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The two-fluid resistive tearing mode instability in a periodic plasma cylinder of finite aspect ratio is

investigated numerically for parameters such that the cylindrical aspect ratio and two-fluid effects

are of order unity, hence the real and imaginary parts of the mode eigenfunctions and growth rate

are comparable. Considering a force-free equilibrium, numerical solutions of the complete eigen-

mode equations for general aspect ratios and ion skin depths are compared and found to be in very

good agreement with the corresponding analytic solutions derived by means of the boundary layer

theory [A. Ito and J. J. Ramos, Phys. Plasmas 24, 072102 (2017)]. Scaling laws for the growth rate

and the real frequency of the mode are derived from the analytic dispersion relation by using

Taylor expansions and Pad�e approximations. The cylindrical finite aspect ratio effect is inferred

from the scaling law for the real frequency of the mode. Published by AIP Publishing.
https://doi.org/10.1063/1.5009389

I. INTRODUCTION

Our previous work1 studied the linear stability of force-

free equilibria in a cylindrical geometry against two-fluid

resistive tearing modes, extending the corresponding slab

geometry theory for general ion skin depths2 and carrying out

a detailed benchmark between a fully numerical solution and

an analytic dispersion relation derived by means of the bound-

ary layer theory. As in the case of the slab geometry,2–6 the

two-fluid effect was found to enhance the growth rate of the

cylindrical tearing mode instability compared to the single-

fluid resistive magnetohydrodynamics (MHD) result.7 The

cylindrical effect on the two-fluid tearing mode was found to

be stabilizing like in the single-fluid case.7 Due to the combi-

nation of cylindrical and two-fluid effects, the mode acquires

a real frequency and scaling laws for the mode growth rate

and real frequency were derived from two-fluid resistive

MHD neglecting finite-Larmor radius (FLR) effects for force-

free equilibria. In the slab geometry, a real frequency associ-

ated with the diamagnetic drifts introduced with FLR effects

would appear if the equilibrium had a pressure gradient.8,9

Although the analytic dispersion relation was derived for

arbitrary values of the cylindrical aspect ratio, the numerical

analysis of Ref. 1 examined only a case where the cylindrical

effect was small. Nevertheless, the scaling laws that were

derived suggested that the real frequency increased with the

cylindrical effect and could become comparable to the growth

rate for values of the relevant aspect ratio parameter of order

unity. In addition, it was observed that the components of the

inner eigenfunction solution exhibit different behaviors when

their variation with respect to the cylindrical and the two-fluid

parameters is considered. This paper concentrates on the case

where the cylindrical effect is large and studies in more detail

the dependence of eigenvalues and eigenfunctions on the

finite aspect ratio cylindrical parameter.

The dispersion relation for the two-fluid resistive tearing

mode instability in the cylindrical geometry shows the

dependence of the mode growth rate and real frequency on

the ion skin depth, through different regimes that range from

the single-fluid MHD limit to the electron MHD limit. High

frequency modes with immobile ions described by the elec-

tron MHD and cylinder-like structures are both observed in

space plasmas as well as in laboratory plasmas. The disper-

sion relation that was derived from the simple two-fluid

model and includes rich small scale physics could be used

for verification of extended MHD simulations. The real fre-

quency comparable to the growth rate may be large enough

to be observed in simulations.

The paper is organized as follows: in Sec. II, we intro-

duce the two-fluid resistive MHD model, the force-free equi-

librium profiles in the cylindrical geometry adopted for our

analysis and the linear eigenmode equations for the two-fluid

tearing instability. The method used in the fully numerical

solution of the complete system of linear eigenmode equa-

tions is also described. In Sec. III, the analytic dispersion

relation of Ref. 1 is briefly reviewed. In Sec. IV, the numeri-

cal solutions of the eigenmode equations and the analytic

dispersion relation are shown for cases where the cylindrical

effect is large, and scaling laws for the growth rate and real

frequency of the mode based on Taylor expansions and Pad�e
approximations are derived. In Sec. V, the dependences of

the eigenvalues and eigenfunctions on the two-fluid and

cylindrical effects are further examined in the regime where

the latter is not negligible but numerically small. A summary

is given in Sec. VI.

II. BASIC EQUATIONS

We consider the system of resistive, cold-ion, two-fluid

(Hall) MHD equations used in Ref. 1, as the simplest model
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to investigate the effects of two-fluid physics and cylindrical

geometry on the resistive tearing mode, neglecting FLR,

electron inertia, and equilibrium pressure gradient effects

@B

@t
þr� E ¼ 0; (1)

j ¼ r� B; (2)

@n

@t
þr � ðnuÞ ¼ 0; (3)

E ¼ �u� Bþ 1

en
j� B�rpeð Þ þ gj ; (4)

min
@u

@t
þ ðu � rÞu

� �
þrpe � j� B ¼ 0; (5)

pe ¼ Te0n; (6)

where the electron temperature Te0 and the resistivity g are

constant. This system is to be linearized about a force-free,

cylindrical equilibrium with a vanishing density gradient and

flow velocity: r� B0 ¼ 0; n0 ¼ constant and u0 ¼ 0. Thus,

the equilibrium magnetic field is

B0 ¼ B0hðrÞeh þ B0zðrÞez (7)

and the equilibrium current density is j0¼ k0B0, where

k0 ¼
j0 � B0

B2
0

¼ 1

rB0z

dðrB0hÞ
dr

¼ � 1

B0h

dB0z

dr
: (8)

