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A magnetosonic shock wave propagating obliquely to an external magnetic field can trap electrons

and accelerate them to ultrarelativistic energies. The trapped electrons excite two-dimensional (2D)

electromagnetic fluctuations with finite wavenumbers along the shock front. We study effects of

the trapped electrons on ion motions through the 2D fluctuations. It is analytically shown that the

fraction of ions reflected from the shock front is enhanced by the 2D fluctuations. This is confirmed

by 2D (two space coordinates and three velocities) relativistic, electromagnetic particle simulations

with full ion and electron dynamics and calculation of test ions in the electromagnetic fields

averaged along the shock front. A comparison between 2D and one-dimensional electromagnetic

particle simulations is also shown. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922847]

I. INTRODUCTION

Electromagnetic particle simulations with full ion and

electron dynamics have shown that a large-amplitude mag-

netosonic shock wave can promptly accelerate ions and

electrons with different nonstochastic mechanisms caused by

strong electromagnetic fields in the shock wave (Ref. 1 and

references therein). For example, some ions are accelerated

via reflection by magnetic and electrostatic fields at the

shock front.2–4 In Ref. 5, it was shown that energies of

reflected ions can be relativistic if the external magnetic field

is strong such that jXej=xpe > 1, where Xeð< 0Þ and xpe are

electron gyro and plasma frequencies, respectively. It

was also pointed out that this mechanism can explain the

observations of acceleration of solar energetic protons

reported in Refs. 6 and 7.

Electrons are accelerated by a different mechanism. A

magnetosonic shock wave propagating obliquely to an exter-

nal magnetic field can trap electrons and accelerate them.8

The energies of the accelerated electrons can be ultrarelativ-

istic such that c > 100, where c is the Lorentz factor, when

jXej=xpe > 1 and the propagation speed of the shock wave

vsh is close to c cos h, where c is the speed of light and h is

the propagation angle of the shock wave.9 In such a wave,

some electrons can be reflected near the end of the main

pulse of a shock wave. Here, “main pulse” designates the

first leading pulse in a shock wave (the shock wave approxi-

mates the train of solitons with damping amplitudes if the

dissipation is small4). The reflected electrons are then

trapped in the main pulse and are accelerated by the strong

electric field there; the acceleration mechanism was

described in detail in Ref. 8.

The trapped electrons significantly influence electro-

magnetic fields in a shock wave, which affect the motions of

the trapped electrons. In the one-dimensional (1D) electro-

magnetic particle simulations,10 the trapped electrons

strengthen Ek and F, where Ek is the electric field parallel to

the magnetic field and F is its integral along the magnetic

field, F ¼ �
Ð

Ekds with ds being the infinitesimal length

along B. This can cause the electrons to be trapped deeper in

the main pulse. In the two-dimensional (2D) simulations,11

the trapped electrons excite whistler-wave instabilities

through interaction with whistler waves with finite wave-

numbers along the shock front. As a result of nonlinear

development of the instabilities, the 2D electromagnetic fluc-

tuations along the shock front grow to large amplitudes. The

2D electromagnetic fluctuations can cause detrapping of

energetic electrons from the main pulse and subsequent

acceleration to much higher energies.12

In the above works, the interactions between the

reflected ions and the trapped electrons were not investigated

although both the electron and ion dynamics were calculated

in the simulations. In a low beta plasma with jXej=xpe > 1,

the fraction of the reflected ions is quite small because vsh is

much greater than the ion thermal velocity. Further, the

reflected ions do not stay near the shock front, unlike the

trapped electrons. Therefore, the effects of reflected ions on

electromagnetic fields in a shock wave would be small, com-

pared to those of trapped electrons that can stay near the

shock front for a long period of time. In this paper, we study

how ions are influenced by the electromagnetic fields that

the trapped electrons produce. It is found that the number of

reflected ions is increased because of the 2D electromagnetic

fluctuations excited by the trapped electrons.

In Sec. II, we briefly describe the characteristics of elec-

tromagnetic fields and electron motion in an oblique shock

wave for the 1D10 and 2D12 cases. In Sec. III, we analytically

derive the condition for ions to be reflected from the shock

front. It is predicted that the fraction of the reflected ions is

enhanced by the 2D electromagnetic fluctuations. After

describing the simulation model and parameters in Sec. IV,

we study the effects of trapped electrons on ion motion in an

oblique shock wave using 2D electromagnetic particle simu-

lations in Sec. V. We follow the orbits of a large number of

ions in the 2D simulation. We call these ions as 2Ds ions.a)Electronic mail: toida.mieko@nifs.ac.jp
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Furthermore, we calculate the orbits of the same number of

test ions in the electromagnetic fields averaged along the

shock front. That is, the test ions are not influenced by the

2D electromagnetic fluctuations. We call these test ions as

1Dt electrons. It is shown that the number of reflected 2Ds

ions is greater than that of reflected 1Dt ions. Their differ-

ence increases with the amplitudes of the 2D electromagnetic

fluctuations excited by the trapped electrons. We also per-

form 1D electromagnetic particle simulations. Although

the trapped electrons strengthen Ek in the 1D case, the ion

reflection is not significantly influenced by Ek. Therefore, the

fraction of reflected ions in the 1D case is smaller than that

in the 2D case. Section VI gives a summary of our work.

II. EFFECTS OF TRAPPED ELECTRONS ON
ELECTROMAGNETIC FIELDS IN THE SHOCK WAVE

We briefly describe effects of trapped electrons on elec-

tromagnetic fields in an oblique shock wave. We consider a

magnetosonic shock wave propagating in the x direction

with a constant speed vsh in an external magnetic field in the

(x, z) plane

B ¼ B0ðcos h; 0; sin hÞ ¼ ðBx0; 0;Bz0Þ: (1)

Figure 1 shows the typical profiles of electromagnetic fields

in an oblique shock wave with vsh ’ c cos h. (These are

obtained by the 2D electromagnetic particle simulation for

the parameters in Sec. V. The profiles averaged over the

period from xpet¼ 1000 to 3000 are plotted.) The main pulse

region is �15 < ðx� xmÞ=ðc=xpeÞ < 15, where xm is the

position at which the magnetic field Bz becomes maximum.

