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A theoretical study for parallel electric field in nonlinear magnetosonic

waves in three-component plasmas
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The electric field parallel to the magnetic field in nonlinear magnetosonic waves in three
component plasmas (two-ion-species plasma and electron-positron-ion plasma) is theoretically
studied based on a three-fluid model. In a two-ion-species plasma, a magnetosonic mode has two
branches, high-frequency mode and low-frequency mode. The parallel electric field £} and its in-
tegral along the magnetic field, F = — fEHds, in the two modes propagating quasiperpendicular
to the magnetic field are derived as functions of the wave amplitude e and the density ratio and
cyclotron frequency ratio of the two ion species. The theory shows that the magnitude of F in the
high-frequency-mode pulse is much greater than that in the low-frequency-mode pulse.
Theoretical expressions for £ and F' in nonlinear magnetosonic pulses in an electron-positron-
ion plasma are also obtained under the assumption that the wave amplitudes are in the range of
(me/m,-)l/2 < € < 1, where m, /m; is the electron to ion mass ratio. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4958312]

I. INTRODUCTION

Theory and particle simulations have revealed that non-
linear magnetosonic waves can strongly accelerate particles
with various nonstochastic mechanisms.' The electric field
parallel to the magnetic field, £, in a magnetosonic shock
wave plays crucial roles in some of the mechanisms.” For ex-
ample, the parallel electric field can cause trapping and ac-
celeration of electrons in a shock wave propagating
obliquely to the magnetic field.? In a plasma containing elec-
trons, positrons, and ions, the parallel electric field can
strongly accelerate positrons.”*

In the particle simulations on the trapping and accelera-
tion of electrons by a nonlinear magnetosonic wave, it was
observed that £ can be strong.? The values of the integral of
E| along B, F = — fEHds, were also observed to be quite
large; we call F' the parallel pseudopotential because E)| con-
tains both longitudinal and transverse components. This can-
not be explained by the magnetohydrodynamics; the values
of £ and F have been generally believed to be quite small in
a collisionless plasma because £ is exactly zero in the ideal
magnetohydrodynamics.’

Motivated by the observation of the strong E|, the theory
for £ and F in the nonlinear magnetosonic wave in a single-
ion-species plasma has been developed.® For small-amplitude
pulses, E I and F were derived based on a two-fluid model. In
a warm plasma, F is given as eF ~ el T,, where € is the
wave amplitude, I, is the specific heat ratio of electrons, and
T, is the electron temperature. However, in a cold plasma
such that €m;v% > €[, T,, where v, is the Alfvén speed, it is
given by

1 m; -1
eF ~—mva (1 ——cos?0) (D
2 (1 o)
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where m; is the ion mass, m, is the electron mass, and 0 is the
propagation angle of the nonlinear wave. These theories were
verified by the electromagnetic particle simulations. Further,
for large-amplitude shock waves with e ~ O(1), the phenome-
nological relation that can explain simulation results for both
warm and cold plasmas was presented as eF ~ e(m;v3 + . T,).
These results indicate that F can be large when the external
magnetic field By is strong. In Ref. 7, the parallel electric field
in nonlinear magnetosonic wave in an electron-positron-ion
plasma was theoretically analyzed. It was shown that eF in a
small-amplitude pulse with e < 1 is proportional to €2m;v% in a
cold plasma and it decreases with increasing positron density.

Although the theory for £ and F has been extended, the
parallel electric field in a nonlinear magnetosonic wave in a
plasma containing multiple species ions has not been ana-
lyzed. Astrophysical and fusion plasmas usually contain mul-
tiple species ions. The presence of multiple species ions can
significantly influence the properties of magnetosonic waves
(for instance, Refs. 8—16). In a two-ion-species plasma, there
are two magnetosonic modes, which we call high-frequency
mode and low-frequency mode. The frequency of the low-
frequency mode goes to zero as the wavenumber k approaches
zero. The high-frequency mode has a finite cut-off frequency
of the order of the ion cyclotron frequency. Nonlinear behav-
ior of the low- and high-frequency modes can be described by
Korteweg-de Vries equation (KdV equation), although the lin-
ear dispersion curves of these modes are quite different in the
long-wavelength region.'? Nonlinear coupling between the
high- and low-frequency modes can occur.'* In fact, the nu-
merical simulation showed that high-frequency-mode pulses
are generated from a low-frequency mode pulse when its am-
plitude exceeds a critical value, which depends on the density
ratio and cyclotron ratio of the two ion species.'®

In this paper, we develop a theory for £ and F in non-
linear magnetosonic pulses propagating quasiperpendicular
to the magnetic field in a two-ion-species plasma. We derive

Published by AIP Publishing.
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the expression for £ and F' in solitary pulses of the high-
and low-frequency modes. We also theoretically analyze E|
and F in a nonlinear pulse in an electron-positron-ion plasma
(e-p-1 plasma) assuming that the amplitude is in the range of
(me/m;)"* < € < 1; the theoretical expressions for £ | and F
for such amplitudes were not given in Ref. 7 where € < 1
was assumed.

In Sec. II, we overview the properties of linear and non-
linear magnetosonic waves in the three component plasmas
(two-ion-species plasma and e-p-i plasma). In Sec. III, we
analyze E| and F in the low-frequency-mode pulse and the
high-frequency-mode pulse in a two-ion-species plasma. For
the low-frequency mode, there are two pulses with different
characteristic lengths when the propagation angle 0 is greater
than the critical angle 90;17 the value of 0. is, for example,
71° in a hydrogen-helium (H-He) plasma with the density
ratio nye /ng = 0.1. We derive the theoretical expressions for
F in the two low-frequency-mode pulses, which are given as
functions of ¢, 0, and the density ratio and cyclotron frequen-
cy ratio of two ion species. It is found that the values of F in
the two low-frequency-mode pulses are much smaller than
those in the pulses in the single-ion-species plasma given by
Eq. (1). For the high-frequency-mode pulse, we show that
the magnitude of F' is the same order as Eq. (1). Thus, F in
the high-frequency-mode pulse is much greater than F in the
low-frequency-mode pulses. In Sec. IV, we analyze nonline-
ar magnetosonic waves in an e-p-i plasma. We derive a KdV
equation assuming that (m,/m;) < ¢ < 1. We then obtain F
in the nonlinear pulse with its amplitude in this range. It is
shown that F in the pulse with € in the range of (m,/m;)"/* <
€ < 1 can be written as the same form as that in the range of
€ < 1. Section V gives a summary of our work.

