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The electric field parallel to the magnetic field in nonlinear magnetosonic waves in three

component plasmas (two-ion-species plasma and electron-positron-ion plasma) is theoretically

studied based on a three-fluid model. In a two-ion-species plasma, a magnetosonic mode has two

branches, high-frequency mode and low-frequency mode. The parallel electric field Ek and its in-

tegral along the magnetic field, F ¼ �
Ð

Ekds, in the two modes propagating quasiperpendicular

to the magnetic field are derived as functions of the wave amplitude � and the density ratio and

cyclotron frequency ratio of the two ion species. The theory shows that the magnitude of F in the

high-frequency-mode pulse is much greater than that in the low-frequency-mode pulse.

Theoretical expressions for Ek and F in nonlinear magnetosonic pulses in an electron-positron-

ion plasma are also obtained under the assumption that the wave amplitudes are in the range of

ðme=miÞ1=2 < � < 1, where me=mi is the electron to ion mass ratio. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4958312]

I. INTRODUCTION

Theory and particle simulations have revealed that non-

linear magnetosonic waves can strongly accelerate particles

with various nonstochastic mechanisms.1 The electric field

parallel to the magnetic field, Ek, in a magnetosonic shock

wave plays crucial roles in some of the mechanisms.2 For ex-

ample, the parallel electric field can cause trapping and ac-

celeration of electrons in a shock wave propagating

obliquely to the magnetic field.3 In a plasma containing elec-

trons, positrons, and ions, the parallel electric field can

strongly accelerate positrons.4

In the particle simulations on the trapping and accelera-

tion of electrons by a nonlinear magnetosonic wave, it was

observed that Ek can be strong.3 The values of the integral of

Ek along B; F ¼ �
Ð

Ekds, were also observed to be quite

large; we call F the parallel pseudopotential because Ek con-

tains both longitudinal and transverse components. This can-

not be explained by the magnetohydrodynamics; the values

of Ek and F have been generally believed to be quite small in

a collisionless plasma because Ek is exactly zero in the ideal

magnetohydrodynamics.5

Motivated by the observation of the strong Ek, the theory

for Ek and F in the nonlinear magnetosonic wave in a single-

ion-species plasma has been developed.6 For small-amplitude

pulses, Ek and F were derived based on a two-fluid model. In

a warm plasma, F is given as eF � �CeTe, where � is the

wave amplitude, Ce is the specific heat ratio of electrons, and

Te is the electron temperature. However, in a cold plasma

such that �2miv2
A > �CeTe, where vA is the Alfv�en speed, it is

given by

eF ’ 1

2
�2miv

2
A 1� mi

me
cos2h

� ��1

; (1)

where mi is the ion mass, me is the electron mass, and h is the

propagation angle of the nonlinear wave. These theories were

verified by the electromagnetic particle simulations. Further,

for large-amplitude shock waves with � � Oð1Þ, the phenome-

nological relation that can explain simulation results for both

warm and cold plasmas was presented as eF��ðmiv2
AþCeTeÞ.

These results indicate that F can be large when the external

magnetic field B0 is strong. In Ref. 7, the parallel electric field

in nonlinear magnetosonic wave in an electron-positron-ion

plasma was theoretically analyzed. It was shown that eF in a

small-amplitude pulse with ��1 is proportional to �2miv2
A in a

cold plasma and it decreases with increasing positron density.

Although the theory for Ek and F has been extended, the

parallel electric field in a nonlinear magnetosonic wave in a

plasma containing multiple species ions has not been ana-

lyzed. Astrophysical and fusion plasmas usually contain mul-

tiple species ions. The presence of multiple species ions can

significantly influence the properties of magnetosonic waves

(for instance, Refs. 8–16). In a two-ion-species plasma, there

are two magnetosonic modes, which we call high-frequency

mode and low-frequency mode. The frequency of the low-

frequency mode goes to zero as the wavenumber k approaches

zero. The high-frequency mode has a finite cut-off frequency

of the order of the ion cyclotron frequency. Nonlinear behav-

ior of the low- and high-frequency modes can be described by

Korteweg-de Vries equation (KdV equation), although the lin-

ear dispersion curves of these modes are quite different in the

long-wavelength region.13 Nonlinear coupling between the

high- and low-frequency modes can occur.14 In fact, the nu-

merical simulation showed that high-frequency-mode pulses

are generated from a low-frequency mode pulse when its am-

plitude exceeds a critical value, which depends on the density

ratio and cyclotron ratio of the two ion species.16

In this paper, we develop a theory for Ek and F in non-

linear magnetosonic pulses propagating quasiperpendicular

to the magnetic field in a two-ion-species plasma. We derivea)Electronic mail: toida.mieko@nifs.ac.jp
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the expression for Ek and F in solitary pulses of the high-

and low-frequency modes. We also theoretically analyze Ek
and F in a nonlinear pulse in an electron-positron-ion plasma

(e-p-i plasma) assuming that the amplitude is in the range of

ðme=miÞ1=2 < � < 1; the theoretical expressions for Ek and F
for such amplitudes were not given in Ref. 7 where �� 1

was assumed.

In Sec. II, we overview the properties of linear and non-

linear magnetosonic waves in the three component plasmas

(two-ion-species plasma and e-p-i plasma). In Sec. III, we

analyze Ek and F in the low-frequency-mode pulse and the

high-frequency-mode pulse in a two-ion-species plasma. For

the low-frequency mode, there are two pulses with different

characteristic lengths when the propagation angle h is greater

than the critical angle hc;
17 the value of hc is, for example,

71� in a hydrogen-helium (H–He) plasma with the density

ratio nHe=nH ¼ 0:1. We derive the theoretical expressions for

F in the two low-frequency-mode pulses, which are given as

functions of �, h, and the density ratio and cyclotron frequen-

cy ratio of two ion species. It is found that the values of F in

the two low-frequency-mode pulses are much smaller than

those in the pulses in the single-ion-species plasma given by

Eq. (1). For the high-frequency-mode pulse, we show that

the magnitude of F is the same order as Eq. (1). Thus, F in

the high-frequency-mode pulse is much greater than F in the

low-frequency-mode pulses. In Sec. IV, we analyze nonline-

ar magnetosonic waves in an e-p-i plasma. We derive a KdV

equation assuming that ðme=miÞ < � < 1. We then obtain F
in the nonlinear pulse with its amplitude in this range. It is

shown that F in the pulse with � in the range of ðme=miÞ1=2 <
� < 1 can be written as the same form as that in the range of

�� 1. Section V gives a summary of our work.

