at the resonance location
in phase space: 1) the poloidal resonance number is close to the poloidal mode number
of the Alfvén eigenmode, 2) the Alfvén eigenmode has a substantial amplitude, 3) the
distribution function has a substantial gradient along the E′ = const. line, where E′ is
a conserved variable for the wave-particle interaction. While the distribution function
fluctuations for energetic ions are consistent with the resonance condition with the
toroidal Alfvén eigenmodes, the distribution function fluctuations for thermal ions do
not satisfy the resonance condition when the bulk plasma beta is 1%. This indicates
that the resonance does not play an important role in the interaction between thermal
ions and the toroidal Alfvén eigenmode for the relatively low bulk plasma temperature.
On the other hand, when the bulk plasma beta is 4%, the resonance between thermal
ions and the toroidal Alfvén eigenmodes become important leading to Landau damping.
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1. Introduction

Magnetohydrodynamics (MHD) is a one-fluid plasma model which is coupled with
the electromagnetic field equations. MHD explains well the macroscopic behavior
of laboratory, space, and astrophysical plasmas. However, MHD is an unfinished
framework for magnetically confined fusion plasmas, because the MHD pressure equation
assumes sufficiently high collision frequency which is not valid for the high-temperature
plasmas. One typical example that requires an extension of MHD is energetic-particle
driven instabilities. For magnetically confined fusion plasmas, energetic particles
are often energetic ions generated by neutral beam injection, ion-cyclotron-range-of-
frequency heating, and fusion reaction. Energetic particles sometimes refer to energetic
electrons generated by external current drive and heating, and energetic electrons
generated during disruption of tokamak plasmas. Kinetic-MHD hybrid simulations for
energetic particles interacting with an MHD fluid are useful tools to understand and
predict energetic particle driven MHD instabilities. In most of the hybrid simulation
models [1–11], the bulk plasma is described as an MHD fluid where kinetic effects of
thermal ions and electrons are neglected.

The kinetic-MHD hybrid simulations clarified the saturation of Alfvén eigenmodes
(AEs) due to wave-particle trapping [4,5,12,13], the linear properties and the nonlinear
evolution of energetic-particle driven modes (EPMs) [14, 15], the frequency chirping
of AEs and EPMs [10, 16, 17], the nonlinear evolution of fishbone modes [7, 18–23],
and the energetic-particle driven geodesic acoustic modes (EGAMs) [24–28]. The
kinetic-MHD hybrid simulation has been extended also to the multi-phase simulation
in order to simulate the energetic ion distribution formation process with neutral beam
injection, collisions (slowing-down, pitch-angle scattering, and energy diffusion), losses,
and transport due to the AEs with the energetic ion finite Larmor radius effect and
the MHD nonlinearity retained [29]. The multi-phase simulation is a comprehensive
simulation which deals with both the AEs and the energetic ion transport as self-
consistently and realistically as possible. The multi-phase hybrid simulations using the
MEGA code have been validated on DIII-D, JT-60U, and LHD experiments [17,29–34].

For the energetic-particle driven instabilities, thermal ions can play important
roles. For example, thermal ions stabilize the instabilities by Landau damping.
Energy channeling from energetic particles to thermal ions can take place through the
instability. Kinetic thermal ion effects on energetic-particle driven instabilities can be
analyzed with linear kinetic-MHD hybrid codes [35], linear gyrokinetic codes [36], and
nonlinear gyrokinetic simulation codes [37–40]. Gyrokinetic simulations are powerful
but computationally more demanding than kinetic-MHD hybrid simulations. Kinetic
thermal ions are also important for low frequency MHD modes such as internal kink
modes [41–43]. In this paper, we present a new hybrid simulation model where the
gyrokinetic particle-in-cell simulation method is applied to both thermal ions and
energetic particles. Although the new simulation model is similar to that presented
in Ref. [9], the new simulation model retains full MHD equations with compressibility
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and can be applied to both tokamak and helical plasmas. The new simulation model
has been recently used for the studies of MHD instabilities and energetic-particle driven
geodesic acoustic modes in the Large Helical Device [44–47]. However, the simulation
model has been attributed to a conference presentation [48] and has not been presented
in detail. In this paper, we present the new simulation model in a systematic style
including the discussion of energy conservation. Simulations of AEs in tokamak plasmas
are conducted and the distribution function fluctuations are analyzed for both thermal
and energetic ions. The resonance condition with the AEs is investigated in phase space
and the condition for the strong interaction with the AEs is clarified.

2. Simulation model

Many kinetic-MHD hybrid simulation models and codes have been constructed [1–11]
for energetic particles interacting with an MHD fluid to study the evolution of Alfvén
eigenmodes destabilized by energetic particles. Let us start with the kinetic-MHD hybrid
simulation model implemented in the MEGA code [6] where the bulk plasma is described
by the nonlinear MHD equations and the energetic particles are simulated with the
gyrokinetic particle-in-cell (PIC) method. In this work, we start with an MHD model
with the thermal ion diamagnetic drift given in [49]. The extended MHD equations with
the energetic particle effects are given by

∂ρ

∂t
= −∇ · (ρvH), (1)

ρ
∂

∂t
v = − ρvH · ∇v + ρvpi · ∇(v∥b)−∇p

+ (j− eh
mh

ρhvph)×B, (2)

∂p

∂t
= −∇ · (pv)− (γ − 1)p∇ · v + (γ − 1)ηj · (j− jeq), (3)

∂B

∂t
= −∇× E, j =

1

µ0

∇×B, b = B/B (4)

E = − vE ×B+ η(j− jeq), (5)
ρvH = ρv + ρvpi, (6)

ρvpi =
mi

ei

(
−∇p×B

2B2

)
, (7)

ρhvph =
mh

eh

[
−∇ph⊥ ×B

B2
+ (ph∥ − ph⊥)