The linear stability analysis considers normal-mode per-

turbations of the form

f ðx; tÞ � f0ðrÞ ¼ f1ðrÞ exp ðimhþ ikzzþ ctÞ (9)

with wavevector k � ðm=rÞeh þ kzez. The parallel wavevec-

tor function that vanishes at the mode resonant surface rs is

FðrÞ � k � B0 ¼
m

r
B0h þ kzB0z : (10)

We consider the following choice of profiles for a force-

free cylindrical equilibrium:

B0hðrÞ ¼ eB=q0ð ÞBc r=að Þexp �r2=a2
� �

; (11)

B0zðrÞ ¼ Bc 1� e2
B

2q2
0

þ e2
B

q2
0

1

2
� r2

a2

� �
exp � 2r2

a2

� �" #1=2

;

(12)

k0ðrÞ¼
2eB

q0a
1�r2

a2

� �
1� e2

B

2q2
0

þe2
B

q2
0

1

2
�r2

a2

� �
exp �2r2

a2

� �" #�1=2

:

(13)

We normalize lengths to a, inverse lengths to a�1, magnetic

fields to Bc, and time to a/cAc, where c2
Ac � B2

c=ðmin0Þ. The

normalized resistivity �g is defined as �g ¼ g=ðacAcÞ. The thus

normalized quantities are denoted by the overbars.

Linearizing Eqs. (1)–(5) and eliminating the pressure

and density perturbations, we obtain the following equations:

ð�c þ �g �k
2Þ �B1r ¼ i �F�u1r þ �g

�r �B1rð Þ0

�r

� �0
� 2im

�r2
�B1h

( )

�i�c �di
m

�r
�u1z � �kz�u1h

� �
; (14)

�c i�k
2
�u1r � m

�u1h

�r

� �0
� �kz�u

0
1z �

2m

�r2
�u1h

( )

¼ � �k
2 �F þ m

�r

�r �B0hð Þ0

�r

� �0
þ �kz�r

�B
0
0z

�r

� �0( )
�B1r

þ �F
�r �B1rð Þ0

�r

� �0
� 2im

�r2
�B1h

( )

þ 2i�kz
�B0h

�r
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�r
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� �
; (15)

�c
m

�r
�u1z � �kz�u1h

� �
¼ i �F

m

�r
�B1z � �kz

�B1h

� �

þ m

�r
�B
0
0z �

�kz �r �B0hð Þ0

�r

� �
�B1r; (16)

ð�c þ �g �k
2Þ �B1h ¼ i�kz

�B0z�u1h � �B0h�u1zð Þ � �B0h�u1rð Þ0

þ�g
�r �B1hð Þ0

�r

� �0
þ 2im

�r2
�B1r

( )

�i�c �di
�kz�u1r þ i�u01z

� �
; (17)

�c2 þ �k
2

z b
� 	

�u1z ¼
�c �B0h

�kz
��k

2 �B1h þ
im

�r2
�r �B1rð Þ0

� �
� i�c �B

0
0z

�B1r

þ
�kzb
�r
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 �
; (18)

where �di � m
1=2
i =ðaen

1=2
0 Þ is the ion skin depth normalized

to a, b � Te0=ðmic
2
AcÞ, and

�k
2 � m2

�r2
þ �k

2

z : (19)

The prime denotes differentiation with respect to �r . From

r� B¼ 0,

�r �B1rð Þ0

�r
þ im

�r
�B1h þ i�kz

�B1z ¼ 0: (20)

Eliminating, further, �u1h; �u1z and �B1z, the normal-mode sys-

tem for ð�u1r; �B1r; �B1hÞ is obtained.

We solve numerically the complete set of normal-mode

equations on a sufficiently fine mesh that resolves the fine-

scale singular layer and yields the global eigenfunctions. The

eigenmode equations for ð�u1r; �B1r; �B1hÞ are numerically

solved to obtain eigenvalues of �c and eigenfunctions. We

calculate the radial component of the fluid displacement �n
and the non-ideal part of the z-component of the perturbed

magnetic field �Q to compare with the inner solutions of the

boundary layer theory obtained in Ref. 1 using the relations

�n ¼ �u1r=�c; (21)

�Q ¼ im2

�kz
�k

2
�r2

�B
0
1r þ

�B1r

�r

� �
� m

�r �kz

�B1h þ
im�k0

�r �k
2

�B1r: (22)

012117-2 A. Ito and J. J. Ramos Phys. Plasmas 25, 012117 (2018)



We consider the region 0 � �r � 2:0 ¼ 2�rs with a fixed

boundary at rW¼ 2.0a. The boundary conditions at �r ¼ 0

and �r ¼ 2:0 are

�u1rð0Þ ¼ �B1rð0Þ ¼ �B1hð0Þ ¼ 0; (23)

�u1rð2:0Þ ¼ �B1rð2:0Þ ¼ 0; (24)

�Qð2:0Þ ¼ 0: (25)

The condition (24) is the fixed boundary condition for radial

perturbations. We use the condition (25) on �Q only as a

boundary condition at �r ¼ 2:0. We discretize the variables

by taking the sixth order finite differences with 100 000

intervals in the region 0 � �r � 2:0 with the boundary condi-

tions (23)–(25) to obtain a matrix equation. We find the

eigenvalue of �c that satisfies the equation that the determi-

nant of the matrix of the coefficients is zero. Substituting this

solution of �c, the matrix equation is solved to obtain the

eigenfunctions. We choose b¼ 0.1 as a high beta value.