II. OVERVIEW OF MAGNETOSONIC WAVES IN THREE
COMPONENT PLASMAS

We consider magnetosonic waves propagating in the x di-

rection in an external magnetic field B0 ¼ B0ðcos h; 0; sin hÞ
in a three component plasma. We use the following three-

fluid equations:

@nj

@t
þr � njvjð Þ ¼ 0; (2)

mj
@

@t
þ vj � rð Þ

� �
vj ¼ qjEþ

qj

c
vj � B; (3)

1

c

@B

@t
¼ �r� E; (4)

r� B ¼ ð4p=cÞ
X

j

qjnjvj; (5)

where the plasma is assumed to be cold and the displacement

current is neglected. For a two-ion-species plasma with the

ion species a and b, the subscript j refers to ion species (j¼ a
or b) or electrons (j¼ e). For an e-p-i plasma, j refers to elec-

trons, positrons, or ions (j ¼ e, p, or i). From Equations (2)

to (5), we obtain the linear dispersion relation as

c2k2 c2k2 sin2hþ x2
p 1þ cos2hð Þ

h iX
j

x2
pjx

2

x2 � X2
j

þ c2k2 sin2hþ x2
p

� � X
j

x2
pj

x� Xj

 ! X
j

x2
pj

xþ Xj

 !
x2

þ c4k4x2
p cos2h ¼ 0; (6)

where

x2
p ¼

X
j

x2
pj (7)

and xpj and Xj are plasma and cyclotron frequencies of the

particle species j, respectively.

Figure 1(a) shows the dispersion curve of the magneto-

sonic wave with the propagation angle h ¼ 87� in a single-

ion-species plasma. As k !1, x approaches xr defined as

xr ¼ jXejðme=mi þ cos2hÞ1=2; (8)

which is of the order of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jXejXi

p
when cos h � ðme=miÞ1=2

.

Figure 1(b) shows the magnetosonic wave in a two-ion-

species plasma, where the ion species are hydrogen (H) and

helium (He) with the density ratio nHe=nH ¼ 0:1. In a two-

ion-species plasma, the magnetosonic wave is split into two

modes, high-frequency mode and low-frequency mode. The

cut-off frequency of the high-frequency mode xþ0 is given by

xþ0 ¼
x2

pa

X2
a

þ
x2

pb

X2
b

 !
XaXbjXej

x2
pe

: (9)

The frequency x�r is the resonance frequency of the perpen-

dicular low-frequency mode,

x�r ¼
x2

paX
2
b þ x2

pbX
2
a

x2
pa þ x2

pb

 !1=2

: (10)

The dispersion curves for both the high- and low-frequency

modes have a large curvature near the wavenumber kc de-

fined as

kc ¼ x�r=vA: (11)

It has been pointed out that the normalized frequency

difference,

Dx ¼ ðxþ0 � x�rÞ=xþ0; (12)

is an important parameter in nonlinear development of the

two modes.16,17 The value of Dx depends on the density ratio

and cyclotron frequency ratio of the two species ions. It

increases with increasing Xa=Xb, where Xa > Xb is as-

sumed. For a fixed Xa=Xb; Dx becomes maximum when the

ion charge densities are equal, naqa ¼ nbqb.

Figure 1(c) displays the case for an e-p-i plasma, where

the positron to electron density ratio is np0=ne0 ¼ 0:1.

Although the structure of the dispersion curves for an e-p-i

plasma is similar to that for a two-ion-species plasma, there

are significant quantitative differences between them. The

072115-2 Mieko Toida Phys. Plasmas 23, 072115 (2016)



resonance frequency of the lower frequency mode in an e-p-i

plasma is estimated as

xr ’
jXej
xp

x2
pi þ x2

pe þ x2
pp

� �
cos2h

h i1=2

; (13)

which is the same order as xr in the single-ion-species plas-

ma. The cut-off frequency of the higher frequency mode is

xh0 ’
x2

piX
2
e þ x2

pepX
2
i

� �
Xi x2

pep þ x2
pi

� � ; (14)

where xpep is defined as

x2
pep ¼ x2

pe þ x2
pp: (15)

We consider the regions for which the dispersion rela-

tion can be approximated by the following form:

x ¼ vpkð1� d2k2=2Þ: (16)

These regions are enclosed by the gray dotted lines in Fig. 1.

The nonlinear behavior for these regions can be described by

the KdV equation,

@Bz1

@s
þ 3vA

2B0

aBz1

@Bz1

@n
þ vAd2

2

@3Bz1

@n3
¼ 0; (17)

where Bz1 is the perturbation of Bz, Bz1 ¼ Bz � Bz0, and n
and s are stretched coordinates,

n ¼ �1=2ðx� vptÞ; s ¼ �3=2t; (18)

with � � jBz1=B0j. The solitary wave solution of Eq. (17) is

Bz1=B0 ¼ bnsech2½ðx�MvAtÞ=D�; (19)

where the soliton width D and the Mach number M are given

as

D ¼ 2b�1=2
n d; (20)

M ¼ 1þ abn=2: (21)

In the following, we discuss the parallel electric field Ek in

the solitary pulses, given by Eq. (19), in the three component

plasmas.

III. TWO-ION-SPECIES PLASMA

We present properties of nonlinear pulses of the low-

and high-frequency modes propagating quasiperpendicular

to the magnetic field in a two-ion-species plasma. We then

derive the theoretical expressions for Ek and F in the nonlin-

ear pulses.

A. Nonlinear pulses of low-frequency mode

For the low-frequency mode, there are two nonlinear

pulses with different characteristic lengths. We here show

the characteristic quantities of the two pulses.17

The linear dispersion relation of the low-frequency

mode is written as x=k ¼ vAð1þ lk2Þ in the long wave-

length limit, where vA is the Alfv�en speed and l is given by

l ¼ � v4
A

2c2

X
j

x2
pj

X4
j

� v2
A

c2 sin2h

X
j

x2
pj

X3
j

 !2
2
4

3
5: (22)

We define the angle h at which l becomes zero as hcl.

The value of hcl is, for example, 71� in a H–He plasma with

nHe=nH ¼ 0:1. For h > hcl, l is negative and x is written as

Eq. (16) with

FIG. 1. Dispersion curves for magnetosonic waves in a single-ion-species

plasma (a), two-ion-species plasma (b), and electron-positron-ion plasma

(c). The propagation angles of the magnetosonic waves are h ¼ 87� for all

the cases. For a two-ion-species plasma, the ion species are hydrogen (H)

and helium (He), with the density ratio nHe=nH ¼ 0:1. For an electron-posi-

tron-ion plasma, the density ratio of positrons to electrons is np=ne ¼ 0:1.

The dispersion relations for the regions enclosed by the gray dotted lines can

be approximated by Eq. (16) and the nonlinear behavior for these regions

can be described by the KdV equation.
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vp ¼ vA; d2 ¼ d2
l1 ¼ �2l: (23)

This is valid for the range of wavenumbers,

k� k
ðlÞ
min; (24)

where k
ðlÞ
min is

k
ðlÞ
min ¼ kcðcos h=cos hclÞ; (25)

which is smaller than kc. Assuming that Dx 	 me=mi and

cos2h� 1, where Dx was given by Eq. (12), we can express

dl1 and hcl as

dl1 ¼ ð2Dx � r cos2hÞ1=2=ðkc sin hÞ; (26)

cos2hcl ¼ 2Dx=r: (27)

Here, r is defined as

r ¼ X2
a þ X2

b

� �
X2

aX
2
b

x2
�r � 1: (28)

When Xa and Xb are of the same order of magnitude, r is of

the order of unity. The nonlinear behavior for the region giv-

en by Eq. (24) is described by the KdV equation (17) with

the coefficient a,

a ¼ sin h: (29)

For h > hcl and the range of wavenumbers,

k
ðlÞ
min � k � kc; (30)

the dispersion relation is also written as Eq. (16), and the

KdV equation is obtained. However, d, and a are different

from those for k � k
ðlÞ
min. For k

ðlÞ
min � k � kc, they are

d ¼ dl2 ¼ ð2DxÞ1=2=ðkc sin hÞ; a ¼ 1: (31)

Thus, for the low-frequency mode, we have two solitary

pulses given by Eq. (19) with the characteristic lengths d ¼ dl1

and d ¼ dl2. The pulse with dl1 is for the wavenumber region

k� k
ðlÞ
min, whereas the pulse with dl2 is for k

ðlÞ
min � k � kc.