∇× b

B

]
, (8)

v∥ = v · b, vE = v − v∥b, (9)

where ρ, v, p, and B are mass density, fluid velocity, pressure of the bulk plasma, and
the magnetic field, respectively. The vacuum magnetic permeability is represented by
µ0, and γ = 5/3 is the adiabatic constant. The resistivity is assumed in this work
η = 1× 10−6µ0vAR0 where vA is the Alfvén velocity at the plasma center, and R0 is the
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major radius at the geometrical center of the simulation domain. The subscript “eq”
represents the equilibrium variables. The energetic-particle contribution is included in
the MHD momentum equation [Eq. (2)] as the energetic-particle diamagnetic current
density defined by Eq. (8) which includes the contributions from magnetic gradient and
curvature drifts and magnetization current. The E ×B drift current is not included in
Eq. (2) due to the quasi-neutrality [6]. We see that electromagnetic field is given by
the standard MHD description. This model is accurate under the condition that the
energetic-particle density is much less than the bulk plasma density.

Since the kinetic effects of thermal ions are missing in the hybrid simulation
model described above, we have developed a new hybrid simulation model by applying
the gyrokinetic PIC not only to energetic particles but also to thermal ions. In
the new hybrid simulation model, number density (ni, nh), parallel velocity (vi∥, vh∥),
parallel pressure (pi∥, ph∥), and perpendicular pressure (pi⊥, ph⊥) are simulated with the
gyrokinetic PIC. The subscript i denotes the thermal ions, and the subscript h denotes
the energetic particles (“hot” particles). We assume quasi-neutrality which gives the
electron number density by ne = (eini + ehnh)/e where ei and eh are electric charge.
In this work, a time independent electron temperature profile Te0(x) is assumed, which
gives electron pressure by pe = neTe0. We have the following equations of the new
simulation model.

ρ
∂

∂t
vE⊥ = −M · ∇vE⊥ −∇pe

+

(
j− ei

mi

ρivpi −
eh
mh

ρhvph

)
×B, (10)

E = − vE⊥ ×B+
∇∥pe
(−e)ne

+ η(j− jeq), (11)

ρ = ρi + ρh, ρi = mini, ρh = mhnh, (12)
M = ρvE⊥ +

(
ρivi∥ + ρhvh∥

)
b+ ρivpi + ρhvph, (13)

ρivpi =
mi

ei

[
−∇pi⊥ ×B

B2
+ (pi∥ − pi⊥)

∇× b

B

]
. (14)

These equations and Eqs. (4) and (8) constitute the new simulation model. Equations
(10) and (11) are momentum equation and an extended Ohm’s law, respectively. The
electric field is given by the E×B drift velocity vE⊥, parallel electron pressure gradient,
and the resistive term. Mass density is represented by ρ, and M is an extended
momentum vector which consists of E×B drift, parallel velocity, and diamagnetic drifts.
The right-hand side of the momentum equation consists of the advection term, electron
pressure gradient, Lorentz force, and the thermal ion and energetic particle current
terms. When we substitute the diamagnetic drift, the current terms are equivalent to
the pressure tensor terms.

Let us consider the energy conservation of the new simulation model given by Eqs.
(4), (8), (10) - (14). The total energy is not conserved in the new simulation model.



Magnetohydrodynamic hybrid simulation model 5

However, we can consider the energy conservation focusing on a part of the physical
system. First we define kinetic energy (EK) and magnetic energy (EM) given by the
spatial integration:

EK =

∫
1

2
ρv2E⊥dV , (15)

EM =

∫
1

2µ0

B2dV . (16)

The momentum equation [Eq. (10)] and the induction equation [Eq. (4)] with the
extended Ohm’s law [Eq. (11)] give the time derivative of kinetic energy and magnetic
energy by

∂

∂t
EK = −

∫
∇ ·

(
1

2
v2E⊥M

)
dV

+

∫
vE⊥ ·

[
−∇pe +

(
j− ei

mi

ρivpi −
eh
mh

ρhvph

)
×B

]
dV , (17)

∂

∂t
EM = −

∫
1

µ0

∇ · (E×B) dV −
∫

j · [−vE⊥ ×B+ Enonideal] dV . (18)

Here, we express the first term on the RHS of Eq. (11) by Eideal and the rest of the
RHS by Enonideal. Since we assume vE⊥ = 0 and E = 0 on the last closed surface, the
first terms on the RHS of Eqs. (17) and (18) vanish. Then, the time derivative of the
sum of EK and EM is

∂

∂t
(EK + EM) =

∫
vE⊥ ·

[
−∇pe −

(
ei
mi

ρivpi +
eh
mh

ρhvph

)
×B

]
dV

−
∫

j · EnonidealdV (19)

We define electron energy Eelectron, thermal ion energy Eion, energetic particle energy
Eh, and dissipated energy Edissipation by

∂

∂t
Eelectron =

∫
vE⊥ · ∇pedV =

∫
ne(−e)vpe · EidealdV, (20)

∂

∂t
Eion =

∫
vE⊥ · ei

mi

ρivpi ×BdV =

∫
nieivpi · EidealdV, (21)

∂

∂t
Eh =

∫
vE⊥ · eh

mh

ρhvph ×BdV =

∫
nhehvph · EidealdV, (22)

∂

∂t
Edissipation =

∫
j · EnonidealdV . (23)

It is clear that the sum of energy Esum = EK + EM + Eelectron + Eion + Eh + Edissipation

is conserved.
In the present work, tokamak plasmas with the aspect ratio of R0/a = 3.2 were

investigated, where R0 and a represent the major radius of the geometrical center
of the simulation domain and the plasma minor radius, respectively. The cylindrical
coordinates (R,φ, z) are employed. The shape of the outermost magnetic surface is
circular. The initial velocity-space distribution of the energetic ions is the slowing-down
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distribution with the maximum velocity 1.2vA and the critical velocity 0.5vA, where vA
denotes the Alfvén velocity at the plasma center. The distribution function is isotropic
in velocity space. In this work, we apply the δf PIC [50–52] to both thermal and
energetic ions. Since magnetic moment is an adiabatic invariant for MHD waves whose
frequency is sufficiently lower than Larmor frequency, magnetic moment is assumed to
be constant. The computational particles are loaded to construct the initial distribution
functions f0 for thermal and energetic ions. The particle weight of the δf simulation
evolves comparing the distribution function value f , which is the Riemann invariant of
the particle, with f0 at the particle location in phase space. The computational particle
loaded as thermal (energetic) ion refers to f0 of thermal (energetic) ion.