III. ANALYTIC DISPERSION RELATION

To compare with the numerical eigenvalues, the analytic

dispersion relation obtained in Ref. 1 is also solved. That dis-

persion relation for resistive two-fluid tearing modes in a

high-beta plasma cylinder was based on the boundary layer

theory for singular perturbations.6 It was obtained in the limit

of small resistivity, characterized by large values of the

dimensionless Lundquist number at the resonant surface,

S � �B0s=ð�g �ksÞ � 1, where �ks ¼ �kð�rsÞ and �B0s ¼ j�B0ð�rsÞj.
The normalized growth rate �c is proportional to a fractional

power of �g and much less than unity. Therefore, resistive and

inertial effects are only important within a narrow layer near

the resonant surface �rs. In our model, the only physical effect

that can produce tearing instability is the resistivity. If, in our

model, we set �g ¼ 0 and keep the two-fluid terms, there is no

reconnection at all because the magnetic field would be frozen

into the electron fluid. To obtain high reconnection rates inde-

pendent of �g found in other simulations, other physical mech-

anisms for sources of reconnection such as electron inertia

and for the enhancement of reconnection such as temperature

gradients, anisotropies, ion FLR, and/or non-linear effects,

like interactions with other instabilities and the coupling of in-

flow and out-flow of the diffusion region, should be included.

The inner solution in a narrow layer about �r ¼ �rs, scaled as

d�k
�1

s � �rs with d 	 S�1=4½�c=ð �B0s
�ksÞ
1=4 � 1, takes into

account the resistive and inertial effects and will match

asymptotically the ideal-MHD outer solution, regularizing its

singularity and allowing for a smooth global representation of

the mode. With the normalizations introduced in Sec. II, the

dispersion relation is written as

�D
0 ¼ �k

�1

s �c5=4�g�3=4j�ks
�LBj1=2 �B

�1=2
0s D q; rð Þ; (26)

where

Dðq; rÞ ¼ p

ð1þ r2=4Þ1=2

X
þ;�
ð1þ r2=4Þ1=2

6r=2

h i1=2

� Cð3=46iq=4Þ
Cð1=46iq=4Þ : (27)

The tearing mode stability index �D
0

is calculated from the

solution of the equation for �B1r in the outer regions outside

the diffusion region written in the normalized form as

1

�r �k
2

�r �B1rð Þ0
� �0

� 1þ
�k
0
0 m �B0z=�r � �kz

�B0h

� �
�k

2 �F

"

�
�k

2

0

�k
2
� 2m�kz

�k0

�r2 �k
4

#
�B1r ¼ 0; (28)

which yield

�D
0 ¼

�B
0
1rð�rsþÞ � �B

0
1rð�rs�Þ

�B1rð�rsÞ
: (29)

Two dimensionless parameters q and r take, respectively,

into account the effects of the cylindrical geometry and the

two-fluid physics with equilibrium inverse rotational trans-

form q0(r)¼ rB0z/(RB0h)

q ¼ 2

jRq00ðrsÞj
¼ 2�k

2

z j�LBj
�k

2

s �rs

; (30)

r �cð Þ ¼ �c1=2�g�1=2 �di; (31)

where �LB is the normalized magnetic shear length

1
�LB
¼ �k0ð�rsÞ þ

2m�kz

�r2
s
�k

2

s

: (32)

The macroscopic lengths, �r; �LB; �k
�1

, and �k
�1

0 , are formally

ordered as unity. Equation (30) shows that q is the scale

length of the magnetic shear q00 normalized to the major

radius R of the periodic cylinder. In the present equilibrium

with the poloidal mode number m 	 O(1), q is finite when eB

is finite and �rs 	 Oð1Þ while q ! 0 when eB ! 0 or

�rs !1. This indicates that q corresponds to the cylindrical

effect. Equation (27) includes the special cases: D(0, 0) for

MHD in the slab geometry,6 D(0, r� 1) for electron MHD

in the slab geometry,5 D(0, r) for two-fluid MHD with gen-

eral ion skin depths in the slab geometry,2 D(q, 0) for MHD

in the cylindrical geometry,7 and D(q, r� 1) for the case in

Ref. 10 in its high beta limit without the equilibrium pressure

gradient though this limit was not discussed in Ref. 10.