We call the former the longer-wavelength pulse and the latter

the shorter-wavelength pulse. The amplitudes of the pulses for

which the KdV equations are valid were shown in Ref. 17.

B. Ek in low-frequency-mode pulses

We derive the parallel electric field Ek and the parallel

pseudopotential F in the low-frequency-mode pulses, which

are the longer-wavelength pulse and the shorter-wavelength

pulse.

1. Longer-wavelength pulse

For the longer-wavelength pulses with characteristic

wavelength dl1, we can derive Ek using the conventional re-

ductive perturbation method to obtain the KdV equa-

tion.19–21 We introduce the stretched coordinates given by

Eq. (18) and expand quantities as

nj ¼ nj0 þ �nj1 þ �2nj2 þ � � � ; (32)

vjx ¼ �vjx1 þ �2vjx2 þ � � � ; (33)

vjy ¼ �3=2vjy1 þ �5=2vjy2 þ � � � ; (34)

vjz ¼ �vjz1 þ �2vjz2 þ � � � ; (35)

Bz ¼ sin hþ �Bz1 þ �2Bz2 þ � � � ; (36)

Ey ¼ �Ey1 þ �2Ey2 þ � � � ; (37)

By ¼ �3=2By1 þ �5=2By2 þ � � � ; (38)

Ex ¼ �3=2Ex1 þ �5=2Ex2 þ � � � ; (39)

Ez ¼ �3=2Ez1 þ �5=2Ez2 þ � � � : (40)

We consider up to the second order terms of these quantities,

and we write Ek as

Ek ¼
E � B

B
¼ E1 � B0

B0

1� B1 � B0

B2
0

� �
þ E1 � B1

B0

þ E2 � B0

B0

:

(41)

We obtain the relations between E1; E2, and B1 (for the

details of calculation, see Appendix A Subsection 1). By vir-

tue of Eqs. (A17) and (A18), we see that the lowest order

term of Ek is zero,

E1 � B0

B0

¼ �3=2 Ex1 cos hþ Ez1 sin hð Þ ¼ 0: (42)

Further, we see that E1 � B1 is zero,

E1 � B1 ¼ �5=2ðEy1By1 þ Ez1Bz1Þ ¼ 0: (43)

We thus have Ek ¼ E2 � B0=B0. From Eq. (A26), we obtain

Ek of the longer-wavelength pulse as

Ek ¼ �5=2ðEx2 cos hþ Ez2 sin hÞ;

¼ �5=2
v4

pB

cx2
p tan h

X
j

x2
pj

X3
j

 !
@3

@n3

Bz1

B0

� �
: (44)

Then, we have the parallel pseudopotential, F ¼ �
Ð

Ekds
¼ �

Ð
ðEk= cos hÞdx, as

F ¼ ��2
v4

pB0

cx2
p sin h

X
j

x2
pj

X3
j

 !
@2

@n2

Bz1

B0

� �
: (45)

Substituting the soliton solution (19) into Eq. (45), we find

the peak value of F of the longer-wavelength pulse as

FMl1 ¼
v4

pB0

2cx2
pd2

l1

X
j

x2
pj

X3
j

 !
b2

n; (46)

where we have approximated that sin h ¼ 1. This can be

expressed as
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eFMl1 ¼
mev2

A

2 2Dx � r cos2hð Þ
xþ0 x2

paX
3
b þ x2

pbX
3
a

� �
X2

aX
2
b x2

pa þ x2
pb

� � b2
n; (47)

where xþ0; Dx, and r are defined by Eqs. (9), (12), and (28),

respectively. We thus obtain the theoretical expression for F
as a function of the amplitude bn, the propagation angle h,

and the density ratio and cyclotron frequency ratio of the two

species ions.

2. Shorter-wavelength pulse

For the shorter-wavelength pulses with the characteristic

length dl2, we expand vjz, By, and Ez as

vjz ¼ cos hð�vjz1 þ �vjz2 þ � � �Þ; (48)

By ¼ cos hð�3=2By1 þ �5=2By2 þ � � �Þ; (49)

Ez ¼ cos hð�3=2Ez1 þ �5=2Ez2 þ � � �Þ: (50)

The expansion of other quantities is the same as those in

Eqs. (32)–(40). We also assume that

cos2h� �� 2Dx: (51)

Equations (48)–(51) enable us to focus on the region k
ðlÞ
min �

k� kc and obtain the KdV equation with the characteristic

length dl2.17

We derive Ek in the shorter-wavelength pulse (see

Appendix A Subsection 2). From Eq. (A30), we see that E1 �
B0 ¼ �3=2ðEx1 cos hþ Ez1 cos h sin hÞ ¼ 0 and E1 � B1

¼ Ey1By1 þ EZ1Bz1 ¼ 0. By virtue of Eq. (A32), we find that

Ek ¼ �5=2ðEx2 cos hþ Ez2 cos h sin hÞ

¼ �5=2
v4

pB cos h sin h

cx2
p

X
j

x2
pj

X3
j

 !
@3

@n3

Bz1

B0

� �
: (52)

The parallel pseudopotential is

F ¼ ��2
v4

pB0 sin h

cx2
p

X
j

x2
pj

X3
j

 !
@2

@n2

Bz1

B0

� �
: (53)

Substituting the soliton solution (19) with d ¼ dl2 into Eq.

(53), we can write the peak value of F of the shorter-

wavelength pulse as

eFMl2 ¼
ev4

pB0

2cx2
pd2

l2

X
j

x2
pj

X3
j

 !
b2

n

¼ mev2
A

4Dx

xþ0 x2
paX

3
b þ x2

pbX
3
a

� �
X2

aX
2
b x2

pa þ x2
pb

� � b2
n: (54)

3. Magnitude of F

By virtue of Eqs. (47) and (54), we can estimate the

magnitude of F in the longer-wavelength pulse and the

shorter-wavelength pulse as

eFMl1 � mev
2
Ab2

n=ð4Dx � 2 cos2hÞ (55)

and

eFMl2 � mev
2
Ab2

n=ð4DxÞ; (56)

where we have assumed that Xa and Xb are the same order of

magnitude. For quasiperpendicular pulses with cos2h� Dx,

both eFMl1 and eFMl2 are of the order of mev2
Ab2

n=ð4DxÞ. The

value of 4Dx of the H–He plasma with nHe=nH ¼ 0:1 is 0.12,

which is much greater than me=mi � 10�3. In such a two-

ion-species plasma with Dx 	 me=mi; eFMl1 and eFMl2 are

much smaller than eFM in the single-ion-species plasma,

which is of the order of miv2
Ab2

n=2 as shown by Eq. (1).