At x ’ xm, F also becomes maximum. The value of F can be

greater than mec2 when jXej=xpe > 1.14 The time-averaged

value of F is positive at the end of the main pulse. However,

because of the fluctuations, F sometimes becomes negative.

Then, some electrons can be reflected near the end of the

main pulse and trapped in the main pulse region.8

The 1D particle simulation showed that as time advan-

ces, the number of trapped electrons increases.13 The value

of F at x ’ xm also increases with time.10 This was explained

as follows. Assuming that the wave is 1D, we can approxi-

mate Ek and F in an oblique shock wave with vsh ’ c cos h
as

Ek ¼ ðEx � ByÞBx0=B; (2)

F ¼ /�
ðx

x0

dxBy; (3)

where / is the electric potential and x0 is a certain point in

the far upstream region. The Ek and F are strengthened by

trapped electrons. The electron velocity in the main pulse

region can be approximated as

v ’ vk
B

B
þ c

E� B

B2
; (4)

where vk is the velocity parallel to B. At x ¼ xm, vz of a

trapped electron becomes almost equal to c because

vk ’ c; Bz ’ B, and the z component of the second term in

Eq. (4) is almost zero. The trapped electrons form the current

in the negative z direction, which produces the negative (pos-

itive) By in the region x > xm ðx < xmÞ. This strengthens Ek
and F. The increase in F causes the electrons to be trapped

deeper.10

The deep trapping can break down when multi-

dimensional effects are considered. The 2D particle simula-

tions demonstrated that the electromagnetic fluctuations with

finite wavenumbers along the shock front can cause electron

detrapping from the main pulse.12 As described in Ref. 11,

the 2D fluctuations begin to grow when the electron reflec-

tion near the end of the main pulse starts. The reflection

changes the sign of the electron vk from minus to plus, and

the relative motion between reflected and incoming electrons

excites whistler waves with ky 6¼ 0 or kz 6¼ 0 through

Cherenkov resonance. In the case of the simulation plane

(x, y) where the waves with ky 6¼ 0 are included and those

with kz 6¼ 0 are excluded, oblique whistler waves with large

hw are excited, where hw is the angle between the wavevec-

tor k and the ambient magnetic field. These waves generate

density perturbations, which are roughly estimated as12

n1

n0

� tan hw

x2
peck

jXejðx2
pi þ c2k2Þ

B1x

B0

; (5)

where n1 and B1x are perturbations of the density n and the

magnetic field Bx, respectively. The density perturbation

causes current filamentation; the current in the negative z
direction is strong where the density of the trapped electrons

is high. Because of the nonlinear interaction of the current

filaments, the 2D fluctuations grow to large amplitudes. In

the simulation plane (x, z) where the waves with ky 6¼ 0 areFIG. 1. Typical profiles of electromagnetic fields in an oblique shock wave.
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excluded and those with kz 6¼ 0 are included, the whistler

waves with small hw are excited. As suggested by Eq. (5),

the density perturbations due to these waves are quite small,

and the current filamentation is suppressed. Because of this,

the amplitudes of the 2D fluctuations in the case of the simu-

lation plane (x, z) are much smaller than those in the case of

the simulation plane (x, y).12 In the following, we consider

the (x, y) plane for the 2D case and study how ions are influ-

enced by the large-amplitude 2D fluctuations.

III. PHYSICAL CONSIDERATION FOR ION MOTION

We analytically discuss ion motion in an oblique shock

wave. When ions encounter the shock wave, some ions can

be reflected from the shock front. To obtain the amount of

energy that reflected ions can gain, we need to use the rela-

tivistic equation of motion and consider the ion motions in

electromagnetic fields that vary with x in the shock transition

region. However, to qualitatively understand the reflection

mechanism, we can use the nonrelativistic equation of

motion. Further, according to Ref. 15 where ion reflection by

a perpendicular shock wave was discussed, we use a simple

model such that the electromagnetic fields are constant along

x in the shock transition region.

A. Ion reflection by a 1D oblique shock wave

First, we analyze ion motion in a 1D oblique shock

wave ð@=@y ¼ @=@z ¼ 0Þ in the wave frame (see Fig. 2), in

which the upstream region is x > x1, and the shock transition

region (gray area) is x1 � D < x < x1. The center of the

main pulse xm is equal to the left end of the transition region,

xm ¼ x1 � D. We consider ions entering the transition region

at t¼ t1 with the velocity

v0 ’ ð�vsh þ ~vx;~vy;~vzÞ; (6)

where ~v½¼ ð~vx;~vy;~vzÞ� is due to thermal motion and ~v � vsh

is assumed.