Three additional approximations were made for the bound-

ary layer theory.1 The first one is the “constant-w” approxi-

mation that neglects ðrB1rÞ0 ’ 0 but retains ðrB1rÞ00 6¼ 0 in

the inner layer equations and is valid provided �D
0
=�ks

¼ Oð1Þ. The second approximation is the neglect of �g �k
2

when compared to �c, which is justified by the anticipated

result that the growth rate will be proportional to a fractional

(less than one) power of the resistivity. The third approxima-

tion is the restriction to a deeply subsonic regime, where

�c � �kb1=2 and the fluid perturbation becomes incompressible

with a growth rate independent of b. This is guaranteed for an

“effectively high-b” characterized by b� S�2=5, which is a

well satisfied condition in most situations of interest.

In the present equilibrium, �D
0

is calculated from the

numerical solution of the outer regions. Equation (28) is
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solved numerically with a matrix solver, taking the sixth

order finite differences with 100 000 intervals, subject to the

boundary conditions

�B1r �rs � dn=2ð Þ ¼ �B1r �rs þ dn=2ð Þ � �B1rs; (33)

�B1rð0Þ ¼ �B1rð2:0Þ ¼ 0; (34)

where dn¼ 10�10. From the numerical solution for �B1r; �D
0

is

calculated as

�D
0 ¼

�B
0
1r �rs þ dn=2ð Þ � �B

0
1r �rs � dn=2ð Þ

�B1rs
: (35)

After substituting the values of �D
0
(35) and the other parame-

ters, the dispersion relation (26) is solved numerically for

�c by root finding methods. We choose the parameters

�g ¼ 10�8; q0 ¼ 0:25, and �rs ¼ 1:0 that can be compatible

with the assumption of the analytic dispersion relation �D
0
=�ks

¼ Oð1Þ. The normalized resistivity �g should be small enough

also for the agreement between the analytic dispersion rela-

tion and the numerical results.1 The other parameters are

also chosen to satisfy all other validity conditions for the

analytic dispersion relation.

IV. RESULTS FOR q OF ORDER UNITY

In this section, we carry out a numerical solution of the

eigenmode equations and examine the behavior of the ana-

lytic dispersion relation for a choice of parameters that yield

a value of cylindrical effect parameter q of order unity.

Taking eB¼ 0.3 and m¼ 3, we get q¼ 1.033, compared to

the small q¼ 0.09851 used in the analysis of Ref. 1. From

Secs. II and III, the other parameters result in �kz ¼ �3:100;
�ks ¼ 4:314; �LB ¼ �1:001; �B0s ¼ 0:614, and �D

0 ¼ 7:394.

The profiles of �B0h; �B0z, and �F ¼ �k � �B0 are shown in Fig. 1.

Figure 2 shows the variation of the real and imaginary parts

of �c with the ion skin depth �di, as obtained from the fully

numerical solution of the eigenmode equations and compared

with the analytic dispersion relation (26). There is an excellent

agreement in the range 10�4 � �di � 10. The growth rate

Reð�cÞ and the real frequency of the mode �Imð�cÞ are compa-

rable with each other for �di � 0:1. Figure 3 shows the eigen-

functions of �B1r normalized to �B1rs � �B1rð�rsÞ for �di ¼ 0 and

10. The �B1r= �B1rs eigenfunctions agree well with the outer

solution Eq. (28) in the outer region. In order to further clarify

the structure of the two-fluid tearing eigenfunctions and their

parametric dependences on the ion skin depth, as well as the

parametric dependence of the growth rate eigenvalue, we cal-

culate the eigenfunctions n̂ and Q̂ that determine the analytic

dispersion relation (26) from the eigenfunctions �n and �Q and

the eigenvalue of �c of the numerical solution. The two repre-

sentations are related by

n̂ ¼ i�n
odd

�B1rs
�g�cð Þ1=4 �B

1=2
0s signð�LBÞ j�ks=�LBj1=2; (36)

Q̂ ¼ �rs
�Q

odd

m �B1rs
�g1=4�c�3=4 �k

2

s
�di

�B
1=2
0s signð�LBÞ j�ks=�LBj1=2; (37)

where �n
odd

and �Q
odd

are the odd parts of the eigenfunctions,

extracted using

�f
odd

�rð Þ ¼
�f �rð Þ � �f 2�rs � �rð Þ

2
; 0 � �r � 2�rs; �f ¼ �n; �Q:

(38)

FIG. 1. Equilibrium profiles: (a) the magnetic field components �B0h and �B0z,

and (b) �F ¼ �k � �B0 for eB¼ 0.3, q0¼ 0.25, m¼ 3, and �rs ¼ 1:0.

FIG. 2. Growth rates and real frequencies as functions of the ion skin depth

obtained numerically from the eigenmode equations (points) compared with

the analytic dispersion relation (26) (lines) for eB¼ 0.3 and m¼ 3.
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Figures 4 and 5 show the eigenfunctions n̂ and Q̂ versus �r .