Il. OVERVIEW OF MAGNETOSONIC WAVES IN THREE
COMPONENT PLASMAS

We consider magnetosonic waves propagating in the x di-
rection in an external magnetic field By = By(cos 0,0, sin 0)
in a three component plasma. We use the following three-
fluid equations:

on:
% + V- (nvy) =0, 2)
0 B q;j
m; ——‘r(’Uj'V) v; = ¢;E +—v; X B, 3)
ot c
10B
-5 =~V xE, (4)
V x B = (4n/c) Z qinjv;, 5)
J

where the plasma is assumed to be cold and the displacement
current is neglected. For a two-ion-species plasma with the
ion species a and b, the subscript j refers to ion species (j =a
or b) or electrons (j = e). For an e-p-i plasma, j refers to elec-
trons, positrons, or ions (j = e, p, or i). From Equations (2)
to (5), we obtain the linear dispersion relation as

Phys. Plasmas 23, 072115 (2016)

2.w?
k? {czk2 sin0 + wi(l + 00529)} Z h
j j
2,2 2 2 w;j wzzJj 2
+(c k° sin“0 + wp) (Zj:—w — Qj> (Z/:w—i- Qj)co
+ c4k4w]23 cos?0 = 0, (6)
where
Wy =)oy 7

and w),; and €; are plasma and cyclotron frequencies of the
particle species j, respectively.

Figure 1(a) shows the dispersion curve of the magneto-
sonic wave with the propagation angle 0 = 87° in a single-
ion-species plasma. As k — oo, w approaches w, defined as

@, = |Qe|(me/m; + cos20)'?, (8)

which is of the order of +/|Q.|Q; when cos 6 < (me/m,-)l/z.
Figure 1(b) shows the magnetosonic wave in a two-ion-
species plasma, where the ion species are hydrogen (H) and
helium (He) with the density ratio npe/ng = 0.1. In a two-
ion-species plasma, the magnetosonic wave is split into two
modes, high-frequency mode and low-frequency mode. The
cut-off frequency of the high-frequency mode w_ is given by

w2 03\ Q0,0
w+0=< ”“+—"”>—“ plE] ©)

2 2 2
Qa Qb U)pe

The frequency w_, is the resonance frequency of the perpen-
dicular low-frequency mode,

1/2

02,9 + 2,2\ "

=" T2 | (10)
g, + O,

The dispersion curves for both the high- and low-frequency
modes have a large curvature near the wavenumber k. de-
fined as

ke = @_,[Ua. (11)

It has been pointed out that the normalized frequency
difference,

Aw = (w+0 - CU_,.)/(,!)_;,_(), (12)

is an important parameter in nonlinear development of the
two modes.'®!” The value of A, depends on the density ratio
and cyclotron frequency ratio of the two species ions. It
increases with increasing Q,/Q,, where Q, > Q, is as-
sumed. For a fixed Q,/€,, A, becomes maximum when the
ion charge densities are equal, n,q, = npqp-

Figure 1(c) displays the case for an e-p-i plasma, where
the positron to electron density ratio is 7y /ne0 = 0.1.
Although the structure of the dispersion curves for an e-p-i
plasma is similar to that for a two-ion-species plasma, there
are significant quantitative differences between them. The
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resonance frequency of the lower frequency mode in an e-p-i
plasma is estimated as

||
Wp

o+ (oh+ o) eod] "

W,

which is the same order as w, in the single-ion-species plas-
ma. The cut-off frequency of the higher frequency mode is

( 202 4 wgepg,z)

Wpo = , (14)
Q; ( oep T @ )
where @y, 18 defined as
2 2 2
Whep = Wpe + O (15)

We consider the regions for which the dispersion rela-
tion can be approximated by the following form:

o = vpk(1 — d*k*)2). (16)

These regions are enclosed by the gray dotted lines in Fig. 1.
The nonlinear behavior for these regions can be described by
the KdV equation,

ale 3&0{ 88:1
ot 2By B¢

UAd2 83321
2 98

=0, (17)
where B.; is the perturbation of B,, B.,; = B, — By, and ¢
and 7 are stretched coordinates,

f=dPl—n), 1=, (1)

with € ~ |B,; /By|. The solitary wave solution of Eq. (17) is

B.1 /By = bysech?[(x — Mvat) /D), (19)

where the soliton width D and the Mach number M are given
as

D =2b;"2d, (20)
M =1+ab,/2. (21)

In the following, we discuss the parallel electric field £} in
the solitary pulses, given by Eq. (19), in the three component
plasmas.

lll. TWO-ION-SPECIES PLASMA

We present properties of nonlinear pulses of the low-
and high-frequency modes propagating quasiperpendicular
to the magnetic field in a two-ion-species plasma. We then
derive the theoretical expressions for £ and F in the nonlin-
ear pulses.

A. Nonlinear pulses of low-frequency mode

For the low-frequency mode, there are two nonlinear
pulses with different characteristic lengths. We here show
the characteristic quantities of the two pulses.'’

Phys. Plasmas 23, 072115 (2016)

2" 1 1 | |

(b) twol—ion—splecies__

10 r‘He/nH :01

%
H
10 W+0
o W
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1 ‘v‘m"n olne
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100 Wr
W 10 .
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np/ne = 0.1 ]

00T 04 1 10
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FIG. 1. Dispersion curves for magnetosonic waves in a single-ion-species
plasma (a), two-ion-species plasma (b), and electron-positron-ion plasma
(c). The propagation angles of the magnetosonic waves are 0 = 87° for all
the cases. For a two-ion-species plasma, the ion species are hydrogen (H)
and helium (He), with the density ratio nge /ng = 0.1. For an electron-posi-
tron-ion plasma, the density ratio of positrons to electrons is n,/n. = 0.1.
The dispersion relations for the regions enclosed by the gray dotted lines can
be approximated by Eq. (16) and the nonlinear behavior for these regions
can be described by the KdV equation.