Assuming that E and B are constant in the shock transi-

tion region, we obtain the ion velocity vx after t¼ t1 as (for

derivation, see the Appendix A)

vx ¼ V cos½�Xðt� t1Þ þ g� þ vgx þ akxðt� t1Þ: (7)

Here, X is the ion cyclotron frequency in the transition

region. V and g satisfy the relations

V cos g ¼ vx0 � vgx; (8)

V sin g ¼ cEx

B
� c

Bx

B2
Ek þ

Bz

B
~vy �

By

B
~vz; (9)

and vgx and akx are defined by

vgx ¼ c
EyBz

B2
� c

EzBy

B2
þ Bx

B
vk0; (10)

akx ¼
Bx

B

q

m
Ek; (11)

where vk0 is the parallel component of v0. From Eq. (7), the

ion position x is written as

x� x1 ¼�
V

X
sin �X t� t1ð Þ þ g½ � þ

V

X
sin g

þ vgx t� t1ð Þ þ
akx
2

t� t1ð Þ2: (12)

We now discuss the condition for ions to be reflected

from the shock front. At the reflection point xref, vx becomes

zero. From Eq. (7), we can find that the reflection time tref

satisfies the relation

V cosð�XDtþ gÞ þ akxDt ¼ �vgx; (13)

where

Dt � tref � t1: (14)

Then, from Eq. (12), we can write the reflection point xref as

xref � x1 ¼ �
V

X
sin �XDtþ gð Þ þ V

X
sin gþ vgxDtþ

akx
2

Dt2:

(15)

If the length jxref � x1j is shorter than the width of the shock

transition region, x1 � xref < D, the particle would be

reflected.

We assume that jXDtj � 1. Retaining terms of the order

of ðXDtÞ2 in Eq. (13), we have

XDt ’ w0ð1þ dÞ; (16)

where w0 and d are

w0 � �
vgx þ V cos g

V sin gþ akx=X
; (17)

d ’ V cos g
2 V sin gþ akx=X
� �w0: (18)

We can approximate d as (for detail, see the Appendix)

d ’ � v2
sh

2c2

B2

E2
x

; (19)

where we have used vsh � jvgxj; ~v. (When the shock wave is

stationary, Ey ¼ �vshBz0=c and Ez¼ 0 in the wave frame.

Therefore, we estimated jvgxj � vshBz0=B, which is much

smaller than vsh because B� Bz0.)

Substituting Eq. (16) in Eq. (15), we obtain the reflec-

tion point xref as
FIG. 2. Schematic representation of the orbit of a reflected ion in the wave

frame. The gray area shows the shock transition region.
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xref � x1 ’ �
vgx þ V cos gð Þ2

2X V sin gþ akx=X
� � 1� d2ð Þ: (20)

Then, by virtue of Eqs. (6), (8)–(11), and (19), the condition

for ion reflection, jxref � x1j < D, can be written as

~vx > vref : (21)

Here, vref is the minimum ~vx for the reflection and is given

by

vref ¼ vsh �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qExD

m

r
1þ v4

sh

8c4

B4

E4
x

 !
; (22)

where we have used jByj � Bz. Equation (22) indicates that

Ex and B contribute the ion reflection and Ey, Ez, and Ek do

not influence the ion motion. Using Eq. (21), we obtain the

fraction of reflected particles as

nref

n0

¼ 1

n0

ð1
vref

d~vx

ð1
�1

d~vy

ð1
�1

d~vzf ~vð Þ: (23)

For a Maxwellian velocity distribution function

f ~vð Þ ¼ n0

2pv2
Ti

� �3=2
exp � ~v2

2v2
Ti

 !
: (24)

Eq. (23) leads

nref

n0

¼ 1

2
erfc

vrefffiffiffi
2
p

vTi

� �
; (25)

where the complementary error function is defined as

erfc pð Þ ¼
2ffiffiffi
p
p
ð1

p

dt exp �t2ð Þ: (26)

Equation (25) shows that nref=n0 increases as vref decreases.

From Eq. (22), we see that vref decreases as Ex or B
increases.

B. Reflection by a 2D shock wave

We now consider ion reflection by a 2D shock wave.

We write the electric and magnetic fields as

Eðx; y; tÞ ¼ �Eðx; tÞ þ dEðx; y; tÞ;

Bðx; y; tÞ ¼ �Bðx; tÞ þ dBðx; y; tÞ; (27)

where �E and �B are defined as

�E ¼ 1

Ly

ðLy

0

dyE; �B ¼ 1

Ly

ðLy

0

dyB; (28)

which we call 1D averaged fields. We call dE and dB 2D

fluctuations. In the following, we will show that the 2D fluc-

tuations enhance the fraction of reflected ions.

In Sec. III A for the 1D shock wave, E and B were set to

be constant in the shock transition region. In order to extend

the consideration for the 1D case to the 2D case, we assume

that E and B are constant in the limit of dE and dB! 0, that

is, �E and �B are constant. As for the 2D fluctuations, we

assume that dE and dB do not depend on x, which enables us

to obtain the condition for the ion reflection analytically. We

also assume that characteristic periods and wavelengths

along y of the dE and dB are much longer than the period

from t1 to tref and the variation of the ion y during this period,

respectively. This is consistent with the simulation result,

which will be shown in Sec. V.

Under these assumptions, ions feel the constant electro-

magnetic fields in the shock transition region, although the

values of E and B depend on the position y at which ions enter

the shock transition region at t¼ t1. Then, we may extend Eq.

(22) to include a case in which E and B depend on y as

vref yð Þ ¼ vsh �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qEx yð ÞD

m

r
1þ v4

sh

8c4

B yð Þ4

Ex yð Þ4

 !
: (29)

Assuming that jdEj; jdBj � j�Ej; j�Bj, we can approximate

Eq. (29) as

vrefðyÞ ¼ �vref þ dvrefðyÞ; (30)

with

�vref ¼ vsh �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2q �ExD

m

r
1þ v4

sh

8c4

�B
4

�E
4
x

 !
; (31)

dvref yð Þ ¼
@vref

@E

���
�E;�B
	 dE yð Þ þ

@vref

@B

���
�E;�B
	 dB yð Þ: (32)

By virtue of Eq. (30), we can rewrite dvref as

dvref ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2q �ExD

m

r
1

2
� 3v4

sh

8c4

�B
4

�E
4
x

 !
dEx

�Ex
þ v4

sh

2c4

�B
4

�E
4
x

dB
�B

" #
: (33)

The y-averaged dvref is zero.