For the single-fluid MHD case ( �di ¼ 0, Fig. 4), only the real

part of n̂ exists. They become complex due to the two-fluid

effect (see Fig. 4 for �di ¼ 10�4 and Fig. 5 for �di ¼ 10). In

(a)–(d) of Fig. 4, Reðn̂Þ is dominant when �di is small while,

in (a)–(d) of Fig. 5, Q̂ is dominant when �di is large. As �di

increases, the width of Q̂ decreases while the width of n̂

increases. These behaviors are the same as in the case of the

small cylindrical parameter:1 the inner solutions of the two-

fluid tearing mode vary on two length scales associated with

the magnetic diffusion and two-fluid effect, and the diffusion

in the narrower scale enhances the growth of the tearing

mode. The only difference is that, in the presently considered

case where the cylindrical effect is large, the imaginary parts

of the eigenfunctions are large and comparable to their real

parts for finite �di. In (c) and (d) of Fig. 5, the scale length of

Q̂ for the considered �g ¼ 10�8 and �di ¼ 10 is too narrow to

be well resolved with the discrete mesh used here.

Nevertheless, our sixth order finite difference gives an accu-

rate result for the eigenvalue �c up to such �g ¼ 10�8 and
�di ¼ 10.

Although q¼ 1.033 is given by our choice of cylindrical

equilibrium, we also consider the case of q¼ 0 (the slab

limit) with the other parameters fixed in order to examine the

cylindrical effect in the analytic dispersion relation (26). In

the case of single-fluid MHD (r¼ 0), the tearing mode is

purely growing and the growth rate is �c ¼ 5:695� 10�5 for

q¼ 1.033, which shows the stabilizing effect of the cylindri-

cal geometry compared to �c ¼ 6:348� 10�5 for the slab

geometry, (q, r)¼ (0, 0). Figure 6 shows the dependence of

the real and imaginary parts of �c on the ion skin depth �di for

q¼ 0 and q¼ 1.033. The real part of �c (i.e., the growth rate)

is enhanced by the two-fluid effect. The effect of the cylin-

drical geometry is stabilizing for each value of �di. The stabi-

lizing effect for q¼ 1.033 is significant compared to the

FIG. 3. Eigenfunctions of �B1r normalized with �B1rs (solid lines) compared

with the numerical result for the outer solution Eq. (28) (dashed lines) for

(a) �di ¼ 0 and (b) �di ¼ 10 for eB¼ 0.3 and m¼ 3.

FIG. 4. Eigenfunctions of (a) Reðn̂Þ, (b) Imðn̂Þ, (c) ReðQ̂Þ, and (d) ImðQ̂Þ
for eB¼ 0.3, m¼ 3, and �di ¼ 0 (dashed lines) and �di ¼ 10�4 (solid lines)

obtained from the numerical eigenmodes.

FIG. 5. Eigenfunctions of (a) Reðn̂Þ, (b) Imðn̂Þ, (c) ReðQ̂Þ, and (d) ImðQ̂Þ
for eB¼ 0.3, m¼ 3, and �di ¼ 10 obtained from the numerical eigenmodes.
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small effect observed for q¼ 0.09851 in Ref. 1. The imaginary

part of ��c (i.e., the real frequency of the mode) arises when

both the two-fluid and cylindrical effects are present and

increases with �di. The growth rate and the real frequency

become comparable for q of order unity due to the decrease of

the growth rate and the increase of the real frequency.

Considering different regimes of the parameters r and

q, we can derive scaling laws for the growth rate and the real

frequency from the analytic dispersion relation (26). For

small r and q, we make the Taylor expansion up to the sec-

ond order

�D
0 ’ 2p

�ks
�B

1=2
0s

�c5=4�g�3=4j�ks
�LBj1=2C0

� 1þ C2

32
q2

� �
1� 3

32
r2

� �
þ iC1

16
rq

" #
; (39)

where

C0 ¼
C 3=4ð Þ
C 1=4ð Þ ¼ 0:3380; (40)

C1 ¼
C0 3=4ð Þ
C 3=4ð Þ �

C0 1=4ð Þ
C 1=4ð Þ ¼ p; (41)

C2 ¼ �
C00 3=4ð Þ
C 3=4ð Þ þ

C00 1=4ð Þ
C 1=4ð Þ þ

2C0 1=4ð Þ
C 1=4ð Þ C1 ¼ 4:786: (42)

The real and imaginary parts of the dispersion relation are,

respectively, given by

�D
0 ’ 2p�c5=4

r

�ks
�B

1=2
0s

�g�3=4j�ks
�LBj1=2C0

(
1þC2

32
q2� 3

32
1þC2

32
q2

� ��1

� 1þ q2

32
C2�

13p2

15

� �� �2

þC3q
4

( )
�cr0�g�1 �d

2

i

)
;

(43)

�ci ’ �
p�c3=2

r0

20
�g�1=2 �diq 1þ C2

32
q2

� ��1

¼ � p
20

�ks
�B

1=2
0s

2p
C�1

0
�D
0j�ks

�LBj�1=2
1þ C2

32
q2

� ��1
" #6=5

� �g2=5 �diq 1þ C2

32
q2

� ��1

; (44)

where �cr ¼ Reð�cÞ; �ci ¼ Imð�cÞ, and

�cr0 ¼
�ks

�B
1=2
0s

2p
C�1

0
�D
0jks

�LBj�1=2
1þ C2

32
q2

� ��1
" #4=5

�g3=5;

(45)

C3 ¼
13p2

7680
C2 �

13p2

30

� �
¼ 0:008504: (46)

Equation (43) shows small corrections to �cr0 due to �di. The

effect of q in �cr0 [Eq. (45)] is stabilizing compared to the dis-

persion relation for MHD in the slab geometry,6 (q, r)¼ (0, 0),

since C2> 0. The third term in the parentheses of the RHS of

(43) shows the enhancement of the growth due to the two-fluid

effect with modification due to the cylindrical effect since this

term is negative for all values of q. Equation (44) shows that

the real frequency appears due to the combination of the two-

fluid and cylindrical effects and departs from the linear depen-

dence for large q.