The ratio of the energetic ion Larmor radius to the minor radius is 1/16 for the
energetic ion velocity equal to the Alfvén velocity. The number of grid points for the
cylindrical coordinates (R,φ, z) is 128×64×128. The number of computational particles
is 6.7 × 107 for thermal ions as well as for energetic ions. For the runs where the
distribution function fluctuations are analyzed, the number of computational particles
is increased to 1.07×109 for thermal ions as well as for energetic ions. We investigate the
evolution of Alfvén eigenmodes in a quarter of the tokamak domain with the toroidal
angle taken from 0 ≤ φ < π/2. For the purpose of the data analysis, magnetic flux
coordinates (r, φ, ϑ) were constructed for the MHD equilibrium where r is the radial
coordinate with r = 0 at the plasma center and r = a at the plasma edge, and ϑ is the
poloidal angle.

3. Simulation results

3.1. Comparison with conventional hybrid simulation

We investigated toroidal Alfvén eigenmodes (TAEs) in normal shear tokamak plasmas.
The spatial profiles of the bulk plasma beta, energetic ion beta, and safety factor are
shown in Fig. 1(a). The bulk plasma beta value is 1% at the plasma center. The
bulk plasma density is uniform, and the temperature is assumed equal for electron and
thermal ion. Thermal speed of thermal ions is 5% of the Alfvén velocity at the plasma
center. Two simulations were conducted with the conventional hybrid model and the
extended hybrid model with kinetic thermal ions. The spatial profiles of the TAE with
toroidal mode number n = 4 are compared in Fig. 1(b) and (c). We see that the spatial
profiles are very similar to each other. The real frequency and the growth rate are
ω = 0.338ωA and γ = 0.036ωA for the conventional hybrid model, while ω = 0.344ωA

and γ = 0.037ωA for the extended hybrid model. Here, ωA is the Alfvén frequency which
is defined by ωA = vA/Raxis where vA and Raxis are the Alfvén velocity and the major
radius at the plasma center, respectively. In the simulations presented in this paper,
the ratio of the Alfvén frequency to the ion Larmor frequency Ωi is ωA/Ωi = 0.019.
Then, the frequency ω ∼ 0.34ωA is ω ∼ 0.006Ωi which is sufficiently low for the MHD
model to be valid. The real frequency and the growth rate are also very close to each
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Figure 1. (a) Spatial profiles of bulk plasma beta, energetic ion beta (EP), and safety
factor (q). Spatial profiles of each poloidal harmonic of the TAE with toroidal mode
number n = 4 for radial MHD velocity simulated with (b) the conventional hybrid
model, (c) the extended hybrid model with kinetic thermal ions, and (d) the extended
hybrid model with kinetic thermal ions and electron temperature profile evolution.
Solid (dashed) lines show cos(mθ + nφ) [sin(mθ + nφ)] harmonics.

other. These results indicate that the time-independent electron temperature model is
a reasonable assumption to reproduce the TAE given by the conventional hybrid model.
As is discussed in the next subsection, thermal ions have a fluid-like response to the
TAE, and the resonance does not play an important role in the thermal ion response for
the central bulk plasma beta 1%. This results in the similar growth rate between the
conventional hybrid model and the extended hybrid model with kinetic thermal ions.

For the validation of the time-independent electron temperature model, we
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conducted another simulation where electron temperature profile evolves by the
following pressure evolution equation,

∂pe
∂t

= −∇ · (pevfe)− (γ − 1)pe∇ · vfe, (24)

vfe = vE⊥ +
ρivi∥ + ρhvh∥

ρ
b. (25)

Thermal ions and energetic ions are simulated with the gyrokinetic PIC. This model is
similar to that used in Refs. [44,45]. The spatial profile of the TAE simulated with this
model is shown in Fig. 1(d). We see a very similar spatial profile to those shown in Fig.
1(b) and (c). The real frequency and the growth rate are ω = 0.338ωA and γ = 0.036ωA

which are the same as those of the conventional hybrid model and close to those of the
extended hybrid model with the time-independent electron temperature profile. This
result validates the time-independent electron temperature model used in this work for
the studies of Alfvén eigenmodes.

3.2. TAE for bulk plasma beta 1%

We compare the evolution of the TAE for different bulk plasma beta values βbulk0 =1%
and 4% using the extended simulation model with kinetic thermal ions. Since we
assumed the same density profile, the difference in bulk plasma beta arises from
the different bulk plasma temperature. We show the time evolution of radial MHD
velocity and energy in Fig. 2 for βbulk0 =1%. Figure 2(a) shows the radial MHD
velocity evolution for the cosine part of the m/n=5/4 harmonic which is the dominant
component of the TAE as we see in Fig. 1(c). We see that the saturation level is
vr/vA ∼ 3 × 10−3. Figure 2(b) shows the time evolution of energetic ion energy (EP),
thermal ion energy (ion), electron energy (electron), MHD kinetic energy (kinetic),
magnetic energy (magnetic), and dissipated energy (dissipation). The decrease in
energetic ion energy indicates that the instability is driven by energetic ions. Figure
2(c) compares the evolution of absolute value for energetic ion energy, thermal ion
energy, electron energy, and MHD kinetic energy in logarithmic scale. We see that all
the energy components grow with the same growth rate. Since the sign of thermal ion
and electron energy is positive in Fig. 2(b), both thermal ions and electrons absorb
energy from the TAE. The absolute values of energy variation are comparable between
thermal ions and electrons. This suggests that the interaction between thermal ions and
the TAE is fluid-like and the resonance plays only a minor role. This will be confirmed
with the distribution function analyses described below.