As the plasma approaches the single-ion-species plasma,

Dx goes to zero. Then, eFMl1 and eFMl2 increase with de-

creasing Dx. For the plasma with Dx 
 me=mi, Eqs. (55) and

(56) are not valid, and we have to consider the terms of the

order of me=mi, which are neglected in these equations.

C. Nonlinear pulses of high-frequency mode

We here outline the properties of the high-frequency

mode, in which the parameter g defined by

g ¼ ðx2
pa þ x2

pbÞ
1=2=xpe; (57)

plays an important role.

The dispersion relation of the quasiperpendicular high-

frequency mode can be approximated by Eq. (16) with

vp ¼ vh; d ¼ dh; (58)

where vh and dh are defined as

vh ¼ gjXejc=xpe; (59)

dh ¼
c

xpe

1� cos2h
g2

 !1=2

: (60)

This is valid for the range of the wavenumbers18

ck
ðh1Þ
inf =xpe � ck=xpe � 1; (61)

where k
ðh1Þ
inf is defined as

k h1ð Þ
inf ¼

�lh

3jdhj

� �1=4

; (62)

with

lh ¼
x2

peg
2

c2
1� 2

X
i

x2
piXi

x2
pejXejg4

þ
X

i

x2
piX

2
i

x2
peX

2
eg

6

 !
: (63)

Because lh can be rewritten as

lh ¼ 2Dx
x2

peg
2

c2

x4
�r

X2
aX

2
b

; (64)

we can estimate the magnitude of k
ðh1Þ
inf as
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ck
ðh1Þ
inf =xpe � g1=2Dx: (65)

The nonlinear behavior of the high-frequency mode for

the wavenumber region (61) can be described by the KdV

equation (17) with coefficient a given by18

a ¼
x2

paXa þ x2
pbXb

� �
x2

pejXejg4
: (66)

We write this a as ah, which is also expressed with Dx as

ah ¼ 1þ 2x2
�r

XaXb
Dx: (67)

D. Ek in high-frequency-mode pulse

We derive Ek in the high-frequency-mode pulse. We ex-

pand Ex, vjy, and vjz as

Ex ¼ g�1ð�3=2Ex1 þ �5=2Ex2 þ � � �Þ; (68)

vjy ¼ g�1ð�3=2vjy1 þ �5=2vjy2 þ � � �Þ; (69)

vjz ¼ g�1ð�2vjz1 þ �3vjz2 þ � � �Þ: (70)

We assume that

�	 g: (71)

Equations (68)–(71) enable us to obtain the KdV equation

for the high-frequency mode for the region given by Eq.

(61). We can also derive Ek in the nonlinear pulse for this re-

gion (see Appendix A Subsection 3).

From Eqs. (A42), we see that E1 � B0 ¼ Ex1 cos h=gþ
Ez1 sin h ¼ 0 and E1 � B1 ¼ Ey1By1 þ Ez1Bz1 ¼ 0. By virtue

of Eq. (A43), we find Ek as

Ek ¼ �5=2ðEx2 cos h=gþ Ez2 sin hÞ

¼ �5=2 B0Xec3

x4
pe

cos h sin h
@3

@n3

Bz1

B0

� �
: (72)

The parallel pseudopotential is

F ¼ �2 B0Xec3

x4
pe

sin h
@2

@n2

Bz1

B0

� �
: (73)

Substituting the soliton solution into Eq. (73), we have the

maximum value of F of the high-frequency-mode pulse as

eFMh ¼
mev2

A

2ahg2d2
h

c2

x2
pe

sin hb2
n: (74)

Using Eq. (60), we rewrite Eq. (74) as

eFMh ¼
q0v

2
A

2ahne0

1� cos2h
g2

 !�1

b2
n; (75)

where we have estimated that sin h ’ 1 as in Ref. 6.

Comparing Eqs. (1) and (75), we find that eFMh is slight-

ly smaller than eFM in the nonlinear pulse in the single-ion-

species plasma because ah is slightly greater than 1 as shown

by Eq. (67). In the limit of Dx ! 0, ah becomes 1 and Eq.

(75) reduces to Eq. (1).

We now compare the magnitude of F in the high-fre-

quency-mode pulse, FMh, and that in the low-frequency-

mode pulse, FMl1 or FMl2. From Eqs. (55), (56), and (75), we

can estimate the ratio of FMh to FMlj, where j¼ 1 or 2, as

FMh

Flj
� mi

me
Dx 1� cos2h

g2

 !�1

; (76)

where we have used cos h� 1. Equation (76) shows that the

magnitude of F of the high-frequency-mode pulse is much

greater than that of the low-frequency-mode pulse when

Dx 	 me=mi.

We discuss the reason why F in the high-frequency-

mode pulse is much greater than F in the low-frequency-

mode pulses. As shown by Eqs. (26), (31), and (60), there is

a large difference between the characteristic widths of the

high-frequency-mode pulse and of the low-frequency-mode

pulses. For quasiperpendicular pulses such that cos h < g,

the characteristic width of the high-frequency-mode pulse,

which can be estimated as d � c=xpe, is much smaller than

that of the low-frequency-mode pulses, d � ðc=xpiÞ=Dx.

From Eqs. (46), (54), and (75), we find that if Xa � Xb, both

F in the high-frequency-mode pulse and F in the low-

frequency-mode pulses can be estimated as

eF � miv
2
Aðc=xpeÞ2b2

nd�2; (77)

indicating that F is proportional to d�2. We also find that the

strength of Ek is proportional to d�3. Therefore, the huge

difference between F in the high-frequency-mode pulse and

F in the low-frequency-mode pulses can be caused by the

large difference between the characteristic widths of these

pulses.

IV. ELECTRON-POSITRON-ION PLASMA

A. Ek and F in pulses with �� 1

In this subsection, we present the theory for Ek and F in

nonlinear pulses in an e-p-i plasma that was derived in Ref. 7

with the conventional reductive perturbation method in

which �� 1 was assumed.

In the limit of x! 0, the dispersion relation of the mag-

netosonic wave in an e-p-i plasma can be written as the same

form as that in a two-ion-species plasma; x=k ¼ vAð1þ
lk2Þ with l given by Eq. (22), where j refers to electrons,

positrons, or ions (j¼ e, p, or i). Nonlinear behavior is de-

scribed by the KdV equation, and the parallel electric field

and the parallel pseudopotential in the nonlinear pulse can be

written as

Ek ¼ �5=2 4pv4
A

B2
0 tan h

X
j

nj0m2
j

qj

 !
c

xp

� �2 @3

@n3

Bz1

B0

� �
; (78)
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FB ¼ ��2 4pv4
A

B2
0 sin h

X
j

nj0m2
j

qj

 !
c

xp

� �2 @2

@n2

Bz1

B0

� �
; (79)

in the cold plasma approximation. These equations are

obtained from Eqs. (47) and (48) in Ref. 7 in the limit of

vA=c! 0.