For small r but q of order unity, a better result can be

obtained by using a Pad�e approximation for the dependence

on q while retaining the same Taylor expansion for r. Then,

the dispersion relation (26) becomes

�D
0’ 2p

�ks
�B

1=2
0s

�c5=4�g�3=4j�ks
�LBj1=2C0

64p2þC2
2q

2

�
64p2þ 2p2þC2

� �
C2q

2

 �

� 1� 3

32
r2

� �
þ4ip3rq


: (47)

By the definition of the Pad�e approximation, the Taylor

expansions of Eq. (47) up to the second order in q coincide

with Eq. (39). The real and imaginary parts of the dispersion

relation are, respectively, given by the Taylor expansion of

Eq. (47) up to O(r2)

�D
0 ’ 2p

�ks
�B

1=2
0s

�c5=4
r �g�3=4j�ks

�LBj1=2C0

64p2 þ C2
2q

2

(
64p2 þ 2p2 þ C2

� �
C2q

2

þ
�

104

5

q2p6

64p2 þ 2p2 þ C2ð ÞC2q2

� 3

32
64p2 þ 2p2 þ C2

� �
C2q

2

 �

�cr1�g�1 �d
2

i

)
; (48)

�ci¼�
16

5

�c3=2
r1 p3�g�1=2 �diq

64p2þ 2p2þC2ð ÞC2q2

’�16

5

�ks
�B

1=2
0s

2p
C�1

0
�D
0j�ks

�LBj�1=2 64p2þC2
2q

2

64p2þ 2p2þC2ð ÞC2q2

" #6=5

� p3�g2=5 �diq
64p2þ 2p2þC2ð ÞC2q2

; (49)

where

FIG. 6. Growth rates and real frequencies as functions of the ion skin depth

for m¼ 3 and q¼ 1.033 (solid lines) and q¼ 0 (dashed lines) obtained from

the analytic dispersion relation (26).
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�cr1¼
�ks

�B
1=2
0s

2p
C�1

0
�D
0j�ks

�LBj�1=2 64p2þC2
2q

2

64p2þ 2p2þC2ð ÞC2q2

" #4=5

�g3=5:

(50)

For large r, a Taylor expansion of the dispersion rela-

tion to the second order in q yields

�D
0 ’ 2p

�ks
�B

1=2
0s

�c�g�1=2 �d
�1=2

i j�ks
�LBj1=2C0 � 1þ ip

4
qþ C2

32
q2

� �
:

(51)

The growth rate is then given by

�cr ¼
�ks

�B
1=2
0s

2pC0

�D
0
�g1=2 �d

1=2

i j�ks
�LBj�1=2 �

1þ C2

32
q2

1þ C2

32
q2

� �2

þ p2

16
q2

:

(52)

This shows the correction due to the cylindrical effect, which

is also stabilizing compared to the dispersion relation for elec-

tron MHD in the slab geometry (q¼ 0 and r� 1).5 The real

frequency is given by

�ci ¼ �
�ks

�B
1=2
0s

8C0

�D
0
�g1=2 �d

1=2

i j�ks
�LBj�1=2

� q

1þ C2

32
q2

� �2

þ p2

16
q2

: (53)

This shows the departure from the linear dependence for

large q. With a Pad�e approximation for the dependence of

the dispersion relation on q and r� 1, we obtain

�D
0 ’ 2p

�ks
�B

1=2
0s

�c�g�1=2 �d
�1=2

i j�ks
�LBj1=2C0 �

8pþ 2p2 þ C2ð Þiq
8pþ iC2q

:

(54)

The growth rate is then given by

�cr ¼
�ks

�B
1=2
0s

2p
�D
0
�g1=2 �d

1=2

i j�ks
�LBj�1=2C�1

0

� 64p2 þ 2p2 þ C2ð ÞC2q2

64p2 þ 2p2 þ C2ð Þ2q2
:

(55)

The real frequency is given by

�ci ¼ �
8p2 �ks

�B
1=2
0s

�D
0
�g1=2 �d

1=2

i j�ks
�LBj�1=2C�1

0 q

64p2 þ 2p2 þ C2ð Þ2q2
: (56)