0.001

The linear dispersion relation of the low-frequency
mode is written as w/k = va(1 + pk?) in the long wave-
length limit, where v, is the Alfvén speed and u is given by

4 2.
Vs Dpi Uy

2 w2\
- . 22
S22 ; Q;‘ 2 sin0 (; Q;) @2)

We define the angle 6 at which u becomes zero as 0.
The value of 0 is, for example, 71° in a H-He plasma with
npe/ny = 0.1. For 0 > 0., p is negative and o is written as
Eq. (16) with
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vp=va, dP=dy=-2u (23)

This is valid for the range of wavenumbers,

k< k) (24)

min?

where k(l)

min 18

kY = k. (cos 0/cos O), (25)

min

which is smaller than k.. Assuming that A, > m,/m; and
cos’0 < 1, where A,, was given by Eq. (12), we can express
dy; and 0 as

diy = (2A,, — rcos?0)"/?/ (k. sin 0), (26)
cos’0, = 2A,, /r. 27
Here, r is defined as

Q+Q
oo
a=“b

=

—1. (28)

When Q, and Q,, are of the same order of magnitude, r is of
the order of unity. The nonlinear behavior for the region giv-
en by Eq. (24) is described by the KdV equation (17) with
the coefficient «,

o = sin 0. (29)
For 0 > 0 and the range of wavenumbers,

o

min

<k < ke, (30)

the dispersion relation is also written as Eq. (16), and the
KdV equation is obtained. However, d, and o are different
from those for k < k(l) For k(l) < k < ke, they are

min* min

d=dp = (2A,)"%/(kesin0), o=1. 31)

Thus, for the low-frequency mode, we have two solitary
pulses given by Eq. (19) with the characteristic lengths d = dj;
and d = djp. The pulse with d); is for the wavenumber region
k< kl(;zn, whereas the pulse with dy, is for kl(;zn <k < ke
We call the former the longer-wavelength pulse and the latter
the shorter-wavelength pulse. The amplitudes of the pulses for

which the KdV equations are valid were shown in Ref. 17.

B. E; in low-frequency-mode pulses

We derive the parallel electric field £} and the parallel
pseudopotential F in the low-frequency-mode pulses, which
are the longer-wavelength pulse and the shorter-wavelength
pulse.

1. Longer-wavelength pulse

For the longer-wavelength pulses with characteristic
wavelength dj;, we can derive E| using the conventional re-
ductive perturbation method to obtain the KdV equa-
tion."”*! We introduce the stretched coordinates given by
Eq. (18) and expand quantities as

Phys. Plasmas 23, 072115 (2016)

nj = njo + enj; + eznjz + ey (32)
Ujx = €Uj1 + 621)_,’x2 +ee (33)

vy = € + oy - (34
Vj: = €Ujz1 + 62ij2 4+ (35)

B, =sin0+eB,) +eBy+--, (36)
Ey=eEy +EEp+---, (37)

By =By + By + -, (38)
E =€ Eg+ e Eg+ -, (39)
E.=&PE,+€PEy+---. (40)

We consider up to the second order terms of these quantities,
and we write £ as

k=

E-B E, By B, - B, E,-B, E,- B

= 1 - 5 + + .
B By B2 By By

41)

We obtain the relations between E;, E,, and B; (for the

details of calculation, see Appendix A Subsection 1). By vir-

tue of Egs. (A17) and (A18), we see that the lowest order
term of E| is zero,

E ‘B
—L20 — S2(E, cos 0 + E.; sin6) = 0. (42)
0

Further, we see that E| - B, is zero,
E,-B, = ¢/*(E; By +E.B.;) = 0. (43)

We thus have E| = E; - By/By. From Eq. (A26), we obtain
E) of the longer-wavelength pulse as

E = eS/Z(Exz cos 0+ E» sin0),
B *\ & /B
— 5/2 P N zl 44
‘ cw%tan@(?Q}?) il (Bo)' “44)

Then, we have the parallel pseudopotential, F = — [E | ds
= — [(E/ cos 0)dx, as

4
UPBO

2 2
_ o BP0 (N O (Ba
F=—¢ C(})ﬁSiH@(? Q;)ﬁfz B() . (45)

Substituting the soliton solution (19) into Eq. (45), we find
the peak value of F' of the longer-wavelength pulse as

1)430 0)2-
Fun = =25— 2\ b2 46
M= el dE 2 o |’ (46)

where we have approximated that sin@ = 1. This can be
expressed as



072115-5 Mieko Toida
2 03 2 03
2 wio| 0z Q) + 0wz, Q
m,v +0( pa==b pb a) 2
eFyn = oA b, (47)

2(2A,, — rcos20) Q2 (wga + a,g}))

where w ¢, A, and r are defined by Egs. (9), (12), and (28),
respectively. We thus obtain the theoretical expression for F
as a function of the amplitude b,, the propagation angle 0,
and the density ratio and cyclotron frequency ratio of the two
species ions.

2. Shorter-wavelength pulse

For the shorter-wavelength pulses with the characteristic
length dp, we expand v;,, By, and E. as

v, = cos 0(evj + evjn + -+ +), (48)
B, = cos 0(¢*By + €/*Byy +--+), (49)
E. = cos 0(€PE.; + €PE, + - - ). (50)

The expansion of other quantities is the same as those in
Egs. (32)—(40). We also assume that

cos?0 < € K 2A,,. (51)

Equations (48)—(51) enable us to focus on the region kmm
k < k. and obtain the KdV equation with the characteristic
length d]2.17

We derive E| in the shorter-wavelength pulse (see
Appendix A Subsection 2). From Eq. (A30), we see that E| -
Bo e/2(Ey cos 0 4 E.; cos 0sin 0) = 0 and E; B,
= Ey1By1 + Ez 1B = 0. By virtue of Eq. (A32), we find that

E = /2 (Expcos 0 + E.; cos 6sin 6)
S va cos 0'sin 0 Z w_f,j 8_3 B,y 52)
wop  \%9)) o \&)

The parallel pseudopotential is

*Bysin 0 o2\ 9% (B
F=— 2 p hr A el .
(TR RE) @

Substituting the soliton solution (19) with d = dj, into Eq.
(53), we can write the peak value of F of the shorter-
wavelength pulse as

4 2
ev’ By W=
:2.p2d2 z: P3] bi
copdn \ T

3 3
A @40 (wﬁth + ”5h9a>
4A,, Q(le}z, <w12)a + w5b>

eFup

b2 (54)

3. Magnitude of F

By virtue of Egs. (47) and (54), we can estimate the
magnitude of F in the longer-wavelength pulse and the
shorter-wavelength pulse as

Phys. Plasmas 23, 072115 (2016)

eFy ~ mevib? (44, — 2 cos?0) (55)
and
eFypn ~ muib?/(4A,,), (56)

where we have assumed that Q, and Q,, are the same order of
magnitude. For quasiperpendicular pulses with cos?0 < A,,,
both eFy; and eFyyp are of the order of mgvibg (4A,). The
value of 4A,, of the H-He plasma with nye /n = 0.1 is 0.12,
which is much greater than m,/m; ~ 1073, In such a two-
ion-species plasma with A, > m,/m;, eFy; and eFyy, are
much smaller than eF,, in the single-ion-species plasma,
which is of the order of mivibﬁ /2 as shown by Eq. (1).