If ni0 	 ðme=miÞne0, FB can be approximated as

eFB ¼ ��2 miv2
A

Z sin h
c

xp

� �2 @2

@n2

Bz1

B0

� �
; (80)

where Z ¼ qi=e. Substituting the soliton solution into this,

one has the maximum value of FB as

eFBM ’
miv2

A

4Z sin h

c=xp

� �2

jlj b2
n: (81)

For quasiperpendicular waves with h > hc, where hc is the

angle at which l¼ 0, we can approximate l as

l � � v2
A

2X2
i

ne0 þ np0ð Þme

q
: (82)

Substituting this into Eq. (81), we can express the depen-

dence of F on the positron-to-electron density ratio,

np0=ne0, as

F /
1� np0=ne0

� �
1þ np0=ne0

� �
1þ np0=ne0 þ 1� np0=ne0

� �
me=mi

	 �
� ;

(83)

where we have used q ’ ni0mi ¼ ðne0 � np0Þmi=Z. It indi-

cates that F decreases with increasing np0=ne0 and F
increases with increasing ni0=ne0.

These equations were derived under the assumption that

�� 1.

B. Nonlinear pulses with � in the range of
ðme=miÞ1=2<�<1

In this subsection, we discuss pulses with amplitudes in

the range of ðme=miÞ1=2 < � < 1. We first derive KdV equa-

tion for this range. We then obtain the theoretical expres-

sions for Ek and F in nonlinear pulses with such amplitudes,

which were not shown in Ref. 7.

1. Linear dispersion relation

Before deriving KdV equation, we show the linear disper-

sion relation. With the assumption that ðme=miÞ1=2 < � < 1,

we focus on the frequency region Xi < x <
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jXejXi

p
, which

will be explained below. For this region, the linear dispersion

relation can be written as Eq. (16), where vp and d are given

by

vp ¼
cXi

xpi
sin h; (84)

d2 ¼ d2
epi ¼ c2

x2
pep

x4
pi

X2
i

X2
e

1�
x2

pi

x2
pep

X2
e

X2
i

cos2h

sin2h

 !
: (85)

From this, we can expect that the KdV equation with the

characteristic length depi is obtained for Xi < x
<

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jXejXi

p
. Equation (20) shows that the width of the soli-

tary pulse is D � depi�
�1=2. When h	 hc, where hc is the

critical angle at which d becomes zero, d is of the order of

c=xpe. Then, we can estimate the wavenumber and fre-

quency of the nonlinear pulse as k�1=D��1=2ðxpe=cÞ and

x�vpk��1=2ðmi=meÞ1=2Xi. This indicates that the assump-

tion ðme=miÞ1=2<�<1 corresponds to Xi<x<
ffiffiffiffiffiffiffiffiffiffiffiffiffi
XijXej

p
.

2. Derivation of KdV equation

We now derive the KdV equation using the assumption

that g < � < 1, where g is defined as

g ¼ ðme=miÞ1=2: (86)

We also assume that

cos h � OðgÞ; sin h ’ 1; ni0 	 ðme=miÞne0: (87)

We expand Ex, vjy, and vjz as Eqs. (68)–(70); the expansion

of the other quantities are the same as in Eqs. (32)–(40).

From the lowest order terms of the normalized equa-

tions, we obtain the lowest order quantities of density and

velocities as

nj1 ¼ nj0Bz1= sin h; (88)

where j ¼ e, i, or p,

vex1 ¼ vpx1 ¼
Bz1

sin h
; vey1 ¼ �vpy1 ¼

g
Sqini0

@Bz1

@n
;

vez1 ¼ �vpz1 ¼
g cos h

S2qini0e ne0 þ np0ð Þ
@2Bz1

@n2
;

vix1 ¼
g2 sin h
RiSqini0

@Bz1

@n
; viy1 ¼ viz1 ¼ 0; (89)

where S and Ri are given by

S ¼
x2

pedvp

jXejc2
; Ri ¼

Xid

vp

: (90)

These velocities are different from the velocities obtained

under the assumption that �� 1. The lowest order terms of

electric and magnetic fields are

Ex1 ¼ �
g sin h
Sqini0

@Bz1

@n
; Ey1 ¼ Bz1;

Ez1 ¼ �By1 ¼
cos h

Sqini0

@Bz1

@n
: (91)

After some manipulations (for the details of calcula-

tions, see Appendix B), we then obtain the KdV equation

(17) for the frequency region Xi � x�
ffiffiffiffiffiffiffiffiffiffi
XiXe

p
with vp and

d given by Eqs. (84) and (85), respectively, and the coeffi-

cient a,

a ¼ 1= sin h: (92)
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3. Ek and F in nonlinear pulses

We derive Ek in the nonlinear pulses with amplitudes

ðme=miÞ1=2 < � < 1. Equation (91) leads to E1 � B0 ¼
Ex1 cos h=gþ Ez1 sin h ¼ 0 and E1 �B1¼Ey1By1þEz1Bz1¼0.

Taking Ex2 and Ez2 into account, we obtain Ek, from Eq.

(B15), as

Ek ¼ �5=2 Ex2 cos h=gþ Ez2 sin hð Þ;

¼ �5=2 c3Xi sin h cos h

x2
pix

2
pep

B
@3

@n3

Bz1

B0

� �
: (93)

We then have the parallel pseudopotential,

F ¼ ��2 c3Xi sin h

x2
pix

2
pep

B
@2

@n2

Bz1

B0

� �
; (94)

which is rewritten as

eF ¼ ��2 miv2
A

Zni0

c

xpep

� �2 @2

@n2

Bz1

B0

� �
; (95)

where we have used the approximation (87).

Substituting the soliton solution into this, we obtain the

maximum value of F as

eFM ¼
miv2

A

2Zni0

c=xpep

� �2

d2
epi

b2
n: (96)

This is written as

eFM ¼
miv2

A

2

ni0Z

ne0 þ np0ð Þ2
1� ni0mi

ne0 þ np0ð Þme
cos2h

� ��1

b2
n;

(97)

indicating that eFM increases with increasing ni0=ne0 and de-

creasing np0=ne0. Equations (80) and (81) for �� 1, which

were derived without the assumption that sin h ’ 1 and

me=mi ’ 0, become Eqs. (95) and (96), respectively, in the

limit of sin h ¼ 1 and me=mi ¼ 0.

V. SUMMARY

We theoretically studied the parallel electric field in

nonlinear magnetosonic waves in three-component plasmas

(two-ion-species plasma and e-p-i plasma) based on a three-

fluid model. We derived the expressions for Ek and its inte-

gral along the magnetic field, F ¼ �
Ð

Ekds, in solitary

pulses propagating quasiperpendicular to the magnetic field.

In a two-ion-species plasma, the magnetosonic wave has

two branches: high-frequency mode and low-frequency

mode. We derived Ek and F in the nonlinear pulses of the

two modes as functions of the wave amplitude �, the propa-

gation angle h, and the density ratio and ion cyclotron fre-

quency ratio of the two species ions.