Because vref varies along y, the fraction of reflected ions

nref=n0 also depends on y. Extending Eq. (25) to this case,

we have

nref yð Þ
n0

’ 1

2
erfc

vref yð Þffiffiffi
2
p

vTi

� �
: (34)

We introduce the fraction of reflected ions in the 1D aver-

aged fields, which is defined as

�nref

n0

¼ 1

2
erfc

�vrefffiffiffi
2
p

vTi

� �
: (35)

Using Eq. (35), Eq. (34) is rewritten as

nref yð Þ
n0

¼ �nref

n0

þ
dnref yð Þ

n0

; (36)

where dnrefðyÞ is given by

dnref yð Þ
n0

¼ 1

2pv2
Ti

� �1=2

ð�v ref

�v refþdvref

dv exp � v2

2v2
Ti

 !
: (37)

When dvref is negative (positive), dnref is positive (negative).
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We now consider the y-averaged value of nref=n0

nref

n0

� 	
� 1

Ly

ðLy

0

dy
nref yð Þ

n0

; (38)

which is rewritten as

nref

n0

� 	
¼ �nref

n0

þ dnref

n0

� 	
: (39)

Although the y-averaged dvref is zero, the y-averaged dnref

is positive; that is, the second term in the right hand side of

Eq. (39) is positive. This can be explained as follows.

We assume that dvref can be written as

dvref ¼ dv1 cosðkyyþ ayÞ; (40)

where dv1, ky, and ay are constants, and dv1 > 0 and kyLy ¼
2pn with integer n are assumed. The maximum and mini-

mum values of vref are

vrmax ¼ �vref þ dv1; vrmin ¼ �vref � dv1: (41)

Figure 3 displays the ion velocity function. The shaded area

shows the reflected particles. The upper panel is for vrmin,

indicating that dnref=n0 enclosed by the red line is positive,

whereas the lower panel is for vmax, indicating that dnref=n0

enclosed by the blue line is negative. Because the absolute

value of the former dnref is greater than that of the latter, we

can expect that the y-averaged value of dnref is positive.

When jdvref j is much smaller than �vref ; dnref=n0 can be

approximated as

dnref

n0

’� 1

2pv2
Ti

� �1=2
exp � �v2

ref

2v2
Ti

 !
dvref �

�vref

v2
Ti

dv2
ref

� �
: (42)

Substituting Eq. (40) in Eq. (42) and integrating it with y, we

have

dnref

n0

� 	
’ �vref

2
ffiffiffiffiffiffi
2p
p

v3
Ti

exp � �v2
ref

2v2
Ti

 !
jdv1j2 > 0: (43)

Equations (39) and (43) lead to

hnref=n0i > �nref=n0: (44)

We can also expect that as the amplitudes of the 2D electro-

magnetic fluctuations dE and dB increase, the fraction of

reflected ions in the 2D electromagnetic fields becomes

greater than that in the 1D averaged fields, �E and �B.

IV. SIMULATION MODEL AND PARAMETERS

We study effects of trapped electrons on ion motion in

an oblique shock wave using a 2D (two spatial coordinates

and three velocity components) relativistic electromagnetic

particle code with full ion and electron dynamics. The simu-

lation system size is Lx � Ly ¼ 16384Dg � 512Dg, where Dg

is the grid spacing. The system is periodic in the y direction

and is bounded in the x direction; the particles are confined

in the region 200Dg < x < Lx � 200Dg, being specularly

reflected at these boundaries.16 The shock wave propagates

in the x direction in an external magnetic field in the (x, z)

plane, B0 ¼ B0ðcos h; 0; sin hÞ.
We choose the same values of parameters, except Ly, as

those in Ref. 12, where the electron trapping and acceleration

in an oblique shock wave were investigated in detail. The

ion-to-electron mass ratio is mi=me ¼ 400. The light speed is

c=ðxpeDgÞ ¼ 4. The ratio of Xe to xpe in the upstream region

is jXej=xpe ¼ 5:0. The Alfv�en speed is vA=ðxpeDgÞ ¼ 1:0.

The electron and ion thermal velocities are vTe=ðxpeDgÞ ¼
0:5 and vTi=ðxpeDgÞ ¼ 0:025. The plasma beta value is

b ¼ 0:05.

In order to elucidate the effects of 2D fluctuations on

ion motions, we calculate orbits of test ions in the 1D aver-

aged fields �E and �B obtained in the 2D electromagnetic

particle simulation. We denote the test ions as 1Dt ions. The

1Dt ions do not feel the 2D fluctuations, dE and dB. The

number of the 1Dt ions is 4:1� 106. We also follow the

same number of ions in the 2D simulation, which we call

2Ds ions. The initial positions and velocities of the 2Ds ions

are the same as those of the 1Dt ions. The fraction of the

reflected 2Ds ions is nref=n0 and that of the reflected 1Dt ions

is �nref=n0. We will show that y-averaged value of nref=n0,

which is denoted by hnref=n0i, is greater than �nref=n0, as pre-

dicted in Sec. III.

