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Abstract. In this paper we propose a new set of formulae for estimating the harmonic frequency

dependence of the diffusion coefficient and the convective velocity in the heat pulse propagation

experiment in order to investigate the transport hysteresis. The assumptions that are used to

derive the formulae can result in dummy frequency dependences of the transport coefficients. It is

shown that these dummy frequency dependences of the transport coefficients can be distinguished

from the true frequency dependence due to the transport hysteresis by using a bidirectional heat

pulse propagation manner, in which both the outward propagating heat pulse and the inward

propagating heat pulse are analyzed. The validity of the new formulae are examined in a simple

numerical calculation.
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1. Introduction

Quantitative prediction of plasma thermal transport is a crucial issue for the design

work for the future commercial fusion reactor. Recently, clear evidence showing the

emergence of a hysteresis in the flux-gradient relation was discovered [1-3], involving

a rapid response of turbulence intensity and turbulent transport against the electron

cyclotron resonance heating (ECH) [2]. A possible working hypothesis that can justify

these observations has been proposed as an immediate interaction of the turbulence

and the axial heating in phase-space [4]. This mechanism can also shed light on a

long standing mystery, that is, the rapid increase of the electron thermal diffusivity in

response to the ECH, found in the Wendelstein 7-AS stellarator [5]. The discovery of the

hysteresis clarifies that the flux-gradient relation in the turbulent plasma is no longer a

single-valued function, indicating the violation of the classical local transport model.

Perturbative experiments have been widely performed using heat pulses caused

by either the modulation ECH (MECH) or the plasma instabilities. [1-3,6-13]. See

also a review [14]. If the classical local transport model is valid, the higher harmonic

components of the MECH electron temperature perturbation should have the faster

amplitude radial decay than the fundamental component [14]. Meanwhile, under

the existence of the hysteresis, the amplitude radial decay of the higher harmonic

components is predicted to be slower and to approach that of the fundamental

component [15, 16]. Recent experimental results support this prediction, showing almost

constant amplitude radial decay rates in the fundamental perturbation component and
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the higher harmonics [6, 7]. In these circumstances, the transport coefficients obtained

from the perturbation experiment can have a frequency dependence if one attempts to

fit the observation by the diffusion coefficient and the convective velocity. Therefore, the

possible violation of the classical local transport model can be detected by investigating

the harmonic frequency dependence of the transport coefficients. A set of formulae that

gives the transport coefficients as a function of the harmonic frequency is desired.

There are several models to estimate the transport coefficients from the radial

amplitude decay and the phase difference of the temperature perturbation [17-20].

However, in these methods the uniqueness of the transport coefficients is assumed

in different frequencies, which is not generally proven, and more than two harmonic

components are used to estimate the transport coefficients. In this paper, we propose a

new set of formulae that estimate the transport coefficients using a single harmonic

frequency of the temperature perturbation. With proper treatment of the higher

order cylindrical coordinate correction, the true diffusion coefficient and the convective

velocity can be successfully calculated at any harmonic frequency. The assumptions

that are used to derive the formulae can result in dummy frequency dependences of

the transport coefficients. To distinguish these dummy frequency dependences of the

transport coefficients from the true frequency dependence, a bidirectional heat pulse

propagation manner, in which both the outward propagating heat pulse and the inward

propagating heat pulse are analyzed, is proposed. The validity of the new formulae are

examined using a simple numerical calculation.
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2. Model

We start from the one-dimensional thermal transport equation in the cylindrical

coordinate for the (total) electron temperature T [17]

n0
∂T

∂t
+

n0T

τ
= −1

x

∂(xqx)

∂x
+ S, (1)

where, x, n0, τ , qx, and S are the radial coordinate, the unperturbed electron density,

the damping term, the radial heat flux, and the source term, respectively. The radial

heat flux is defined as

qx = −n0χ∇T + n0V T, (2)

where χ and V are the diffusion coefficient and the convective velocity, respectively.