We have analyzed the variations of energetic ion distribution function (δf) in phase
space (Pφ, E, µ) where Pφ, E, and µ represent toroidal canonical momentum, kinetic
energy, and magnetic moment, respectively, with the definition Pφ = ehΨ +mhRv∥bφ,
E = 1

2
mhv

2, and µ = 1
2
mhv

2
⊥/B. Magnetic moment µ is an adiabatic invariant for the

interaction with Alfvén eigenmodes whose frequency is sufficiently lower than the ion
Larmor frequency. The poloidal magnetic flux Ψ is chosen to be Ψ = Ψ0 at the plasma
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Figure 2. (a) Radial MHD velocity evolution for the cosine part of the m/n=5/4
harmonic shown in Fig. 1(c) for βbulk0 =1%. (b) Time evolution of variations
for energetic ion energy (EP), thermal ion energy (ion), electron energy (electron),
MHD kinetic energy (kinetic), magnetic energy (magnetic), and dissipated energy
(dissipation) for βbulk0 =1%. Panel (c) compares the evolution of absolute value for
energetic ion energy, thermal ion energy, electron energy, and MHD kinetic energy in
logarithmic scale.

center and Ψ = 0 at the plasma edge. The subscript “h” denotes energetic ion, and bφ
is the φ component of the magnetic field unit vector.

The variations of energetic ion distribution function (δf) in (Pφ, E) space with
µ = 0 are shown in Fig. 3 for ωAt = 681 in the run for βbulk0 =1%. We chose µ = 0

because the absolute value of δf is large. The blue and red regions shown in Fig. 3(a)
and (b) represent δf < 0 and δf > 0, respectively. The resonance condition is given by
(e.g. [53])

ω − nωφ − Lωϑ = 0, (26)

where ωφ and ωϑ are particle orbit frequencies in toroidal and poloidal directions,
respectively, and the poloidal resonance number L is an integer. We measured the
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Figure 3. Variations of energetic ion distribution function in (Pφ, E) space with µ = 0

are shown in color for (a) co-going particles to the plasma current and (b) counter-
going particles at ωAt = 681 in the run for βbulk0 =1%. Magenta lines represent
resonance with the TAE with poloidal resonance number L labeled in the figure.
White lines represent the TAE gap locations for toroidal mode number n = 4 with
q = 9/8, 11/8, and 13/8. Blue lines represent E′ = const. which is conserved during
the wave-particle interaction neglecting the time variation of the mode amplitude and
frequency. Energetic ion distribution functions along the E′ = const. lines shown in
panels (a) and (b) are compared between ωAt = 0 and 681 for (c) co-going particles
and (d) counter-going particles. Dashed lines connecting panel (a) and (b) to (c) and
(d), respectively, indicate the range of Pφ which corresponds to the horizontal axis (E)
of panels (c) and (d).

particle orbit frequencies and defined the following function of ωφ and ωϑ

F (ωφ, ωϑ) = (ω − nωφ)/ωϑ (27)

in (Pφ, E, µ) space. The resonance condition is F (ωφ, ωϑ) = L. Magenta lines shown in
Fig. 3(a) and (b) are contours of F (ωφ, ωϑ) with levels L labeled in the figure, which
represent the resonance with the TAE. White lines represent the TAE gap locations for
toroidal mode number n = 4 with q = 9/8, 11/8, and 13/8 whose radii are r/a = 0.25,
0.43, and 0.56, respectively. We see in Fig. 1(c) that the TAE has a substantial
amplitude in the region with 9/8 ≤ q ≤ 13/8. We see in the figure that the large |δf |
appear along the resonance lines (magenta) and close to the TAE location represented
by the gap lines (white).

During the wave-particle interaction, E ′ = E− ω
n
Pφ is conserved neglecting the time

variation of the mode amplitude and frequency [53, 54]. Blue lines shown in Fig. 3(a)
and (b) represent E ′ = const. Energetic ion distribution functions along the E ′ = const.

lines shown in Fig. 3(a) and (b) are compared between ωAt = 0 and 681 for (c) co-
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Figure 4. Energetic ion distribution function fluctuations in a poloidal plane
(R0 − 0.65a ≤ R ≤ R0 + 0.75a, z0 − 0.7a ≤ z ≤ z0 + 0.7a, φ = 0) with R0 = 3.2a

and z0 = a for (a) (e) ωAt = 295, (b) (f) ωAt = 416, (c) (g) ωAt = 492, (d) (h)
ωAt = 681 in the run for βbulk0 =1%. Particle kinetic energy is chosen for the constant
E′ which are shown in Fig. 3 and magnetic moment µ = 0. The top (bottom) panels
show co-going (counter-going) particles to the plasma current. Resonant particle orbits
are projected on the poloidal plane with the poloidal resonance number L labeled in
the figure.

going particles and (d) counter-going particles. We should notice that the distribution
function gradient with respect to kinetic energy E (= df/dE) along the E ′ = const. line
represents the free energy source for the inverse Landau damping because the following
relationship holds [53]:

∂f

∂E

∣∣∣
E′

=
∂f

∂E
+

dPφ

dE

∂f

∂Pφ

=
∂f

∂E
+

n

ω

∂f

∂Pφ

. (28)

We see in Fig. 3(c) and (d) that the distribution function has positive gradient
(df/dE > 0) along the E ′ = const. lines at ωAt = 0. This causes the inverse
Landau damping and the growth of the TAE. We see the flattening of the energetic
ion distribution function due to the interaction with the TAE at ωAt = 681. The
flattening of the distribution function can be attributed to the particle trapping by the
TAE.