V. SIMULATION RESULTS

A. Evolution of electrons and electromagnetic fields in
an oblique shock wave

Before presenting the results on ion motions, we describe

evolution of electrons and electromagnetic fields in an

oblique shock wave. Figure 4 shows electron phase spaces

ðx; cÞ, x-profiles of �Bz, where �Bz is y-averaged Bz, and contour

maps of dBx ¼ Bx � Bx0 in the (x, y) plane at xpet ¼ 520 and

2320. The color in the phase space indicates the number

density in the ðx; cÞ plane. At xpet ¼ 520, some electrons are

FIG. 3. Ion velocity distribution function f ð~vxÞ. The reflected ions for vrmin

and vrmax are represented by the shaded areas and are compared with the

reflected ions for �vref in the 1D averaged fields.
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reflected near the end of the main pulse and are energized

there. The contour map of dBx shows that 2D fluctuations are

excited near the end of the main pulse. These fluctuations are

due to oblique whistler waves excited by the reflected

and trapped electrons. In the shock transition region

805 < x=ðc=xpeÞ < 810, there are few trapped electrons and

dBx is negligibly small. At xpet ¼ 2320, energetic electrons

are distributed over the wide region from the upstream to the

downstream of the shock wave. After trapping in the main

pulse, some electrons are detrapped from it and are subse-

quently accelerated because of their gyromotions; this accel-

eration mechanism is the same as the mechanism for

relativistic ions reported in Ref. 19. Compared to dBx at

xpet ¼ 520, the 2D fluctuations at xpet ¼ 2320 are excited in

the wide range of x. Further, the amplitudes of dBx in the

main pulse region at xpet ¼ 2320 are much greater than those

at xpet ¼ 520, as a result of nonlinear interaction of current

filaments generated by the oblique whistler waves. The 2D

fluctuations are also excited in the upstream region, which

are due to the reflected ions (e.g., Refs. 17 and 18, and refer-

ences therein). However, their amplitudes are much smaller

than the 2D fluctuations due to the trapped electrons near

x¼ xm.

Figure 5 displays time variations of numbers of trapped

and detrapped electrons and amplitudes of 2D electromag-

netic fluctuations. The top panel shows the ratio Ntrap=Nenc,

where NencðtÞ is the number of electrons that have

encountered the shock wave and NtrapðtÞ is the number of

electrons that have experienced trapping. The number of

electrons that have been detrapped from the main pulse is

denoted by Ndet. The middle panel shows that the electron

detrapping starts at xpet ’ 1000. The bottom panel shows

the magnitudes of 2D fluctuations. We define rB and rE as

rB x; tð Þ ¼
1

Ly

X
j¼x;y;z

ðLy

0

dyjBj x; y; tð Þ � �Bj x; tð Þj;

rE x; tð Þ ¼
1

Ly

X
j¼x;y;z

ðLy

0

dyjEj x; y; tð Þ � �Ej x; tð Þj: (45)

The values of rB and rE averaged over the shock transition

region are written as jrBjst and jrEjst, that is,

jrBjst ¼
1

D

ðxmþD

xm

dxrB x; tð Þ; jrEjst ¼
1

D

ðxmþD

xm

dxrE x; tð Þ: (46)

Comparison between the middle and bottom panels shows that

as Ntrap � Ndet increases, both jrBjst and jrEjst increase. After

jrBjst and jrEjst become large, the electron detrapping starts.

At xpet ’ 1300; jrBjst; jrEjst, and Ntrap � Ndet are saturated.

We show the characteristic wavelength and frequency of

the 2D fluctuations. Figure 6(a) shows the time variation of

the wavelength along y, ky, of the dominant mode of dBx in

the main pulse. The values of ky are averaged over the period

xpet ¼ 200. (The wavelength along x, kx, is set to be almost

equal to the width of the main pulse region because the 2D

fluctuations have large amplitudes in this region. For

the other kx, ky takes almost the same values of ky shown in

Fig. 6(a).) At the initial stage (xpet < 1000), ky increases

because of the nonlinear interaction of current filaments.

FIG. 4. Electron phase spaces ðx; cÞ, x-profiles of �Bz, and contour maps of

dBx ¼ Bx � Bx0 in the (x, y) plane at xpet ¼ 520 and 2320.

FIG. 5. Time variations of numbers of trapped and detrapped electrons, Ntrap

and Ndet, and amplitudes of 2D electromagnetic fluctuations averaged over

the shock transition region, jrBjst and jrEjst. In the top panel, Ntrap is normal-

ized to the number of electrons that have encountered the shock wave, Nenc.

062305-6 M. Toida and J. Inagaki Phys. Plasmas 22, 062305 (2015)



Comparison of this figure with Fig. 5 shows that ky stops to

increase when the electron detrapping starts. After

xpet ¼ 1200, ky oscillates with time. The value of ky aver-

aged over the period from xpet ¼ 1500 to 2500 is

ky ’ 25c=xpe. Figure 6(b) shows the frequency spectrum

PðxÞ of the mode with this wavelength, ky ’ 25c=xpe. PðxÞ
has the peak at x ’ 1:7� 10�2xpe (’1:4Xi, where Xi is the

ion cyclotron frequency in the upstream region). We write

this frequency as x2D.

B. Ion motion

1. Verification of assumption on 2D fluctuations in
physical consideration

We first give an overview of ion motion in an oblique

shock wave. Figure 7 shows the ion phase spaces ðx; vxÞ and

ðx; vyÞ, which are averaged over the y direction, and the

x-profiles of �Bz (black line in the top panel) and �/ (blue line)

at xpet ¼ 920, where �/ is the 1D averaged potential, defined

as

�/ ¼ �
ðx

x0

dx �ExðxÞ: (47)

Most of the ions transmit the shock transition region without

reflection, whereas some ions are reflected from the shock

front and go back to the upstream region. Because of the

v� B force, the reflected ions change the direction of v and

reenter the transition region. Then, they pass this region

without reflection and go into the downstream region x < xm.

Unlike trapped electrons, reflected ions cannot stay near the

shock front region for a long time. This is the reason why

the amplitudes of instabilities due to reflected ions are

much smaller than those due to trapped electrons, as shown

in Fig. 4.

We next verify the assumption on the 2D fluctuations. In

Sec. III, we assumed that the characteristic period of the 2D

fluctuations is much longer than tref � t1, where t1 is the time

at which an ion enters the shock transition region and tref is

the ion reflection time. We also assume that characteristic

wavelength of the 2D fluctuations, ky, is much greater than

the displacement of the ion y during the period from t1 to tref .