As the plasma approaches the single-ion-species plasma,
A, goes to zero. Then, eFy; and eFyy; increase with de-
creasing A,,. For the plasma with A, < m,/m;, Egs. (55) and
(56) are not valid, and we have to consider the terms of the
order of m,/m;, which are neglected in these equations.

C. Nonlinear pulses of high-frequency mode

We here outline the properties of the high-frequency
mode, in which the parameter 7 defined by
0= (0}, + )" o, (57)
plays an important role.

The dispersion relation of the quasiperpendicular high-
frequency mode can be approximated by Eq. (16) with

Up = U, d=d, (58)
where vy, and d, are defined as
Up = ’7|Qe|c/a)pe» (59)
2 1/2
dy = < (1 - > . (60)
wpe n

This is valid for the range of the wavenumbers'®

mf /wpe < Ck/(l)pe < 1 (61)
where k( ¢ is defined as
= 1/4
k'(hl) _ 62
inf 3|dh| ) ( )
with
— pen 22 pz Z wplle (63)
Hy = : 2 |Q |,7 w%egg
Because i, can be rewritten as
(1)2 ;72 0)4
i =20, 25— (64)
(50

we can estimate the magnitude of kfrlffl ) as
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ki e ~ ' 2A,,. (65)

The nonlinear behavior of the high-frequency mode for
the wavenumber region (61) can be described by the KdV
equation (17) with coefficient o given by'®

(v - ) (66)
o= .
wge |Qe |’74

We write this o as o, which is also expressed with A, as

20?
o =14+—"LA,. 6
o + 0.0 (67)
D. E; in high-frequency-mode pulse

We derive E| in the high-frequency-mode pulse. We ex-
pand E,, vj,, and v;, as

E, = *1(63/2Ex1 + 65/2Ex2 + -0, (68)
vy =0 (€ vy + € Pupa + ), (69)
Vj; = 17_1(6217];1 + 63sz2 + ). (70)

We assume that
€> 1. (71)

Equations (68)—(71) enable us to obtain the KdV equation
for the high-frequency mode for the region given by Eq.
(61). We can also derive E|| in the nonlinear pulse for this re-
gion (see Appendix A Subsection 3).

From Egs. (A42), we see that E; - By = E,;cos0/n +
E. sin0 =0 and E| -B; = Eley] + E. 1B, =0. By virtue
of Eq. (A43), we find £ as

E = 65/2(Ex2 cos0/n+ E.; sin0)

BoQ.c? > (B.
= 65/20—:CCOSHSin9—% <—1> (72)
COpe aé By
The parallel pseudopotential is
BoQec? & (B.
F=2 sing— (—‘) (73)
cope aé BQ

Substituting the soliton solution into Eq. (73), we have the
maximum value of F of the high-frequency-mode pulse as

2 2
meUy C . 2
F =—2>-——sinbb’. 74
el Mn 2&},]1261% wge n ( )

Using Eq. (60), we rewrite Eq. (74) as

~1
2 20
Py = P0%A (1-“’5 ) v, (75)

112

where we have estimated that sin 0 ~ 1 as in Ref. 6.

Phys. Plasmas 23, 072115 (2016)

Comparing Eqs. (1) and (75), we find that eFyy, is slight-
ly smaller than eFy; in the nonlinear pulse in the single-ion-
species plasma because o, is slightly greater than 1 as shown
by Eq. (67). In the limit of A, — 0, &, becomes 1 and Eq.
(75) reduces to Eq. (1).

We now compare the magnitude of F in the high-fre-
quency-mode pulse, Fyp, and that in the low-frequency-
mode pulse, Fyy or Fyyp. From Eqgs. (55), (56), and (75), we
can estimate the ratio of Fyy, to Fvyj, where j=1 or 2, as

_1
cos?0
T > ; (76)

where we have used cos § < 1. Equation (76) shows that the
magnitude of F of the high-frequency-mode pulse is much
greater than that of the low-frequency-mode pulse when
Aw > me/mi'

We discuss the reason why F in the high-frequency-
mode pulse is much greater than F in the low-frequency-
mode pulses. As shown by Egs. (26), (31), and (60), there is
a large difference between the characteristic widths of the
high-frequency-mode pulse and of the low-frequency-mode
pulses. For quasiperpendicular pulses such that cos0 < 7,
the characteristic width of the high-frequency-mode pulse,
which can be estimated as d ~ ¢/ Wpe, is much smaller than
that of the low-frequency-mode pulses, d ~ (c/wpi)/Ao.
From Egs. (46), (54), and (75), we find that if Q, ~ €, both
F in the high-frequency-mode pulse and F in the low-
frequency-mode pulses can be estimated as

eF ~ mA (c/wpe)*b2d 2, (77)

indicating that F is proportional to d~2. We also find that the
strength of E| is proportional to d—3. Therefore, the huge
difference between F in the high-frequency-mode pulse and
F in the low-frequency-mode pulses can be caused by the
large difference between the characteristic widths of these
pulses.

IV. ELECTRON-POSITRON-ION PLASMA
A. E and Fin pulses with e < 1

In this subsection, we present the theory for £ I and F in
nonlinear pulses in an e-p-i plasma that was derived in Ref. 7
with the conventional reductive perturbation method in
which € < 1 was assumed.