We show in Fig. 4 the energetic ion distribution function fluctuations in a poloidal
plane (R0 − 0.65a ≤ R ≤ R0 + 0.75a, z0 − 0.7a ≤ z ≤ z0 + 0.7a, φ = 0) with R0 = 3.2a

and z0 = a for different times. Particle kinetic energy is chosen for the constant E ′

values for co- and counter-going particles which are shown in Fig. 3 and magnetic
moment µ = 0. Resonant particle orbits are projected on the poloidal plane with the
poloidal resonance number L labeled in the figure. For the linearly growing phase of
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Figure 5. Variations of thermal ion distribution function in (Pφ, E) space with µ = 0

are shown in color for (a) co-going particles to the plasma current and (b) counter-
going particles at ωAt = 681 in the run for βbulk0 =1%. Magenta lines represent
resonance with the TAE with poloidal resonance number L labeled in the figure.
White lines represent the TAE gap locations for toroidal mode number n = 4 with
q = 9/8, 11/8, and 13/8. Blue lines represent E′ = const. which is conserved during
the wave-particle interaction neglecting the time variation of the mode amplitude and
frequency. Thermal ion distribution functions along the E′ = const. lines shown in
panels (a) and (b) are compared between ωAt = 0 and 681 for (c) co-going particles
and (d) counter-going particles. Dashed lines connecting panel (a) and (b) to (c) and
(d), respectively, indicate the range of Pφ which corresponds to the horizontal axis (E)
of panels (c) and (d).

the TAE shown in Fig. 4(a) and (e), we see that the distribution function fluctuations
have the same poloidal mode numbers as the poloidal resonance numbers labeled in the
figures. This indicates that the resonance is taking place. Just after the saturation of
the instability shown in Fig. 4(c) and (g), we see the blue regions inside the resonant
orbits and the red regions outside the resonant orbits. Blue and red regions represent
δf < 0 and δf > 0, respectively. This indicates the flattening of the distribution
function at the resonances caused by particle trapping. Figure 4(b) and (f) show δf at
the beginning of the nonlinear saturation phase where particle trapping is starting. As
the TAE amplitude decreases after the distribution flattening, the distribution function
is kept flattened and becomes uniform in the poloidal direction as shown in Fig. 4(d)
and (h).

The variations of thermal ion distribution function (δf) are shown in Fig. 5 in
(Pφ, E) space with µ = 0 at ωAt = 681 in the run for βbulk0 =1%. The blue and red
regions shown in Fig. 5(a) and (b) represent δf < 0 and δf > 0, respectively. Magenta
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Figure 6. Thermal ion distribution function fluctuations in a poloidal plane
(R0 − 0.65a ≤ R ≤ R0 + 0.75a, z0 − 0.7a ≤ z ≤ z0 + 0.7a, φ = 0) with R0 = 3.2a

and z0 = a for (a) (e) ωAt = 295, (b) (f) ωAt = 416, (c) (g) ωAt = 492, (d) (h)
ωAt = 681 in the run for βbulk0 =1%. Particle kinetic energy is E = 5.9× 10−3mhv

2
A

and magnetic moment µ = 0. The top (bottom) panels show co-going (counter-going)
particles to the plasma current. Resonant particle orbits are projected on the poloidal
plane with the poloidal resonance number L labeled in the figure.

lines represent resonance with the TAE with poloidal resonance number L labeled in the
figure. White lines represent the TAE gap locations for toroidal mode number n = 4

with q = 9/8, 11/8, and 13/8. We see in the figure that the large absolute value of
δf appear close to the TAE location represented by the gap lines (white). The large
|δf | regions do not follow the resonance curves shown in magenta. This indicates that
the resonance does not play a dominant role in the interaction between the TAE and
thermal ions. Thermal ion distribution functions along the E ′ = const. lines shown in
Fig. 5(a) and (b) are compared between ωAt = 0 and 681 for (c) co-going particles
and (d) counter-going particles. The variations of thermal ion distribution functions are
small indicating a weak interaction between the TAE and thermal ions.

We show in Fig. 6 the thermal ion distribution function fluctuations in the
(R, z) plane for different times. Particle kinetic energy is chosen for the constant
E = 5.9 × 10−3mhv

2
A. We do not collect particles with E ′ = const. for this analysis

because we cannot cover the (R, z) plane with the E ′ = const. condition which has
a steep gradient in Pφ as shown in Fig. 5(a) and (b). Resonant particle orbits are
projected on the (R, z) plane with the poloidal resonance number L labeled in the
figure. For the linearly growing phase of the TAE shown in Fig. 6(a) and (e), we see
that the distribution function fluctuations do not have the same poloidal mode numbers
as the poloidal resonance numbers. This indicates that the resonance is not a dominant
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Figure 7. (a) Spatial profiles of bulk plasma beta, energetic ion beta (EP), and safety
factor (q). Spatial profiles of each poloidal harmonic of the TAEs with toroidal mode
number (b) n = 4 and (c) n = 8 for radial MHD velocity. Solid (dashed) lines show
cos(mθ + nφ) [sin(mθ + nφ)] harmonics.

factor for the distribution function fluctuations. This property does not change for
the different times shown in the other panels of Fig. 6. The thermal ion distribution
function fluctuations for the linearly growing phase of the TAE shown in Fig. 6(a) and
(e) have the same poloidal mode numbers (m = 4− 6) as the TAE spatial profile. This
indicates the fluid-like interaction of thermal ions with the TAE. It is also interesting
that small scale variations in the radial direction are formed in the nonlinear phase,
which are seen in Fig. 5(a) and (b), and Fig. 6(d) and (h).