Figure 8 displays time variations of x� xm and y of a

reflected ion. Here, the time t� t1 is normalized by T2D,

where T2D is the characteristic period of the 2D fluctuation

defined by 2p=x2D with x2D shown in Fig. 6. The vertical

gray lines indicate the times t1 and tref , showing that tref � t1

is much smaller than T2D. The displacement of y during this

period is Dy � 3c=xpe. Comparison of this with Fig. 6 con-

firms that Dy is much smaller than the characteristic wave-

length ky of the 2D fluctuations.

We also follow the orbits of many ions that enter the

shock transition region during the period from xpet ¼ 1000

to 2000 and obtain Fig. 9. The right panels show the

FIG. 7. Profiles of �Bz and �/ and ion phase spaces ðx; vxÞ and ðx; vyÞ at

xpet ¼ 920.

FIG. 8. Time variations of x and y of a reflected ion. The top axis is normal-

ized by the characteristic period of the 2D fluctuations, T2D ¼ 2p=x2D,

where x2D was shown in Fig. 6.

FIG. 6. (a) Time variation of the wavelength along y, ky, of the dominant

mode of dBx in the main pulse. (b) Frequency spectrum PðxÞ of the mode

with ky ’ 25c=xpe. The frequency at which PðxÞ becomes maximum is

defined as x2D.
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distributions of reflected ions as functions of tref � t1 and Dy.

The left panels show the distributions of transmitted ions as

functions of t2 � t1, in which ions transmit the shock transi-

tion region, and Dy for this period. For almost all the ions,

tref � t1 and t2 � t1 are much smaller than T2D, and the values

of Dy for these periods are much smaller than ky. We thus

confirm that the assumption in Sec. III is valid.

2. Effects of 2D fluctuations on ion motion

We now consider effects of 2D fluctuations on ion

motion. To do this, we compare the 2Ds ions, which are

under the influence of the 2D fluctuations, and the 1Dt ions,

which are not. Figure 10(a) shows the x-profiles of �Bz (black

line), rB (blue), and rE (red) near the shock front at

xpet ¼ 520, where rB and rE are the amplitudes of the 2D

fluctuations defined by Eq. (45). The phase spaces ðx; vxÞ
of 2Ds ions averaged over y and of 1Dt ions are shown in

Figs. 10(b) and 10(c), respectively. The ions with vx > vsh in

the region x > xmð’ 802c=xpeÞ are reflected from the shock

front. The fraction of such particles in the 2Ds ions,

hnref=n0i, is almost equal to that in the 1Dt ions, �nref =n0.

This is clearly shown in Fig. 10(d), where the distributions

of 2Ds (black) and 1Dt (blue) ions in the shock transition

region, 802 < x=ðc=xpeÞ < 811, are plotted as functions of

vx. The distributions of the two groups ions are almost the

same. This is because at xpet ¼ 520, the amplitudes of the

2D fluctuations, rB and rE, are small in the shock transition

region, although they are large near the end of the main

pulse.

Figure 11 shows the same as in Fig. 10, except at

xpet ¼ 920. At this time, the amplitudes of 2D fluctuations,

rB and rE, are large near the center of the main pulse, unlike

at xpet ¼ 520. Because of these large-amplitudes fluctua-

tions, there is a clear difference between the 1Dt and 2Ds

ions. Some 2Ds ions are reflected from the shock front,

whereas few 1Dt ions are. This is consistent with Eq. (43)

indicating that as the amplitudes of 2D fluctuations in the

shock transition region become large, more 2Ds ions are

reflected, compared to the 1Dt ions.

We observe the time variations of electromagnetic fields

and ion reflection in more detail. Figure 12 shows (a) the

maximum value of �Bz, (b) the fraction of reflected 2Ds ions

hnref=n0i (red) and the fraction of reflected 1Dt ions �nref =n0

(blue), (c) their difference hdnref=n0i, and (d) the amplitude

of 2D fluctuations averaged over the shock transition region,

jrBjst þ jrEjst, where jrBjst and jrEjst are defined by Eq. (46).

In the early stage xpet < 600, the fraction of reflected 2Ds

ions, hnref=n0i, is almost equal to that of reflected 1Dt ions,

�nref =n0. However, after xpet > 800, the former is much

greater than the latter. The evolution of hdnref=n0i is roughly

similar to that of jrBjst þ jrEjst. We thus confirm that 2D

electromagnetic fluctuations in the shock transition region

can enhance the ion reflection. (More strictly, there are some

differences between time variations of hdnref=n0i and

jrBjst þ jrEjst. This may be because hdnref=n0i also depends

on �B and �Ex, as suggested by Eqs. (31) and (43).)

Equation (33) indicates that the positive dEx and dB
enhance the reflection of 2Ds ions. We observe dEx and dB

FIG. 9. Distributions of reflected ions as functions of tref � t1 and Dy for this

period (left panels), and distributions of transmitted ions as functions of the

time period in which ions transmit the shock transition region and Dy for

this period (right panels).

FIG. 10. (a) Profiles of �Bz (black line) and amplitudes of 2D electromagnetic

fluctuations, rB (blue) and rE (red) defined by Eq. (45), near the shock front

at xpet ¼ 520, (b) phase space ðx; vxÞ of 2Ds ions, (c) that of 1Dt ions, and

(d) distributions of 2Ds (black) and 1Dt (blue) ions in the shock transition

region as functions of vx.
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that the 2Ds ions felt before the reflection from xpet ¼ 1000

to 2000. Figure 13 displays the distributions of reflected 2Ds

ions as functions of dEx and dB, where the values of dEx and

dB are averaged over the time from t1 to tref for each

reflected ion. This figure shows that most of the reflected

ions felt the positive dEx or the positive dB before the

reflection.