In the limit of w — 0, the dispersion relation of the mag-
netosonic wave in an e-p-i plasma can be written as the same
form as that in a two-ion-species plasma; w/k = va(l +
pk?) with u given by Eq. (22), where j refers to electrons,
positrons, or ions (j=e, p, or i). Nonlinear behavior is de-
scribed by the KdV equation, and the parallel electric field
and the parallel pseudopotential in the nonlinear pulse can be
written as

4t njom? c\2 8 (B.
E, = 5/2 A JOT - v [Pz 78
| =€ B2 tan 0 (2}: qi wp) 98 \Bo)’ (78)
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4t njom? c\2 9 /B,
Fr— — 2 A SV I o _~l 79
B € B% sin 0 (zj: q; ) (a)p) 852 (BO , (19

in the cold plasma approximation. These equations are
obtained from Eqs. (47) and (48) in Ref. 7 in the limit of
va/c — 0.

If njo > (m,/m;)n.0, Fp can be approximated as

miva [/ c\2 0* (B
Fr——¢2—A (- 2 (22
e © Zsin0 (a)p> & (BO)7 80)

where Z = ¢;/e. Substituting the soliton solution into this,
one has the maximum value of Fg as

Mieko Toida

2
L W)

~ . 81
4Zsinf || " 6D

For quasiperpendicular waves with 0 > 0., where 0. is the
angle at which yu =0, we can approximate y as

U% (neO + npO)me

-4 82
207 p ®

'LLN

Substituting this into Eq. (81), we can express the depen-
dence of F on the positron-to-electron density ratio,
1po/Ne0, S

(l — npo/ngo)

(1 + npo/neo) [1 + 1y /N + (1 — npo/neg)mg/m,v)} ’
(83)

F x

where we have used p ~ njom; = (neo — nyo)m;/Z. It indi-
cates that F decreases with increasing 7,0 /ney and F
increases with increasing n;o/ne0.

These equations were derived under the assumption that
ek 1.

B. Nonlinear pulses with ¢ in the range of
(me/m;)"?<e<1

In this subsection, we discuss pulses with amplitudes in
the range of (m,/m;)"/* < ¢ < 1. We first derive KdV equa-
tion for this range. We then obtain the theoretical expres-
sions for £} and F' in nonlinear pulses with such amplitudes,
which were not shown in Ref. 7.

1. Linear dispersion relation

Before deriving KdV equation, we show the linear disper-
sion relation. With the assumption that (m,/m;)"/> < € < 1,
we focus on the frequency region Q; < o < 4/|Q.|Q;, which
will be explained below. For this region, the linear dispersion
relation can be written as Eq. (16), where v, and d are given
by

A ino, (84)

Wpep 2 w5 Q2 cos?0
d2 _ d2 — C2 p P_12 1 — Zp’ _;% . (85)
Q Wep Q5 sin“0

Up =
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From this, we can expect that the KdV equation with the
characteristic length d., is obtained for Q< w
< /|Q.|Q;. Equation (20) shows that the width of the soli-
tary pulse is D ~ depie /2. When 0 > 0,, where 0, is the
critical angle at which d becomes zero, d is of the order of
c/wpe. Then, we can estimate the wavenumber and fre-
quency of the nonlinear pulse as k~1/D~¢€'/?(wp/c) and
wvakwel/zsm,v/mg)l/zQi. This indicates that the assump-
tion (m,/m;)"/* <e< 1 corresponds to Q; < < 1/Q[Q].

2. Derivation of KdV equation

We now derive the KdV equation using the assumption
that n < € < 1, where 7 is defined as

0= (me/m;)'". (86)
We also assume that

cosO ~ O(n), sinO=1, njp> (m./m)ne. (87)
We expand E,, vy, and v;; as Egs. (68)—(70); the expansion
of the other quantities are the same as in Egs. (32)—(40).
From the lowest order terms of the normalized equa-
tions, we obtain the lowest order quantities of density and

velocities as

nj = I’lj()le/ sin 07 (88)
where j = e, i, or p,
v = o le v o v o n 8le
ex] — Upxl — sin@’ eyl — pyl — S‘]ini() 85 )
1 cos 0 OB,

Uez1 = —Upzl =
© ! S2ginie(ne + npo) E*

n?sin0 OB,

il = oo a7+ Uiyt =izt =0, 89
it RiSqinip O¢ fot = B (89
where S and R; are given by
B wpeduy - Qd ©0)
Qelc2” 'y,

These velocities are different from the velocities obtained
under the assumption that ¢ < 1. The lowest order terms of
electric and magnetic fields are

nsin 0 OB,

Ex‘ = - Az Ey, = BZ 3
. Sqinip O v !
cos 0 OB,
E,.=-B,,=—— . 91
8 . Sqinip O e

After some manipulations (for the details of calcula-
tions, see Appendix B), we then obtain the KdV equation
(17) for the frequency region ; < w < /Q;€Q, with v, and
d given by Eqgs. (84) and (85), respectively, and the coeffi-
cient o,

o= 1/sin0. (92)
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3. E| and F in nonlinear pulses

We derive E| in the nonlinear pulses with amplitudes
(me/m,»)l/2 < e< 1. Equation (91) leads to E;-By=
Exl CoS 6/?1 + E:l sinf = 0 and E1 'Bl :Eleyl +Elezl =0.
Taking Ey, and E. into account, we obtain Ej, from Eq.
(B15), as

E = eS/Z(Exz cos0/n+ E.» sin0),
5/2 AQ;sinlcosl _ &? (le>
= € _—

2 2 3 :
©pi@pep 9&" \Bo

93)

We then have the parallel pseudopotential,

30. 2
P2t Q,sm@Ba(BZl)7 04)

2 2 2
OTORN o0& \ By

which is rewritten as

V) . 2 92 B
oF = —M (€O <_') 95)
Znip \ Wpep ) OE \ Bo

where we have used the approximation (87).
Substituting the soliton solution into this, we obtain the
maximum value of F as

2 (n 2
m;vy (C/wpep) 2
= ~——— b, 96
M 2Zl’ll‘0 dezpi " ( )

el

This is written as

2 —1
m;U I’l,'()Z njom;
51— AT
2 (neo + I’l,,()) (neO + npO)me
o7

eFM =

indicating that eF increases with increasing n;o/neo and de-
creasing 710 /neo. Equations (80) and (81) for € < 1, which
were derived without the assumption that sinf ~ 1 and
me/m; ~ 0, become Egs. (95) and (96), respectively, in the
limit of sin @ = 1 and m,/m; = 0.