3.3. TAEs for bulk plasma beta 4%

In this subsection, we investigate another case with bulk plasma beta βbulk0 = 4% using
the extended simulation model with kinetic thermal ions. We show the spatial profiles
of the bulk plasma beta, energetic ion beta, and safety factor in Fig. 7(a). The bulk
plasma density is uniform. Since we assumed the same density profile as the run for
βbulk0 = 1% presented in the previous subsection, the higher bulk plasma beta arises
from the higher bulk plasma temperature. The radial MHD velocity profiles are shown
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Figure 8. Radial MHD velocity evolution for the cosine part of (a) m/n = 6/4 and (b)
m/n = 10/8 harmonics shown in Fig. 7(b) and (c), respectively, for βbulk0 =4%. Panel
(c) compares the evolution of absolute value for the radial MHD velocity harmonics in
logarithmic scale.

in Fig. 7(b) and (c) for n = 4 and n = 8 TAEs which appear in the simulation.
We show the time evolution of radial MHD velocity in Fig. 8 for βbulk0 =4%. Figure

8(a) and (b) show the time evolution of radial MHD velocity for the cosine part of
m/n = 6/4 harmonic and m/n = 10/8 harmonic, respectively. The most unstable mode
in the linearly growing phase is the n = 4 TAE. The saturation amplitude of m/n = 6/4

harmonic is vr/vA ∼ 1 × 10−3 which is lower than that for βbulk0 =1%. Figure 8(c)
compares the evolution of the m/n = 6/4 and 10/8 harmonics in logarithmic scale. The
growth rate of the m/n = 10/8 harmonic in the linearly growing phase is twice that of
the m/n = 6/4 harmonic. This indicates that the n = 8 mode is generated from the
n = 4 mode through the MHD nonlinearity. After the saturation of the n = 4 TAE,
the n = 8 TAE becomes unstable and grows to a larger amplitude than the n = 4 TAE.
The n = 8 TAE may be destabilized by the energetic ion redistribution brought about
by the n = 4 TAE.

Figure 9(a) shows the time evolution of variations for energetic ion energy (EP),
thermal ion energy (ion), electron energy (electron), MHD kinetic energy (kinetic),
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Figure 9. (a) Time evolution of variations for energetic ion energy (EP), thermal ion
energy (ion), electron energy (electron), MHD kinetic energy (kinetic), magnetic energy
(magnetic), and dissipated energy (dissipation) for βbulk0 =4%. Panel (b) compares
the evolution of absolute value for energetic ion energy, thermal ion energy, electron
energy, and MHD kinetic energy in logarithmic scale.

magnetic energy (magnetic), and dissipated energy (dissipation). The decrease in
energetic ion energy indicates that the instability is driven by energetic ions. Figure
9(b) compares the absolute value of variations for energetic ion energy, thermal ion
energy, electron energy, and MHD kinetic energy in logarithmic scale. We see that all
the energy components grow with the same growth rate. The positive sign of thermal
ion and electron energy which we see in Fig. 9(a) indicates that both thermal ions
and electrons absorb energy from the TAEs. The absolute value of energy variation for
thermal ions is larger than that for electrons. In the run for βbulk0 = 1%, the energy
variations are comparable between thermal ions and electrons as shown in Fig. 2. The
larger increase in thermal ion energy for βbulk0 = 4% can be attributed to stronger
Landau damping of thermal ions with higher thermal ion temperature. This will be
clarified with the distribution function analyses described below.

We have analyzed the variations of energetic ion distribution function (δf) in phase
space (Pφ, E, µ). The variations of energetic ion distribution function in (Pφ, E) space
with µ = 0 are shown in Fig. 10 for ωAt = 1150 in the run for βbulk0 =4%. The blue
and red regions shown in Fig. 10(a) and (b) represent δf < 0 and δf > 0, respectively.
Magenta lines represent resonance with the n = 4 TAE with poloidal resonance number
L labeled in the figure. Blue lines represent E ′ = const. which is conserved during the
wave-particle interaction with the n = 4 TAE neglecting the time variation of the mode
amplitude and frequency. Energetic ion distribution functions along the E ′ = const.
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Figure 10. Variations of energetic ion distribution function in (Pφ, E) space with
µ = 0 are shown in color for (a) co-going particles to the plasma current and (b)
counter-going particles at ωAt = 1150 in the run for βbulk0 =4%. Magenta lines
represent resonance with the n = 4 TAE with poloidal resonance number L labeled
in the figure. White lines represent the TAE gap locations for toroidal mode number
n = 4 with q = 9/8, 11/8, and 13/8. Blue lines represent E′ = const. which is conserved
during the wave-particle interaction with the n = 4 TAE neglecting the time variation
of the mode amplitude and frequency. Energetic ion distribution functions along the
E′ = const. lines shown in panels (a) and (b) are compared between ωAt = 0 and 1150

for (c) co-going particles and (d) counter-going particles. Dashed lines connecting panel
(a) and (b) to (c) and (d), respectively, indicate the range of Pφ which corresponds to
the horizontal axis (E) of panels (c) and (d).

lines shown in Fig. 10(a) and (b) are compared between ωAt = 0 and 1150 for (c) co-
going particles and (d) counter-going particles. We see in the figure that the large-scale
redistribution occurs due to the interaction with the multiple TAEs with n = 4 and
n = 8.

We show in Fig. 11 the energetic ion distribution function fluctuations in the
poloidal plane for different times. Particle kinetic energy is chosen for the constant E ′

which are shown in Fig. 10 and magnetic moment µ = 0. Resonant particle orbits
are projected on the poloidal plane with the poloidal resonance number L labeled in
the figure. For the linearly growing phase of the TAE shown in Fig. 11(a) and (e),
we see that the distribution function variations have the same poloidal mode numbers
as the poloidal resonance numbers. This indicates that the resonance is occurring. At
ωAt = 700 shown in Fig. 11(b) and (f) just before the significant growth of the n = 8

mode, blue regions with δf < 0 (red regions with δf > 0) are appearing inside (outside)
of each resonance. This indicates the particle trapping by the n = 4 TAE. However, at
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Figure 11. Energetic ion distribution function fluctuations in a poloidal plane
(R0 − 0.65a ≤ R ≤ R0 + 0.75a, z0 − 0.7a ≤ z ≤ z0 + 0.7a, φ = 0) with R0 = 3.2a and
z0 = a for (a) (e) ωAt = 287, (b) (f) ωAt = 700, (c) (g) ωAt = 811, (d) (h) ωAt = 1150

in the run for βbulk0 =4%. Particle kinetic energy is chosen for the constant E′ which
are shown in Fig. 10 and magnetic moment µ = 0. The top (bottom) panels show
co-going (counter-going) particles to the plasma current. Resonant particle orbits are
projected on the poloidal plane with the poloidal resonance number L labeled in (c)
and (g) for the n = 8 TAE and in the other panels for the n = 4 TAE.