For the low-frequency mode, there are two pulses:

longer-wavelength pulse and shorter-wavelength pulse. The

theory showed that the magnitude of F in the two low-fre-

quency-mode pulses can be estimated as eF � �2mev2
A=Dx,

where Dx is the normalized frequency difference. For the

high-frequency mode, we showed that F in the nonlinear pulse

can be estimated as eF � �2miv2
A, which is the same order as

F in a pulse in a single-ion-species plasma. Thus, it was found

that F in high-frequency-mode pulse is much greater than F in

the low-frequency-mode pulses when Dx 	 me=mi.

For an e-p-i plasma, we considered nonlinear pulses

with amplitudes in the range of ðme=miÞ1=2 < � < 1, which

were not discussed in Ref. 7. The KdV equation and Ek and

F in the nonlinear pulses were obtained. It was shown that F
in the pulse with � in the range of ðme=miÞ1=2 < � < 1 can be

written as the same form as that in the range of �� 1. The

magnitude of F increases as the ion density increases.

As for a future work, effects of Ek on particle motions

and pulse propagation in a two-ion-species plasma should be

analyzed. The strong Ek in the high-frequency-mode pulse

may cause the damping of the pulse through the Landau res-

onance. This may be important, as well as the damping due

to heavy ion acceleration through the transverse electric field

in the pulse.22
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APPENDIX A: DERIVATIONS OF Ek
FOR A TWO-ION-SPECIES PLASMA

We normalize the length, velocity, and time to k; vp, and

k=vp, respectively, where k is a characteristic length. The

number density, mass, charge, magnetic field, and electric

field are normalized to ne0, me, e, B0, and vpB0=c, respective-

ly. The normalized basic equations are as follows:

@nj

@t
þr � njvjð Þ ¼ 0; (A1)

@

@t
þ vj � rð Þ

� �
vj ¼ Rj Eþ vj � Bð Þ; (A2)

@B

@t
¼ r� E; (A3)

@Bz

@x
¼ �S

X
j

qjnjvjy; (A4)

X
qjnj ¼ 0; (A5)

where Rj and S are

Rj ¼
Xjk
vp

; S ¼
x2

pekvp

jXejc2
: (A6)

We note that Rj and S depend on k. This indicates that the ex-

pansion of quantities for the high-frequency mode is differ-

ent from that for the low-frequency mode because the high-

and low-frequency modes have different ks.
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1. Low-frequency mode: Longer-wavelength pulse

Introducing stretched coordinates given by Eq. (18) and

applying expansion given by Eqs. (32)–(40) to the above

normalized equations (A1)–(A5), we have the following set

of equations.

The continuity equation is

�3=2 �@nj1

@n
þ nj0

@vjx1

@n

� �

þ �5=2 �@nj2

@n
þ @nj1

@s
þ @

@n
nj1vjx1ð Þ þ nj0

@vjx2

@n

� �
þ � � � ¼ 0:

(A7)

The x, y, and z components of the equations of motion for

ions and electrons are

�3=2 @vjx1

@n
þRj Ex1þvjy1 sinh

� �� �
þ�5=2 @vjx2

@n
�@vjx1

@s




�vjx1

@vjx1

@n
þRj Ex2þvjy2 sinhþvjy1Bz1�vjz1By1

� ��
þ���¼0;

(A8)

�Rj Ey1þvjz1 cosh�vjx1 sinh
� �
þ�2 @vjy1

@n
þRj Ey2þvjz2 cosh�vjx2 sinh�vjx1Bz1

� �� �
þ���¼0;

(A9)

�3=2 @vjz1

@n
þ Rj Ez1 � vjy1 cos h

� �� �
þ�5=2 @vjz2

@n
� @vjz1

@s




�vjx1

@vjz1

@n
þ Rj Ez2 � vjy2 cos hþ vjx1By1

� ��
þ � � � ¼ 0:

(A10)

The y and z components of Faraday’s law are

�3=2 �@Bz1

@n
þ@Ey1

@n

� �
þ�5=2 �@Bz2

@n
þ@Bz1

@s
þ@Ey2

@n

� �
þ���¼0;

(A11)

�2 �@By1

@n
�@Ez1

@n

� �
þ �3 �@By2

@n
þ @By1

@s
�@Ez2

@n

� �
þ �� � ¼ 0:

(A12)

The x, y, and z components of Ampere’s law are

�
X

j

ðnj0qjvjx1Þ þ �2
X

j

qjðnj1vjx1 þ nj0vjx2Þ � � � ¼ 0;

(A13)

�3=2 @Bz1

@n
þ S

X
j

qjnj0vjy1

 !

þ �5=2 @Bz2

@n
þ S

X
j

qj nj1vjy1 þ nj0vjy2ð Þ
 !

� � � ¼ 0;

(A14)

�
P

j nj0qjvjz1ð Þ þ �2 @By1

@n
� S

X
j

qj nj1vjz1 þ nj0vjz2ð Þ
 !

þ �5=2 @By2

@n
� S

X
j

qj nj0vjz2 þ nj1vjz1ð Þ
 !

� � � ¼ 0:

(A15)

The charge neutrality is

�
X

j

qjnj1 þ �2
X

j

qjnj2 þ � � � ¼ 0: (A16)

From the lowest-order terms in Eqs. (A7), (A11), and

(A12), we obtain the following relations among the lowest-

order quantities:

nj1 ¼ nj0vjx1; Ey1 ¼ Bz1; Ez1 ¼ �By1: (A17)

We multiply the Oð�3=2Þ terms in Eqs. (A8) and (A10) by

qjnj0 cos h and qjnj0 sin h, respectively, and sum up them.

Further, we take its summation over the particle species j.
Then, by virtue of the Oð�Þ terms in Eqs. (A13) and (A15),

we find

Ex1 cos hþ Ez1 sin h ¼ 0: (A18)

With the aid of Eqs. (A17) and (A18), we have, from the

lowest order terms in Eqs. (A8)–(A10),

vjx1 ¼ Bz1 sin h; vjz1 ¼ �Bz1 cos h;

vjy1 ¼ �
1

Rj

@Bz1

@n
� By1

cos h
: (A19)

We now consider the second order terms of the normal-

ized equations. From Eqs. (A13) and (A15), we haveX
j

nj0qjvjx2 ¼ 0; (A20)

@By1

@n
¼ S

X
j

nj0qjvjz2; (A21)

where we have used Eqs. (A17) and (A19). Multiplying the

Oð�2Þ term in Eq. (A9) by nj0qj=Rj and taking the summation

over j, we have

X
j

nj0qj

Rj

@vjy1

@n
¼ �

X
j

nj0qjvjz2 cos h ¼ � cos h
S

@By1

@n
;

(A22)

where we have used Eqs. (A20) and (A21). Substituting vjy1

given by Eq. (A19) into Eq. (A22), we obtain By1 as

By1 ¼ �
v3

p cos h

c2k v2
p=v

2
A � cos2h

� �X
j

x2
pj

X3
j

@Bz1

@n
: (A23)