C. Comparison with 1D simulation

We present results of the 1D simulation for the same

parameters as the 2D simulation, except Ly and the total

number of simulation particles. Figure 14 shows the

maximum value of Bz, Bm, and the fraction of reflected ions

nref=n0 as functions of time. We see a clear correlation

between Bm and nref=n0; when Bm is large (small), the ion

reflection is strong (weak). At some times, nref=n0 is almost

zero. However, as shown by the red line in Fig. 12(b) for the

2D simulation, the reflection of the 2Ds ions takes place con-

tinually. The time-averaged fraction of reflected ions from

xpet ¼ 400 to 2000 for the 2D simulation is 0.053, which is

about 30% greater than that for the 1D simulation. A com-

parison between the top panels of Figs. 12 and 14 shows that

the peak values of �Bm in the 2D simulation are smaller than

those of Bm in the 1D simulation after xpet ¼ 700. This may

indicate that the enhancement of ion reflection due to the 2D

fluctuations influences the 1D averaged magnetic field and

causes the reduction in �Bm. As a result of small peaks of �Bm

in the 2D simulation, the reflection of 1Dt ions, which are

under the direct influence of �Bm, is considerably reduced

after xpet ¼ 700, as shown by the blue line in Fig. 12(b).

FIG. 12. Time variations of amplitude of electromagnetic fields and frac-

tions of reflected ions: (a) the maximum value of �Bz, (b) the fractions of

reflected 2Ds ions hnref=n0i (red) and of 1Dt ions �nref=n0 (blue), (c) their dif-

ference, hdnref=n0i ¼ hnref=n0i � �nref=n0, and (d) the amplitude of the 2D

fluctuations in the shock transition region, jrBjst þ jrEjst.
FIG. 13. Distributions of reflected ions as functions of dEx and dB that the

ions felt before the reflection.

FIG. 11. The same as Fig. 10, except at xpet ¼ 920.
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We next show that effects of trapped electrons on the ion

reflection are negligible in the 1D simulation. Figure 15(a)

shows the time variations of the number of trapped electrons

Ntrap (black) and its ratio to Nenc (gray). Figures 15(b) and

15(c) display the maximum values of Fð¼ �
Ð

EkdsÞ and /,

Fm and /m, respectively. Figure 15(d) shows the value of By

averaged over the shock transition region, Byst, where Byst is

defined by

Byst ¼
1

D

ðx1

xm

Bydx: (48)

(Fm, /m, and Byst in this figure are averaged over the period

xpet ¼ 80.) For comparison, the 1D averaged quantities in

the 2D simulation, �Fm; �/m, and �Byst, are plotted with gray

lines, where �F is defined as

�F ¼ �
ð

�Ekd�s ¼ �
ð
ð �Ek �B=Bx0Þdx; (49)

where �Ek ¼ �E 	 �B= �B; �s is the length along �B, and

d�s ¼ dx �B=Bx0. As discussed in Sec. II, the increase in Ntrap

causes the increase in Fm and the decrease in Byst in the 1D

simulation. The increase in Fm indicates that Ek strengthens.

However, Eq. (22) shows that the critical velocity for the ion

reflection vref does not depend on Ek, indicating that the

change in Ek does not influence the ion reflection. The decre-

ment in Byst until xpet ¼ 2000 is of the order of 0:1B0, which

is much smaller than the amplitude of oscillation in Bm.

Because of this, the change in By is also not important. Thus,

the effects of trapped electrons on the ion reflection through

the change in Ek and By are negligible in the 1D simulation.

In the 2D simulation, �Fm is saturated at xpet ’ 1000, at

which the electron detrapping starts (see Fig. 5), and the

decrement of �Byst is smaller compared to that in the 1D simu-

lation. The trapped electrons influence the ion reflection

through exciting 2D fluctuations, which have the maximum

amplitude of the order of B0, as shown in Fig. 4.

VI. SUMMARY

A magnetosonic shock wave propagating obliquely to

the external magnetic field can trap some electrons and

accelerate them to ultrarelativistic energies. These electrons

significantly influence electromagnetic fields near the shock

front. In the 2D simulation, the trapped electrons excite

whistler-wave instabilities. As a result of nonlinear develop-

ment of the instabilities, 2D electromagnetic fluctuations

along the shock front grow to large amplitudes. We studied

effects of trapped electrons on ion motions in an oblique

shock wave.

First, we analytically derived the condition for ions to

be reflected from the shock front and the fraction of reflected

ions, assuming that a shock wave propagates in the x direc-

tion in the external magnetic field, B0 ¼ ðBx0; 0;Bz0Þ. It was

predicted that the fraction of reflected ions is enhanced by

the 2D electromagnetic fluctuations.

Next, we performed 2D electromagnetic particle simula-

tions with full ion and electron dynamics. It was confirmed

that 2D electromagnetic fluctuations are excited by trapped

electrons. In order to study effects of the 2D fluctuations on

ion reflection, we followed the orbits of a large number of

ions (2Ds ions). We also calculated the orbits of the same

number of test ions in the electromagnetic fields averaged

along y. The test ions (1Dt ions) do not feel the 2D electro-

magnetic fluctuations. It was shown that the fraction of

reflected 2Ds ions is greater than that of reflected 1Dt ions.

The difference between the two groups of ions increases

FIG. 15. Time variations of electrons and electromagnetic fields in the 1D

simulation: (a) the number of trapped electrons and its ratio to the number of

electrons that encountered the shock wave, (b) the maximum value of F, (c)

the maximum value of U, and (d) the value of By averaged over the shock

transition region. The blue lines in (b)–(d) show the values of the 1D aver-

aged fields in the 2D simulation.