ωAt = 811 shown in Fig. 11(c) and (g), the n = 8 TAE takes the maximum amplitude
as we see in Fig. 8(b), and the poloidal mode numbers for the δf shown in Fig. 11(c)
and (g) change from Fig. 11(b) and (f) due to the resonance with the n = 8 TAE. The
resonant particle orbits are projected for the n = 8 TAE in Fig. 11(c) and (g) with
the poloidal resonance number L labeled in the figures. We see that the poloidal mode
numbers of δf are the same as the poloidal resonance numbers. We see in Fig. 11(d)
and (h) that the global flattening of the distribution function occurs at ωAt = 1150.

Figure 12 shows the variations of thermal ion distribution function (δf) in (Pφ, E)

space with µ = 0 at ωAt = 1150 in the run for βbulk0 =4%. The blue and red regions
shown in Fig. 12(a) and (b) represent δf < 0 and δf > 0, respectively. For βbulk0 =1%,
the structure of δf shown in Fig. 5 was formed along the q profile represented by white
lines. On the other hand, some part of δf for βbulk0 =4% shown in Fig. 12 follows also
the resonance curves with the n = 4 TAE (magenta lines), which indicates the effect
of resonance. The higher temperature for βbulk0 =4% enables the resonance between
thermal ions and the TAEs.

We show in Fig. 13 the thermal ion distribution function fluctuations in the
(R, z) plane for different times. Particle kinetic energy is chosen for the constant
E = 3.0 × 10−2mhv

2
A. We do not collect particles with E ′ = const. for this analysis
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Figure 12. Variations of thermal ion distribution function in (Pφ, E) space with µ = 0

are shown in color for (a) co-going particles to the plasma current and (b) counter-
going particles at ωAt = 1150 in the run for βbulk0 =4%. Magenta lines represent
resonance with the TAE with poloidal resonance number L labeled in the figure.
White lines represent the TAE gap locations for toroidal mode number n = 4 with
q = 9/8, 11/8, and 13/8. Blue lines represent E′ = const. which is conserved during
the wave-particle interaction neglecting the time variation of the mode amplitude and
frequency. Thermal ion distribution functions along the E′ = const. lines shown in
panels (a) and (b) are compared between ωAt = 0 and 1150 for (c) co-going particles
and (d) counter-going particles. Dashed lines connecting panel (a) and (b) to (c) and
(d), respectively, indicate the range of Pφ which corresponds to the horizontal axis (E)
of panels (c) and (d).

because we cannot cover the (R, z) plane with the E ′ = const. condition which has
a steep gradient in Pφ as shown in Fig. 12(a) and (b). Resonant particle orbits are
projected on the (R, z) plane with the poloidal resonance number L labeled in the
figure for the n = 4 TAE. For the linearly growing phase of the TAE shown in Fig.
13(a) and (e), we see that the distribution function fluctuations have the same poloidal
mode numbers as the poloidal resonance numbers. This indicates that the resonance
is a dominant factor for the distribution function fluctuations, which makes a contrast
to Fig. 6 where the resonance is not a dominant factor for the distribution function
fluctuations of thermal ions. We can attribute this difference to the difference in poloidal
resonance number. The poloidal resonance numbers labeled in Fig. 13(a) and (e) are
L = −4,−3, 6, 7, 8, 9, 10 whose absolute values are close to the poloidal mode numbers
of the n = 4 TAE shown in Fig. 7(b). On the other hand, the poloidal resonance
numbers labeled in Fig. 6(a) and (e) are L = −2,−1, 8, 9, 10, 11, 12 whose absolute
values are relatively far from the poloidal mode numbers of the n = 4 TAE. These
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Figure 13. Thermal ion distribution function fluctuations in a poloidal plane
(R0 − 0.65a ≤ R ≤ R0 + 0.75a, z0 − 0.7a ≤ z ≤ z0 + 0.7a, φ = 0) with R0 = 3.2a

and z0 = a for (a) (e) ωAt = 287, (b) (f) ωAt = 700, (c) (g) ωAt = 811, (d) (h)
ωAt = 1150 in the run for βbulk0 =4%. Particle kinetic energy is E = 3.0× 10−2mhv

2
A

and magnetic moment µ = 0. The top (bottom) panels show co-going (counter-going)
particles to the plasma current. Resonant particle orbits are projected on the poloidal
plane with the poloidal resonance number L labeled in the figure for the n = 4 TAE.

result in the difference in the strength of the interaction between thermal ions and the
TAE. The thermal ion distribution function fluctuations shown in Fig. 13(d) and (h)
may be partially related to the resonance with the TAEs, but the structure is not so
clear as those for energetic ions shown in Fig. 11(d) and (h).