Figure 7 shows the dependence on the ion skin depth �di

of the real and imaginary parts of �c, compared with the scal-

ing laws for r� 1 and r� 1. In Fig. 7(a), the dotted lines

for r� 1 and r� 1 are obtained from the Taylor expansions

of the dispersion relation (43) and (52), respectively, and the

dashed lines for r� 1 and r� 1 are obtained from the Pad�e
approximation of the dispersion relation (48) and (55),

respectively. In Fig. 7(b), the dotted lines for r� 1 and r� 1

are obtained from the Taylor expansions of the dispersion

relation (44) and (53), respectively, and the dashed lines for

r� 1 and r� 1 are obtained from the Pad�e approximation

of the dispersion relation (49) and (56), respectively. Figure

7 shows that the dispersion relation (26) is well approxi-

mated by both the Taylor expansions and the Pad�e approxi-

mations for small �di � 0:01 and for large �di � 1. The

differences between the Taylor expansions and the Pad�e
approximations are small in the present results, but the accu-

racy for j�cj of the Pad�e approximations is slightly better than

that of the Taylor expansions. The errors from the analytic

dispersion relation are 	1% for the Taylor expansion and

	0.6% for the Pad�e approximation for �di � 1, and 	2.6%

for the Taylor expansion and 	1% for the Pad�e approxima-

tion for �di � 1. It is noted that, since r must be self-

consistent with �c, the resulting �c must satisfy the assump-

tions r� 1 and r� 1, which are satisfied for �di � 1 and
�di � 1, respectively, for �g � 1 as shown in Fig. 7.

Equations (44), (49), (53), and (56) show that the real fre-

quency is proportional to the fractional power of resistivity

as the growth rate. Hence, the real frequency appears due to

the combination of resistivity, two-fluid, and cylindrical

effects with zero-temperature ions and constant equilibrium

electron pressure, unlike diamagnetic effects. It is mentioned

FIG. 7. (a) Growth rates and (b) real frequencies as functions of the ion skin

depth for q¼ 1.033 and m¼ 3 obtained from the analytic dispersion relation

(26) (solid lines) compared with its Taylor expansions (dotted lines) and

Pad�e approximations (dashed lines) in q for r� 1 and r� 1.
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in Ref. 11 that two-fluid tearing instability becomes oscilla-

tory due to the cylindrical effect, without explicit results to

compare.

V. PARAMETRIC STUDY OF THE DEPENDENCE ON
TWO-FLUID AND CYLINDRICAL EFFECTS FOR
SMALL q

Here, we examine the dependence of the numerical

eigenmodes on the two-fluid and cylindrical effects, compar-

ing with the approximations of the analytic dispersion rela-

tion and the inner eigenfunctions derived in Ref. 1 for small

q. Although the value of q can be independently set in the

analytic dispersion as in Fig. 6, a parametric study of the

dependence on q, consistent with a set of different equilib-

rium profiles, must be done for numerical eigenmodes. We

choose two values of the parameter eB¼ 0.05 and 0.1 that

give different values of small q for q0¼ 0.25, �rs ¼ 1:0, and

m¼ 2. From Sec. III, for eB¼ 0.05, the other parameters

result in q ¼ 0:074; �kz ¼ �0:149; �ks ¼ 2:006; �LB ¼ �6:755;
�B0s ¼ 0:991, and �D

0 ¼ 2:961 while for eB¼ 0.1, the other

parameters result in q ¼ 0:154; �kz ¼ �0:308; �ks ¼ 2:024;
�LB ¼ �3:317; �B0s ¼ 0:965, and �D

0 ¼ 3:208.

Figure 8 shows the dependence on the ion skin depth �di

of the real and imaginary parts of �c for (a) eB¼ 0.05 and (b)

eB¼ 0.1. Figures 2 and 8 indicate that the difference between

the growth rate and the real frequency is smaller for larger q.

In order to further illustrate the dependence of the numerical

�c eigenvalues on the cylindrical effect for consistent equilib-

rium parameters, we introduce the functions q1 and q2

FIG. 8. Growth rates and real frequencies as functions of the ion skin depth

obtained numerically from the eigenmode equations (points) compared with

the analytic dispersion relation (26) (lines) for (a) eB¼ 0.05 and (b) eB¼ 0.1

for m¼ 2.

FIG. 9. The q¼q1 and q¼q2 functions, plotted against the ion skin depth

for m¼ 2. The continuous curves are obtained from the analytic dispersion

relation for eB¼ 0.05 (dashed lines) and eB¼ 0.1 (solid lines). The circle

dots and square dots are obtained from numerical eigenvalues for eB¼ 0.05

and 0.1, respectively.

FIG. 10. Eigenfunctions of (a) Reðn̂Þ, (b) Imðn̂Þ, (c) ReðQ̂=rÞ, and (d)

ImðQ̂=rÞ for �di ¼ 0, and eB¼ 0.05 (dashed lines) and eB¼ 0.1 (solid lines)

obtained from the numerical eigenmodes.
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defined by solving for q in the scaling laws for the real fre-

quency derived in Ref. 1 for q� 1, respectively, in the

r� 1 and r� 1 limits

q1 ¼ �
20�ci�g

1=2

p�c3=2
r

�di

ðr� 1Þ; (57)

q2 ¼ �
4�ci

p�cr

ðr� 1Þ: (58)

Figure 9 shows the curves q¼ q1 and q¼ q2, where the com-

plex growth rates obtained from the complete analytic dis-

persion relation and from the numerical eigenvalue solution

have been substituted for ð�cr;�ciÞ in (57) and (58), for the two

considered cases of eB¼ 0.05 and 0.1. Both in the limits of

small and large �di, they show a good agreement with the

physical q¼ 0.074 for eB¼ 0.05 and q¼ 0.154 for eB¼ 0.1.