V. SUMMARY

We theoretically studied the parallel electric field in
nonlinear magnetosonic waves in three-component plasmas
(two-ion-species plasma and e-p-i plasma) based on a three-
fluid model. We derived the expressions for E)| and its inte-
gral along the magnetic field, F = — fEHds, in solitary
pulses propagating quasiperpendicular to the magnetic field.

In a two-ion-species plasma, the magnetosonic wave has
two branches: high-frequency mode and low-frequency
mode. We derived E) and F in the nonlinear pulses of the
two modes as functions of the wave amplitude ¢, the propa-
gation angle 0, and the density ratio and ion cyclotron fre-
quency ratio of the two species ions.

For the low-frequency mode, there are two pulses:
longer-wavelength pulse and shorter-wavelength pulse. The
theory showed that the magnitude of F in the two low-fre-
quency-mode pulses can be estimated as eF ~ €m,v3 /Ay,
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where A, is the normalized frequency difference. For the
high-frequency mode, we showed that F in the nonlinear pulse
can be estimated as el ~ szivi, which is the same order as
F in a pulse in a single-ion-species plasma. Thus, it was found
that F in high-frequency-mode pulse is much greater than F' in
the low-frequency-mode pulses when A, >> m, /m;.

For an e-p-i plasma, we considered nonlinear pulses
with amplitudes in the range of (m,/m;)"/* < e < 1, which
were not discussed in Ref. 7. The KdV equation and £} and
F in the nonlinear pulses were obtained. It was shown that F
in the pulse with € in the range of (me/m,-)l/2 < € < 1canbe
written as the same form as that in the range of ¢ < 1. The
magnitude of F' increases as the ion density increases.

As for a future work, effects of £} on particle motions
and pulse propagation in a two-ion-species plasma should be
analyzed. The strong E| in the high-frequency-mode pulse
may cause the damping of the pulse through the Landau res-
onance. This may be important, as well as the damping due
to heavy ion acceleration through the transverse electric field
in the pulse.?
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APPENDIX A: DERIVATIONS OF E;
FOR ATWO-ION-SPECIES PLASMA

We normalize the length, velocity, and time to 4, v,, and
/vy, respectively, where A is a characteristic length. The
number density, mass, charge, magnetic field, and electric
field are normalized to neo, m,, e, By, and v,Bq /¢, respective-
ly. The normalized basic equations are as follows:

On;
E + V- (ﬂj’Uj) =0, (A1)
0
o Wi V) v =Ri(E +v; x B), (A2)
OB
- = E A3
=V xE, (A3)
OB.
5o =S D amvi, (Ad)
J
Z%ﬂ; =0, (AS)
where R; and § are
Qi w2 v
R =2~ _ _pe”P ) A6
] Up ) |QC|C2 ( )

We note that R; and S depend on 4. This indicates that the ex-
pansion of quantities for the high-frequency mode is differ-
ent from that for the low-frequency mode because the high-
and low-frequency modes have different /s.
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1. Low-frequency mode: Longer-wavelength pulse
Introducing stretched coordinates given by Eq. (18) and

applying expansion given by Eqs. (32)—(40) to the above

normalized equations (A1)—(AS), we have the following set

of equations.
The continuity equation is

on ov
3/2 J1 Jxl
‘ ( g T aé)

+€5/2( 8nj2 8n,1 0

2 Y5 T e

Ovjx
OE d¢E (Mj1vjx1) + 1o . 2) +---=0.

o¢
(AT)

The x, y, and z components of the equations of motion for
ions and electrons are

Uiy . Ovja Qv
e/’ (a—jé+Rj(Exl +Ujn1 51“9)) +e72 [a—jé_a—/r

817/)(1

—Vjl R +R; (Exg—i—vjyzsmﬁ—l—vaA 1By1)] +...=0,

(A8)
€R;(Ey1 4 vjz1 cos 0 — vy sin0)

Ovyy .
+e ( UDI—I-R( yz+Uj220059—vjx25m9—ijan))+'--=0,

¢
(A9)
81)_ ov jz2 81)'21
3/2< 6Jf + R (E-1 — vjy1 cos 6)) 5/2{ Bjé ajr
0
—Ujyl (;Jfl +R; (Ezz — Vjypcos 0 + vjxlByl)} 4. =0.

(A10)

The y and z components of Faraday’s law are

0B.; OE OB, OB OE,
63/2(__kl_|__y1)_|_65/2<_ -2+ 41_’_ }2)+-~-:O,

oé o¢ ot oé
(A11)
OB OE. OB 0B, OE.
2 vl z1 3 y2 vl 2}
_ .=0.
( R 66) ( 9 " or - af)*
(A12)
The x, y, and z components of Ampere’s law are
e (mogop) + €Y qi(npvg + movia) -+ = 0,
J j
(A13)

0B,
" ( 851 +S Z flj"jO%q)
j

OB,
e <0—62 s Z (v + ”jovjy2)> =0,
J

(A14)
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OBy
€22i(moqjvjz1) + (8—2 — 8 gi(nrvi + ".fovjzz)>
J

OB,
+el (8—22 — 5 ai(mov2 + mp szl)) =0
7
(A15)

The charge neutrality is
Equflﬂ + EZZQJ‘I’IJQ +---=0
J J

From the lowest-order terms in Eqs. (A7), (All), and
(A12), we obtain the following relations among the lowest-
order quantities:

(A16)

njp = njovj1, Ey =B, E; = —By. (A17)
We multiply the O(e*/?) terms in Egs. (A8) and (A10) by
gjnjocos 0 and gjnjo sin 0, respectively, and sum up them.
Further, we take its summation over the particle species j.
Then, by virtue of the O(e) terms in Egs. (A13) and (A15),

we find

E.cosO+ E.; sinf = 0. (A18)

With the aid of Egs. (A17) and (A18), we have, from the
lowest order terms in Egs. (A8)—(A10),

Vi1 = B sin0, v = —B;jcos,
1 0B., By
1P A19
! R; 0¢  cosl (A19)

We now consider the second order terms of the normal-
ized equations. From Egs. (A13) and (A15), we have

E njoqjvix2 =0,
7

OB,
_y = SZ”]OC]/UJ 72

(A20)

(A21)

where we have used Egs. (A17) and (A19). Multiplying the
O(€?) term in Eq. (A9) by njog;/R; and taking the summation
over j, we have