4. Discussion and summary

In this paper, we presented a new kinetic-magnetohydrodynamic (MHD) hybrid
simulation model where the gyrokinetic particle-in-cell simulation is applied to both
thermal ions and energetic particles. Toroidal Alfvén eigenmodes destabilized by
energetic ions in tokamak plasmas are simulated with the new simulation model.
We have demonstrated the energy channeling from energetic ions to thermal ions
through Alfvén eigenmodes with the simulation. We analyzed the distribution function
fluctuations and the resonance condition for both thermal ions and energetic ions. For
energetic ions, the distribution function is flattened on the E ′ = const. line in the phase
space location where the resonance condition is satisfied and the Alfvén eigenmode has a
substantial amplitude. Here, E ′ is a conserved variable for the wave-particle interaction.
The absolute value of the poloidal resonance number |L| is close to the poloidal mode
number of the Alfvén eigenmode m. This results in the strong energy transfer and the



Magnetohydrodynamic hybrid simulation model 21

strong particle transport. Since the poloidal orbit frequency is positive in our definition
(ωϑ > 0), the sign of L and m may be different from each other, and we assumed m ≥ 0

in this work. On the other hand, when the bulk plasma beta is 1%, the variations of
thermal ion distribution function does not follow the resonance curves but appear along
the q = const. curves or on the magnetic surfaces. This indicates that thermal ions
have the fluid-like response to the Alfvén eigenmode and the resonance does not play
an important role. The fluid-like response can be attributed to the absolute value of the
poloidal resonance number |L| which is far from the poloidal mode number of the Alfvén
eigenmode. For bulk plasma beta 4%, |L| for thermal ions is closer to the poloidal mode
number of the toroidal Alfvén eigenmode, and the resonance become important leading
to Landau damping.

These results lead to the conclusion that the strong energy transfer between the
particles and the Alfvén eigenmode and the strong particle transport occur when the
following conditions are satisfied at the resonance location in phase space: 1) the
absolute value of the poloidal resonance number |L| is close to the poloidal mode number
of the Alfvén eigenmode, 2) the Alfvén eigenmode has a substantial amplitude, 3) the
distribution function has a substantial gradient along the E ′ = const. line. In a uniform
slab plasma, the net energy transfer arises only when the resonance condition is satisfied
with |L| = m. In toroidal plasmas, however, the net energy transfer arises even for
|L| ̸= m, because the distribution function fluctuations with the poloidal mode number
L and the Alfvén eigenmode harmonics with poloidal mode number m can couple in the
volume integration for the energy transfer through the magnetic gradient and curvature
drifts and the Jacobian of phase space, which contain poloidal mode numbers not equal
to 0. If |L| is far from m, however, their coupling is weak and the resonance is not
important for the distribution function fluctuations.

For the toroidal Alfvén eigenmode (TAE) investigated in this paper, we can
conclude that the kinetic thermal ions are essential for βbulk0 =4%, but are not for
βbulk0 =1%. With the new kinetic-MHD hybrid simulation presented in this paper,
energy channeling from energetic particles to thermal ions through the energetic-particle
driven geodesic acoustic mode (EGAM) [46,47] and the stabilization of pressure driven
instabilities in the Large Helical Device (LHD) plasmas by the kinetic effects of thermal
ions [44, 45] have been demonstrated. The energetic-particle distribution function
analyses in the simulations of Alfvén eigenmode bursts and frequency chirping have
proved to be useful methods for elucidating the nonlinear physical mechanisms [55–57].
The distribution function fluctuation analysis presented in this paper is a powerful
tool to elucidate the wave-particle interaction in toroidal plasmas. As we stated in
the introduction section, MHD requires the kinetic extension for the application to the
collisionless high-temperature plasmas. In a conventional hybrid simulation without
kinetic thermal ions for βbulk0 =4%, which is not presented in this paper, we found
that a pressure driven MHD mode is unstable and affects the TAE. This makes the
comparison difficult between the conventional hybrid simulation and the new kinetic-
MHD hybrid simulation for βbulk0 =4%. This suggests an important stabilizing effect of
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kinetic thermal ions, which may be similar to that observed for LHD, but the analysis
of the stabilizing mechanism is beyond the scope of this paper and transferred to our
future work.

Though collisions are neglected in this work, collisions can be implemented for
ion particle dynamics with the δf simulation extended for collisions [58, 59]. We
should consider the consistency between collisions and dissipations such as viscosity and
resistivity. For resistivity, a frictional force should be considered for ion dynamics to be
consistent with the resistivity which arises from collisions between ions and electrons. In
Refs. [44,60], the ideal electric field without the resistive term was used for ion dynamics
because the resistive part of the electric field is cancelled out with the frictional force.
The total electric field with the resistive term was used for the induction equation which
describes the magnetic field evolution. In this work, we used the total electric field with
the resistive term for both the induction equation and the ion dynamics because the
resistive component of the electric field is negligibly smaller than the ideal component
for the Alfvén eigenmodes.

We introduced the parallel electric field in Eq. (11) given by the electron pressure
gradient. This term is derived from the electron momentum equation neglecting the
inertia term. We presented two models of electron pressure in this paper. One model
assumes the time-independent electron temperature profile and the electron density
whose charge density cancels out ion charge density. An additional electrostatic potential
has been constructed, which gives the parallel and the perpendicular electric field, in
terms of quasi-neutrality [41, 43]. The parallel electric field adopted in this work is
consistent with the quasi-neutrality model. In Ref. [43], the quasi-neutrality condition
is extended with the ion polarization effect. The quasi-neutrality model also yields the
perpendicular electric field of which E×B drift should be considered in the momentum
vector given by Eq. (13). In addition, the electric field generated by the quasi-neutrality
does not affect the magnetic field evolution since it is an electrostatic field. In Ref. [41],
electrostatic modes and their coupling to the internal kink mode were studied. The
quasi-neutrality condition will enable us to study electrostatic modes such as ion-
temperature-gradient (ITG) modes if the quasi-neutrality condition is appropriately
implemented with the finite Larmor radius effects. A rich research field where the
MHD modes and the electrostatic modes are coupled together will be open with the
additional electrostatic potential. On the other hand, we adopted only the parallel
electric field and neglect the perpendicular component in this work. This is a reasonable
choice when we focus on the MHD modes without being disturbed with electrostatic
modes. However, the code benchmark on electrostatic modes, for example, ITG modes
with the implementation of the quasi-neutrality electric field is desired and will be
conducted in the near future. We would like to emphasize that the new kinetic-MHD
hybrid simulation will improve our understanding of many critical issues of tokamak
and stellarator/heliotron plasmas and contribute to the prediction of burning plasmas.
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