In order to obtain Ex2 cos hþ Ez2 sin h, we multiply the

Oð�5=2Þ terms in Eqs. (A8) and (A10) by nj0qj cos h and

nj0qj sin h, respectively, and sum up them. Taking its summa-

tion over j, we have
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X
j

qjnj0
@vjz2

@n
sin hþ

X
j

qjnj0Rj Ex2 cos hþ Ez2 sin hð Þ

þ
X

j

qjnj0Rj vjy1Bz1 � vjz1By1ð Þcos hþ vjx1By1 sin h
	 �

¼ 0; (A24)

where we have used vjx1 cos hþ vjz1 sin h ¼ 0, which is obtained from Eq. (A19). We also find that the third term of the left

hand side of Eq. (A24) becomes zero, with the aid of Eq. (A19), as follows:X
j

qjnj0 Rj vjy1Bz1 � vjz1By1ð Þcos hþ Rj vjx1By1ð Þsin h
	 �

¼
X

j

qjnj0
@Bz1

@n
� Rj

By1

cos h

� �
Bz1 cos hþ RjBz1By1 cos2hþ Rj Bz1By1ð Þ sin2h


 �

¼
X

j

qjnj0
@Bz1

@n
Bz1 cos h ¼ 0: (A25)

We then have X
j

qjnj0Rj Ex2 cos hþ Ez2 sin hð Þ ¼ � sin h
S

@2By1

@n2
: (A26)

Substituting Eq. (A23) into this and using the unnormalized quantities, we obtain Eq. (44).

2. Low-frequency-mode: Shorter-wavelength pulse

For the shorter-wavelength pulse, we expand vjz, By, and Ez as Eqs. (48)–(50). Then, the equations of motions are writ-

ten as

�3=2 @vjx1

@n
þ Rj Ex1 þ vjy1 sin h

� �� �
þ �5=2 @vjx2

@n
� @vjx1

@s
� vjx1

@vjx1

@n
þ Rj Ex2 þ vjy2 sin hþ vjy1Bz1

� �
 �
� �5=2 cos2hvjz1By1 þ � � � ¼ 0; (A27)

�Rj Ey1 � vjx1 sin h
� �

þ �2 @vjy1

@n
þ Rj Ey2 � vjx2 sin h� vjx1Bz1

� �� �
þ � cos2hvjz1 þ �2 cos2hvjz2 þ � � � ¼ 0; (A28)

�3=2 cos h
@vjz1

@n
þ Rj Ez1 � vjy1ð Þ

� �
þ�5=2 cos h

@vjz2

@n
� @vjz1

@s
� vjx1

@vjz1

@n
þ Rj Ez2 � vjy2 þ vjx1By1ð Þ


 �
þ � � � ¼ 0; (A29)

where we have assumed that cos2h� �. The other equations are the same as in Appendix A Subsection 1; Eqs. (A7), and

(A11)–(A16) are also used for the shorter-wavelength pulse.

From the lowest order terms of the equations, we have the following relations among the lowest order quantities:

nj1 ¼ nj0vjx1; vex1 ¼ vix1 ¼ Bz1= sin h;

vjy1 ¼ �
1

Rj sin h
1�

X
j

nj0mj

q0

 !
@Bz1

@n
; vjz1 ¼ �

Bz1

sin2h
;

Ex1 ¼ �
1

q0 sin h

X
j

nj0mj

Rj

@Bz1

@n
; Ey1 ¼ Bz1; Ez1 ¼ �By1 ¼ �

Ex1

sin h
: (A30)

From the Oð�5=2Þ terms in Eqs. (A27) and (A29), we obtain

cos h sin h
X

j

qjnj0
@vjz2

@n
þ
X

j

qjnj0Rj Ex2 cos hþ Ez2 cos h sin hð Þ ¼ 0; (A31)

where we have used Eqs. (A20) and (A30). By virtue of the Oð�2Þ term in Eq. (A15), Eq. (A31) can be written as

Ex2 cos hþ Ez2 cos h sin h ¼ 1X
j

qjnj0Rj

cos h sin h
Sq0

X
j

nj0mj

Rj

@3Bz1

@n3
: (A32)

Using the unnormalized quantities, we can write this as Eq. (52).
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3. High-frequency mode

For the high-frequency mode, we expand Ex, vjy, and vjz as Eqs. (68)–(70). Then, the x, y, and z components of equation of

motion for electrons are written as

Reg
�1�3=2ðEx1 þ vey1 sin hÞ þ Reg

�1�5=2ðEx2 þ vey2 sin hþ vey1Bz1Þ þ � � � ¼ 0; (A33)

Re� Ey1 � vex1 sin h
� �

þ g�1�2 @vey1

@n
þ Reg Ey2 þ

cos h
g

vez1 � vex2 sin h� vex1Bz1

� �� �
þ � � � ¼ 0; (A34)

Re�
3=2 Ez1 �

cos h
g

vey1

� �
þ �5=2 g�1 @vez1

@n
þ Re Ez2 � vey2

cos h
g
þ vex1By1

� �
 �
¼ 0: (A35)

Here, Re is of the order of g�1. The x, y, and z components of equation of motion for ions are

�3=2 @vix1

@n
þ Rig

�1 Ex1 þ viy1 sin h
� �� �

þ�5=2 @vix2

@n
� @vjx1

@s
� vix1

@vix1

@n
þ Rig

�1 Ex2 þ viy2 sin hþ viy1Bz1

� �
 �
þ � � � ¼ 0; (A36)

g�1�2 @viy1

@n
þ g�1�3 @viy2

@n
� @viy1

@s
� vix1

@viy1

@n

� �
þ�Ri Ey1 � vjx1 sin h

� �
þ � � � ¼ 0; (A37)

g�1�5=2 @viz1

@n

� �
þ g�1�7=2 @viz2

@n
� @viz1

@s
� vix1

@viz1

@n

� �

þ�3=2Ri Ez1 � viy1

cos h
g

� �
þ �5=2Ri Ez2 þ vix1By1 � viy2

cos h
g

� �
þ � � � ¼ 0: (A38)

Here, Ri is of the order of g. The x, y, and z components of Ampere’s law are

�
X

j

ðnj0qjvjx1Þ þ �2
X

j

qjðnj1vjx1 þ nj0vjx2Þ � � � ¼ 0; (A39)

�3=2 @Bz1

@n
þ Sg�1

X
j

qjnj0vjy1

 !
þ�5=2 @Bz2

@n
þ Sg�1

X
j

qj nj1vjy1 þ nj0vjy2ð Þ
 !

� � � ¼ 0; (A40)

�2 @By1

@n
� Sg�1

X
j

qj nj0vjz1ð Þ
 !

þ�5=2 @By2

@n
� Sg�1

X
j

qj nj0vjz2 þ nj1vjz1ð Þ
 !

� � � ¼ 0; (A41)

where Sg�1 is of the order of unity. The continuity equation and the Faraday’s law are written as the same as those for the low-

frequency mode.