FIG. 14. Time variations of the maximum value of Bz and the fraction of

reflected ions in the 1D simulation.
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with the amplitudes of the 2D electromagnetic fluctuations

due to the trapped electrons. We also performed a 1D elec-

tromagnetic particle simulation. Although the trapped elec-

trons strengthen Ek in the 1D case, the ion reflection is not

significantly influenced by Ek. The fraction of reflected ions

in the 1D case is smaller than that in the 2D case.
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APPENDIX A: DERIVATION OF EQUATIONS (7) AND
(19)

In order to describe ion motion in the shock transition

region x1 � D < x < x1, we introduce the tensor T satisfying

the relation

B0 ¼ TB; (50)

where B0 is

B0 ¼ ð0; 0;BÞ: (51)

When the magnetic field B is written as

Bx ¼ B sinn cosu; By ¼ B sinn sinu; Bz ¼ B cosn; (52)

the components of T can be given by

Txx ¼ cos n cos u; Txy ¼ cos n sin u; Txz ¼ �sin n; (53)

Tyx ¼ �sin u; Tyy ¼ cos u; Tyz ¼ 0; (54)

Tzx ¼ sin n cos u; Tzy ¼ sin n sin u; Tzz ¼ cos n: (55)

Using the tensor T, we also define v00;v
0, and E0 as

v0 ¼ Tv; v00 ¼ Tv0; E0 ¼ TE: (56)

Then, the equations of ion motion in the ðx0; y0; z0Þ frame are

written as

m
dv0x
dt
¼ qE0x þ

q

c
v0yB; (57)

m
dv0y
dt
¼ qE0y �

q

c
v0xB; (58)

m
dv0z
dt
¼qE0z¼qEk: (59)

Provided that E0 and B0 are constant, the ion motion can be

described by

v0x ¼ V1 cos½�Xðt� t1Þ þ g1� þ cE0y=B; (60)

v0y ¼ V1 sin½�Xðt� t1Þ þ g1� � cE0x=B; (61)

v0z ¼ v0k0 þ ðqEk=mÞðt� t1Þ: (62)

Assuming that v0 at t¼ t1 is equal to v00, we have V1, g1, and

v0k0 satisfying the relations

V1 cos g1 þ cE0y=B ¼ v0x0; (63)

V1 sin g1 � cE0x=B ¼ v0y0; (64)

v0k0 ¼ v0z0: (65)

The velocity v in the (x, y, z) frame is given by

v ¼ T�1v0¼tTv0. Therefore, we can write vx as

vx ¼ Txxv
0
x þ Tyxv

0
y þ Tzxv

0
z

¼ V1ðTxx cos wþ Tyx sin wÞ þ cðTxxE0y � TyxE0xÞ=B

þ Tzxvk0 þ TzxðqEk=mÞðt� t1Þ; (66)

where

w ¼ �Xðt� t1Þ þ g1: (67)

We can rewrite Eq. (66) as Eq. (7) as follows. Introducing V
and g2 given by

V ¼ V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

xx þ T2
yx

q
; (68)

cos g2 ¼ TxxV1=V; sin g2 ¼ �TyxV1=V; (69)

we have

V1ðTxx cos wþ Tyx sin wÞ ¼ V cosðwþ g2Þ: (70)

Equations (55) and (56) lead to

c

B
TxxE0y � TyxE0x


 �
¼ c

B2
EyBz � EzByð Þ: (71)

We define vgx and akx as Eqs. (10) and (11), respectively. We

also introduce g given by

g ¼ g1 þ g2: (72)

Then, we rewrite Eq. (66) as Eq. (7). Using Eqs. (63), (64),

and (69), we obtain V cos g and V sin g as Eqs. (8) and (9),

respectively.

We now derive Eq. (19). We assume that Ey �
�vshBz0=c and Ez � 0 because Ey and Ez are equal to these

values when the shock wave is 1D and stationary. We also

assume that Bz � By;Bx;B0 and vsh � j~vj. Then, we can

approximate

V cos g ’ �vsh; (73)

V sin gþ akx=X ’ cEx=B: (74)

Substituting these in Eq. (17), we have

w0 ’ vshB=ðcExÞ: (75)

By virtue of Eqs. (73)–(75), Eq. (18) leads to

d ’ � v2
sh

2c2

B2

E2
x

: (76)
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APPENDIX B: DEPENDENCE ON vsh

We have performed 2D simulations for various values

of vsh=ðc cos hÞ near vsh=ðc cos hÞ ¼ 1. Other parameters are

the same as those in Sec. IV. Figure 16 shows the depend-

ence of ion reflection and electromagnetic fields on vsh.

These values are averaged over the period from xpet ¼ 500

to 2000. Figure 16(a) shows the fraction of reflected 2Ds

ions hnref=n0i (black line) and the difference between the

2Ds and 1Dt ions hdnref=n0i (blue). As vsh increases, both

hnref=n0i and hdnref=n0i increase. The maximum values of �Bz

(black) and �/ (red) are plotted in Fig. 16(b), and the ampli-

tudes of 2D fluctuations of Ex and Bz in the shock transition

region, jdExj (black) and jdBzj (red), are in Fig. 16(c).

Substituting these values in Eqs. (31) and (33), we have �vref

(black) and dvref (red) shown in Fig. 16(d). By virtue of Eqs.

(35) and (43), we can write hnref=n0i as

nref

n0

� 	
� 1

2
erfc

�vrefffiffiffi
2
p

vTi

� �
þ exp � �v2

ref

2v2
Ti

 !
jdvrj2: (A1)

Figure 16(e) shows the theoretical estimate of hnref=n0i given

by Eq. (A1), in which the values of �vref and dvref are substi-

tuted. Comparison between Figs. 16(a) and 16(e) shows that

Eq. (A1) can qualitatively explain the observed hnref=n0i in

the 2D simulation. However, this equation gives overesti-

mate of hnref=n0i. This is because in deriving Eq. (A1), we

assumed that �vref � dvref , which breaks down as shown in

Fig. 16(d).
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