Thus, q can be estimated from the numerical eigenvalues of

the growth rate and real frequency by using the scaling laws

(57) and (58).

The eigenfunctions also depend on r and q.

Approximations of the inner solutions of n̂ and Q̂ for r 	
q� 1 can be obtained by expanding the inner solutions with

respect to r and q1 as

n̂ ’ exp �x̂2=2
� �X1

n¼0

2�2nþ1=2

4nþ 3ð Þn!
H2nþ1 x̂ð Þ

� 1þ iqr
4 4nþ 3ð ÞO1 x̂ð Þ þ q2

2 4nþ 3ð Þ2
þ r2

32
O2 x̂ð Þ

" #
;

(59)

Q̂=r ’ exp �x̂2=2
� �X1

n¼0

2�2nþ1=2

4nþ 3ð Þn!
H2nþ1 x̂ð Þ

� r
4

O1 x̂ð Þ � iq
4nþ 3

� �
; (60)

where

O1 x̂ð Þ ¼ 1þ x̂2 � x̂

H2nþ1 x̂ð Þ
dH2nþ1

dx̂
; (61)

O2 x̂ð Þ ¼ 1þ x̂4 þ x̂2

H2nþ1 x̂ð Þ
d2H2nþ1

dx̂2
; (62)

x̂ ¼ �r � �rsð Þ �g�cð Þ�1=4 �B
1=2
0s j�ks=�LBj1=2: (63)

Figures 10–12 show the numerical solutions of the eigen-

functions n̂ and Q̂=r as functions of x̂ for eB¼ 0.05

(q¼ 0.074) and eB¼ 0.1 (q¼ 0.154), in the cases of �di ¼ 0

(r¼ 0) and �di ¼ 10�4 (r ’ 3.515� 10�3 for eB¼ 0.05 and r

FIG. 11. Eigenfunctions of (a) Reðn̂Þ, (b) Imðn̂Þ, (c) ReðQ̂=rÞ, and (d)

ImðQ̂=rÞ for �di ¼ 10�4, and eB¼ 0.05 (dashed lines) and eB¼ 0.1 (solid

lines) obtained from the numerical eigenmodes.

FIG. 12. Eigenfunctions of (a) Reðn̂Þ, (b) Imðn̂Þ, (c) ReðQ̂=rÞ, and (d)

ImðQ̂=rÞ for �di ¼ 10�2, and eB¼ 0.05 (dashed lines) and eB¼ 0.1 (solid

lines) obtained from the numerical solution.
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’ 4.177� 10�3 for eB¼ 0.1) and �di ¼ 10�2 (r ’ 3.531

� 10�1 for eB¼ 0.05 and r ’ 4.204� 10�1 for eB¼ 0.1),

respectively. Equations (59) and (60) are compared with

these numerical eigenfunctions. In (a) of Figs. 10–12, Reðn̂Þ
is dominant and does not much depend either on q or �di, in

agreement with Eq. (59) which tells that Reðn̂Þ is of order

unity and both the cylindrical and two-fluid effects are

second-order. In (b) of Figs. 10–12, Imðn̂Þ is proportional to

qr and is of the order of qr compared to Reðn̂Þ, in agree-

ment with Eq. (59). In (c) of Figs. 10–12, ReðQ̂=rÞ is pro-

portional to r but does not depend on q, and is comparable

to the first order in r of Reðn̂Þ, in agreement with Eq. (60).

In (d) of Figs. 10–12, ImðQ̂=rÞ is proportional to q and does

not depend on r, and is comparable to the first order in q of

Reðn̂Þ, in agreement with Eq. (60).

VI. SUMMARY

We have studied numerically the two-fluid resistive tear-

ing mode instability in a periodic plasma cylinder of finite

aspect ratio. We have shown that when the cylindrical aspect

ratio parameter is of order unity, the real frequency of the

mode becomes comparable to the growth rate for finite val-

ues of the ion skin depth. This agrees very well with the

boundary layer theory for singular perturbations. The imagi-

nary parts of the eigenfunctions also become comparable

with their real parts when both the cylindrical and two-fluid

effects are finite. We have derived scaling laws for the

growth rate and the real frequency of the mode from the

finite aspect ratio analytic dispersion relation by using sec-

ond order Taylor expansions and Pad�e approximations in the

limits of small and large values of the ion skin depth. The

scaling laws agree well with the analytic dispersion relation,

with the Pad�e approximations giving a slightly better agree-

ment. We have examined the cylindrical effect on the

eigenmodes for different values of the aspect ratio of the

equilibrium magnetic field. The strength of the cylindrical

effect can be inferred from the numerical growth rate and

real frequency eigenvalues, using the scaling law for the real

frequency. The dependence of the numerical eigenfunctions

on the cylindrical and two-fluid effects coincides with that of

the inner solutions of the analytic boundary layer theory.
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