Z njoq; Ovy1 cos 0 OBy,
— Ry 0¢

Z njoqjvjz cos 0 = — —
7 s o

(A22)

where we have used Eqgs. (A20) and (A21). Substituting vjy;
given by Eq. (A19) into Eq. (A22), we obtain B, as

3
v, cos 0

c%(vf,/vi - cos29)

@}; 9B,
Q) oc

By = — (A23)

In order to obtain E,; cos 0 + E; sin 6, we multiply the
0(€°/?) terms in Egs. (A8) and (A10) by njogq;cos 0 and
njoq; sin 0, respectively, and sum up them. Taking its summa-
tion over j, we have



072115-10 Mieko Toida Phys. Plasmas 23, 072115 (2016)

Ov;-
Z qinjo g—{; sin 0 + Z ginjoR;(Ex cos 0 + E.; sin 0)
J J

+ > gimoR; [(vi1Ba1 — vj21By1)c0s 0 + v By sin 0] = 0, (A24)
j

where we have used vj,1 cos 0 + vj;1 sin 0 = 0, which is obtained from Eq. (A19). We also find that the third term of the left
hand side of Eq. (A24) becomes zero, with the aid of Eq. (A19), as follows:

Z gjnjo [Rj(vjlezl — vj21By1)c0s 0 + R;(vjx1 By )sin 6]
J

OB, B, .
= Z qjnjo [(8—51 — Rj #Sl@) B.j cos 0 + RjBZlByl cos’0 + Rj(leByl) sin’0
J

OB.
=" gmo a—élBZ‘ cos 0 = 0. (A25)
J
We then have

sin 0 9°By,
S 9

Z qj‘l’ljoRj (Exz cos 0 + Ezz sin 0) = — (A26)

J
Substituting Eq. (A23) into this and using the unnormalized quantities, we obtain Eq. (44).

2. Low-frequency-mode: Shorter-wavelength pulse

For the shorter-wavelength pulse, we expand v;., By, and E. as Eqgs. (48)—(50). Then, the equations of motions are writ-
ten as

ov; . Oy Ovjy v, )
&2 <8—’g' + R (Ex + vjy1 sin 0)) +e? { 8]22 N 3’;1 — Vjxl a’gl + Rj(Exa + vjyasin 0 + vjlezl)]
— &% cos*0v, 1By +--- =0, (A27)
Ov;y
€R;(Ey1 — vj1 sin 0) + 62< 2’21 + R (Eyz — vjasin 0 — vjxlel)) + €cos?0vj, + € cos?Ovjn + - =0, (A28)

/2 cos 9(85]21 +Ri(E:1 — ijl)) +¢/% cos 0 [({9;_,62 - % — Ujxl 85—? +Ri(Ex — vjyo + ijlByl)] 4+ =0, (A29)

where we have assumed that cos’0 < e. The other equations are the same as in Appendix A Subsection 1; Eqgs. (A7), and
(A11)—(A16) are also used for the shorter-wavelength pulse.
From the lowest order terms of the equations, we have the following relations among the lowest order quantities:

nj| = NjoUjy1, Vexl = Vi1 = Bz1/sin0,

1 njoni; 8BZ] BV]
S S ST L gy = -2
iyt R;sin0 < ; 00 ) O¢ Jz1 sin%0

1 njom; OB Ey
Eg=— I E, =B., E.,=-B,,=—-——. A30
X1 posinﬁzj: R o¢ =B Fa vl Sin 0 (A30)
From the O(¢*/?) terms in Egs. (A27) and (A29), we obtain
8 iz .
cos0sin 0 Z qinjo ;—%2 + Z ginjoR;(Exz cos 0 + E- cos Osin ) = 0, (A31)
J J

where we have used Eqs. (A20) and (A30). By virtue of the O(e?) term in Eq. (A15), Eq. (A31) can be written as

cos 0 sin 0 njom; &B.,

E 0+E 0sin 0 !
v2 COS ncosSUsSIMU = .
) Y amoR;  Seo G R 98

]

(A32)

Using the unnormalized quantities, we can write this as Eq. (52).
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3. High-frequency mode

For the high-frequency mode, we expand E,, vj,, and v;. as Egs. (68)—(70). Then, the x, y, and z components of equation of
motion for electrons are written as

Ren’163/2( 1+ Uyt sin0) + Reny~ ! 5/2( 2 F Vey2 SIN O + Uy Boy) + - =0, (A33)
) 1 o[ Ovey1 cos 0 .
REG(Eyl — Uex1 SIN 9) + n e 65 + R Ey2 + Tvezl — Uex2 SIN 0— Uexlel +-= 07 (A34)
0 , 0 0
Re63/2 (Ezl - C(:7$ veyl) + 65/2 |:7’ gz +R < — Uey2 C(:/IS + UexlByl):| =0. (A35)

Here, R, is of the order of 11‘1. The x, y, and z components of equation of motion for ions are

Oviv . Ovia  Ovjx Ovivi )
3/2( 5 +Rin~ (E,n + Ujy1 Sin 9))+65/2 [ % 8: — Uixl 55 PE +Rin I(ExZ + Vo sin0 + vy By ) |+ =0, (A36)
10y Oviyy  Ovjy Oviy1 )

R ( 9: " or UM ag )+€R"(E>'l — v sinf) +--- =0, (A37)

1/]_1 5/2 81)1 1 + 1”_167/2 81)142 avl‘z] . avl‘zl

e o¢ ot Oé

0 0

+63/2R,’ (Ezl — Diy1 cos ) + 65/2Ri <E22 + vixlByl — Uiy C(:/IS ) +---=0. (A38)

Here, R; is of the order of #. The x, y, and z components of Ampere’s law are

€ Z(”ﬂ)qﬂﬁxl) +é Z qi(nj1vj + njvjo) --- =0, (A39)
j j
aBA _ 8Bz _
63/2( 5z 51 lzqzn/ov/y1>+€ " ( e H S D i + mo%z)) =0, (A40)
j
OB 7 OB, _
€ <3—g1 — Sy Z qj(njoule)> +e/? (6—2 —Sn~! Z qi(njovy + njl”jzl)) =0, (A41)
J - J

where Sy~ is of the order of unity. The continuity equation and the Faraday’s law are written as the same as those for the low-
frequency mode.
We assume that ¢ < 5. Then, from the lowest order terms, we can express the lowest order quantities in terms of B;; as