We assume that �� g. Then, from the lowest order terms, we can express the lowest order quantities in terms of Bz1 as

ne1 ¼ ne0vex1; vex1 ¼ Bz1= sin h;

vey1 ¼
1

Sg�1

@Bz1

@n
; vez1 ¼

cos h
S2g�1

@2Bz1

@n2
;

ni1 ¼ ni0vix1; vix1 ¼ RiBz1=S; viy1 ¼ viz1 ¼ 0;

Ex1 ¼ �
sin h
Sg�1

@Bz1

@n
; Ey1 ¼ Bz1; (A42)

Ez1 ¼ �By1 ¼
cos h

S

@Bz1

@n
:

From the second order terms of Eqs. (A33) and (A35), we have

Ek ¼ Ex2

cos h
g
þ Ez2 sin h ¼ � sin h

Reg
@vez1

@n
¼ � cos h sin h

ReS2

@3Bz1

@n3
; (A43)

which leads to Eq. (72) with unnormalized quantities.
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APPENDIX B: DERIVATION OF NONLINEAR EQUATION AND Ek FOR AN E-P-I PLASMA

For nonlinear pulses with amplitudes in the range of g < � < 1 in an e-p-i plasma, we have Ex, vjy, and vjz as Eqs.

(68)–(70). When ni0 	 ðme=miÞne0, the coefficients of the normalized equations can be estimated as

Re � Rp � g�1; Ri � g: (B1)

Therefore, the equations of motion for electrons and positrons can be written as Eqs. (A33)–(A35); for positrons, the subscript e
in these equations is replaced by the subscript p. The equations of motion for ions are given by Eqs. (A36)–(A38). The continuity

equation is given by Eq. (A7). The Faraday’s and Ampere’s laws are written as Eqs. (A11) and (A12) and (A39)–(A41),

respectively.

From the lowest order terms, we obtain Eqs. (88)–(91). From the Oðg�1�3Þ term in Eq. (A37) and the Oðg�1�7=2Þ term in

Eq. (A38), we have

viy2 ¼ viz2 ¼ 0: (B2)

We multiply the Oð�5=2Þ terms in (A33) for electrons and positrons by �ene0 and enp0, respectively, and sum up them. Then, we

have

�qini0Ex2 � e ne0vey2 � np0vpy2ð Þsin h� 1

2Sg�1

@B2
z1

@n
¼ 0; (B3)

where we have used ene0 ¼ enp0 þ qini0. We then multiply the Oðg�1�2Þ terms in (A34) for electrons and positrons by

�ene0=Reg and enp0=Rpg, respectively, and sum up them. We obtain

�e ne0 � np0ð ÞEy2 �
e

g
ne0

Re

@vey1

@n
� np0

Rp

@vpy1

@n

� �
� e cos h

g
ne0vez1 � np0vpz1ð Þ

þe ne0vex2 � np0vpx2ð Þsin hþ e ne0vex1 � np0vpx1ð ÞBz1 ¼ 0: (B4)

From the Oð�5=2Þ terms in Eqs. (A11) and (A40), we have

@Ey2

@n
¼ @Bz2

@n
� @Bz1

@s

¼ Sg�1e ne1vey1 � np1vpy1ð Þ þ Sg�1e ne0vey2 � np0vpy2ð Þ �
@Bz1

@s
: (B5)

We differentiate Eq. (B4) with respect to n. This is written, by virtue of Eq. (B5), as

� e

g
ne0

Re

@2vey1

@n2
� np0

Rp

@2vpy1

@n2

 !
� e cos h

g
ne0

@vez1

@n
� np0

@vpz1

@n

� �
þ e sin h

@

@n
ne0vex2 � np0vpx2ð Þ

þ e
@

@n
ne0vex1 � np0vpx1ð ÞBz1

	 �� Sg�1qini0e ne1vey1 � np1vpy1ð Þ

�Sg�1qini0e ne0vey2 � np0vpy2ð Þ þ qini0
@Bz1

@s
¼ 0: (B6)

With the aid of Eq. (B3), the term including vex2; vpx2; vey2; and vpy2 in Eq. (B6) can be written as

e sin h
@

@n
ne0vex2 � np0vpx2ð Þ � Sg�1qini0e ne0vey2 � np0vpy2ð Þ

¼ e sin h
@

@n
ne0vex2 � np0vpx2ð Þ þ

Sg�1

sin h
q2

i n2
i0Ex2 þ

qini0

2 sin h
@B2

z1

@n
: (B7)

From the Oð�5=2Þ term in Eq. (A36) and the Oð�2Þ term in Eq. (A16), we have

Rig
�1Ex2 ¼

@vix1

@s
þ vix1

@vix1

@n
� e

ni0qi

@

@n
ne0vex2 � np0vpx2 þ ne1vex1 � np1vpx1ð Þ: (B8)

This is rewritten as

Sg�1q2
i n2

i0Ex2 ¼
Sq2

i n2
i0

Ri

@vix1

@s
þ vix1

@vix1

@n

� �
� Sqini0e

Ri

@

@n
ne0vex2 � np0vpx2 þ ne1vex1 � np1vpx1ð Þ: (B9)
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Using Eq. (B9), we eliminate Ex2 in Eq. (B7). Then, we have

e sin h
@

@n
ne0vex2 � np0vpx2ð Þ � Sg�1qini0e ne0vey2 � np0vpy2ð Þ

¼ qini0 sin h
@vix1

@s
þ vix1

@vix1

@n

� �

� e sin h
@

@n
ne1vex1 � np1vpx1ð Þ þ

qini0

2 sin h
@B2

z1

@n
: (B10)

By virtue of this equation, Eq. (B6) can be written as

�e

g
ne0

Re

@2vey1

@n2
�np0

Rp

@2vpy1

@n2

 !
�ecosh

g
ne0

@vez1

@n
�np0

@vpz1

@n

� �

þe
@

@n
ne0vex1�np0vpx1ð ÞBz1

	 ��Sg�1qini0e ne1vey1�np1vpy1ð Þ

þ qini0

2sinh
@B2

z1

@n
þqini0 sinh

@vix1

@s
þvix1

@vix1

@n

� �

�esinh
@

@n
ne1vex1�np1vpx1ð Þþqini0

@Bz1

@s
¼0: (B11)

Substituting Eq. (89) into Eq. (B11), we obtain the KdV

equation,

2qini0
@Bz1

@s
þ 3qini0

sin h
Bz1

@Bz1

@n

þ c2

x2
pek

2

x2
pepXi

x2
pijXej

1�
x2

pijXej2

x2
pepX

2
i

cos2h

sin2h

 !
@3Bz1

@n3
¼ 0:

(B12)

With unnormalized quantities, this is rewritten as

@Bz1

@s
þ 3vp

2 sin hB0

Bz1

@Bz1

@n

þ vpc2
x2

pep

x4
pi

X2
i

X2
e

1�
x2

pijXej2

x2
pepX

2
i

cos2h

sin2h

 !
@3Bz1

@n3
¼ 0:

(B13)

We now derive the second order term of Ek. We multi-

ply the Oð�5=2Þ terms in Eqs. (A33) and (A35) by cos h=g
and sin h, respectively, and sum up them. Then, we have

Ex2 cos hg�1 þ Ez2 sin h ¼ � 1

Re

@vez1

@n
sin h: (B14)

Substituting Eq. (89) into this equation, we obtained

Ex2 cos hg�1 þ Ez2 sin h ¼ � sin h cos h
ReS2qini0e ne0 þ np0ð Þ

@3Bz1

@3n
:

(B15)

The unnormalized form of this is Eq. (93).
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