Nel = NeOUex1, Uey1 = le/Sin H;

N 1 0B, - cos 0 5°B.,
eyl _Sf’]71 35 ) ezl —S2n71 652 )

njy = Nigli1, Vil = RiB:1/S, vy = viz1 = 0,

sin 0 OB,
Ea= =g 851 E, =B., (A42)
cos()@BZ
E. = _Byl S 851

From the second order terms of Egs. (A33) and (A35), we have

cos 6 B sing — — sin0 v cos 0sin 0 °B;,
2T TRy 98T RSE 98

E| = Eq (A43)

which leads to Eq. (72) with unnormalized quantities.
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APPENDIX B: DERIVATION OF NONLINEAR EQUATION AND E; FOR AN E-P- PLASMA

For nonlinear pulses with amplitudes in the range of # < € < 1 in an e-p-i plasma, we have FE,,
(68)—(70). When nyy > (m,/m;)ne, the coefficients of the normalized equations can be estimated as

vjy, and v;, as Egs.

R.~R,~n"", Ri~n. (B1)

Therefore, the equations of motion for electrons and positrons can be written as Eqs. (A33)—(A35); for positrons, the subscript e
in these equations is replaced by the subscript p. The equations of motion for ions are given by Eqs. (A36)—(A38). The continuity
equation is given by Eq. (A7). The Faraday’s and Ampere’s laws are written as Eqs. (All) and (A12) and (A39)-(A41),
respectively.

From the lowest order terms, we obtain Egs. (88)—(91). From the O(5~'¢®) term in Eq. (A37) and the O(n~'€"/?) term in
Eq. (A38), we have

Uiy = Vi = 0. (B2)

We multiply the 0(65/ 2) terms in (A33) for electrons and positrons by —en, and en,, respectively, and sum up them. Then, we
have

o om
—qinoExn — e(neOUeyZ - npOUpyZ)Sln - 2S7]71 BE =0, (B3)

where we have used en.y = enpyy + g;injp. We then multiply the O(n~'€*) terms in (A34) for electrons and positrons by
—eneo /R and eny /R,n, respectively, and sum up them. We obtain

e [Ny Oeyl Mo OUpy1 ecos
—6(1’160 — np())Eﬂ , ( - 7] (neovezl - npOUpzl)

R, 0¢ R, O¢

+e(n€0UL’X2 - npOprZ)Sin 0 + e(”eOUexl — NpoUpyxi )le =0. (B4)
From the 0(65/2) terms in Eqgs. (A11) and (A40), we have

OE, 0B, 0B.
9E 9 on

ale

= Snile(nelveyl - nplvpyl> + S”]ile(neoveﬂ - "lpOUpy2) - W (BS)

We differentiate Eq. (B4) with respect to &. This is written, by virtue of Eq. (BS), as

e ne % Vey1 npoa Upyt | ecosO OVt Oz _a B
,7 (R 0 R, 522 ” o oe — Npo PR + esm@aé (Me0Vex2 — NpoUpx2)

+ 68_5 [(neOUexl — NpoUpxi )le] - S’/]_lqini()e(nelveyl - nplvpyl)

ale

—1
—Sn qinio€(Ne0Vey2 — Npolpy2) + GiMio
With the aid of Eq. (B3), the term including ve., Upy2, Uey2, and vpyo in Eq. (B6) can be written as
. .0 1
e s 06_5 (neOUex2 - npO”pr) —Sn qiniOe(neOUeﬂ - npOUpyZ)

qinio aB
2sin 0 85 (B7)

. .0 S
= esinf— (Me0Vex2 — TpoUpx2) + 'I 0% 10Ex2 +

o¢

From the O(¢*/?) term in Eq. (A36) and the O(¢?) term in Eq. (A16), we have

Ov;x ov e 0
1 ixl IJ(l
Ri"’ Ex2 = It + Vivi 8é ni0gi 6’5 ( e0Vex2 — NpoUpx2 + Ne1Vex1 — nplvpxl) (BS)

This is rewritten as

1.2 2
S?] q; IOE (ncoch(Z NpoUpx2 + Ne1Vex1 — nplvpx1)~ (B9)

SC]I 0 av”'+v~ iy SCII nipe 0
R, or | M oE R, O¢
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Using Eq. (B9), we eliminate E,, in Eq. (B7). Then, we have

. -1
esm 08_5 (neovexZ - npO”pr) - SV’ qiniOe(nEOUe_x'Z - npOUpyZ)

— qiniosin 0 201 + v; Ovint
= {inio It ixl 6é

—esin0— (nel Voyl — nplvpxl) +

a¢

qinio 6331
2sin0 O¢

(B10)

By virtue of this equation, Eq. (B6) can be written as

€ [ 1000yt MpoD?Upy1 ecos@( OU,z1
—= - - e0

—n avpzl)
n\R. 9& R, 9& n A

+€8_é [(neOUexl — MpoUpx1 )le] _Sn_]qinioe(nelveyl _nplvpyl)

qinio OB, . [ Ovin Ovivi
—— o+ ginposin0| ——+ v ——
25in0 g | AM0SINU| o T
. ale
_esmea—é(nelvm —n,,lv,,,vl)+qini0§:0. (B11)

Substituting Eq. (89) into Eq. (B11), we obtain the KdV
equation,

5 0B; N 3qinip . OB
N .
B0 " sin0 7 oe
c? wgein _ (012,,-|Qe|2 cos?0\ 9°B., B
w2, 72 05| Qe | 2, sin’0 | 9&
(B12)
With unnormalized quantities, this is rewritten as
0B. 3 B.
2l + . i le 0 !
Ot 2sin6By o0&
2
o wﬁepQ_? - Q| cos20\ &°B., _o.
ol ot w2, QF sin*0 ) 9&
(B13)

Phys. Plasmas 23, 072115 (2016)

We now derive the second order term of £). We multi-
ply the O(¢’/?) terms in Eqgs. (A33) and (A35) by cos0/n
and sin 0, respectively, and sum up them. Then, we have

Lavezl
R, 0¢

EyncosOn ™' +E,sinf = — sin 0. (B14)

Substituting Eq. (89) into this equation, we obtained
sin 0 cos 6 0°B.,

 R.S2ginjpe(neo + npo) PE
(B15)

E» cos 011’1 +E,sinf =

The unnormalized form of this is Eq. (93).
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