Each of them is regarded to be a function of T and ∇T , and can be a function of radius.

The perturbed component of the electron temperature T̃ , in which the tilde denotes

perturbed quantities, evolves

n0
∂T̃

∂t
+

n0T̃

τ
= −1

x

∂(xq̃x)

∂x
+ S̃, (3)

where, T = T0 + T̃ and T0 is the unperturbed electron temperature. We linearize the

perturbation component of the radial heat flux by assuming a small amplitude of the

temperature perturbation as

q̃x = −n0χHP∇T̃ + n0VHPT̃ , (4)

where χHP and VHP are the heat pulse diffusion coefficient and the heat pulse convective

velocity defined as

χHP = χ +
∂χ

∂∇T
∇T0 −

∂V

∂∇T
T0 (5)
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and

VHP = V − ∂χ

∂T
∇T0 +

∂V

∂T
T0, (6)

respectively [14]. At the radius where the modulation source term is not deposited,

which we call the source-free region, the perturbed electron thermal transport equation

in the cylindrical coordinate is obtained by substituting Eq. (4) into Eq. (3) as

n0
∂T̃

∂t
=

1

x

∂

∂x

(
xn0χHP

∂T̃

∂x

)
− 1

x

∂

∂x

(
xn0VHPT̃

)
− n0T̃

τ
. (7)

The WKB type solution

T = T0 exp(−iωt + i
∫

kdx) (8)

is considered, where ω is the angular frequency and k is the complex wavenumber

k = kr + iki. The real part and the imaginary part of the radial wavenumber are defined

as ki = −A′/A and kr = φ′, where A and φ denote the radial profiles of the perturbation

amplitude and the phase, respectively. The dispersion relation can be obtained as

−iω = −χHPk2 − iVHPk + iχHP
k

x
− VHP

x
+ iχHPk′

− 1

Ln

(iχHPk − VHP) + iχ′
HPk − V ′

HP − 1

τ
, (9)

where Ln = −n0/n
′
0 is the scale length of the density gradient. Four terms from the end

of the r.h.s. account for the spatial inhomogeneity in n0, χHP, and VHP, and the finite

damping term, respectively.

For simplicity, we first consider the case where these effects can be neglected. The

dispersion relation Eq. (9) becomes

−iω = −χHPk2 − iVHPk + iχHP
k

x
− VHP

x
+ iχHPk′. (10)
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If one derives the dispersion relation in the slab geometry, only the first two terms

survive in the r.h.s., giving a characteristic wavenumber

k0 = −i
VHP

2χHP

±

√√√√i
ω

χHP

−
(

VHP

2χHP

)2

, (11)

where the positive sign and the negative sign in front of the square root account for the

outward propagation and the inward propagation of the heat pulse, respectively. The

value of k0 is independent on the radius. Taking into account the finite density gradient,

the zeroth order wavenumber is modified as

k0 = −i

(
VHP

2χHP

+
1

2Ln

)
±

√√√√i
ω

χHP

−
(

VHP

2χHP

− 1

2Ln

)2

. (12)

Under the condition |(k0x)−1| � 1, Eq. (10) is subject to the perturbative expansion

for k as

k = k0

[
1 + i

C1

k0x
+

C2

k2
0x

2
+ i

C3

k3
0x

3
+

C4

k4
0x

4
+ i

C5

k5
0x

5

]
, (13)

with the order parameter (k0x)−1. Note that the condition |(k0x)−1| � 1 is satisfied

widely in MECH experiments, e.g., Ref. [2]. The third term and the fourth term of

Eq. (10) are the first order correction with respect to the slab approximation. The last

term of Eq. (10) regarding k′ is the second order correction since the zeroth order of the

wavenumber k0 is independent on the radius. We truncate the perturbative approach

up to the fifth order. See the derivation of the formula and the explicit expressions of

the coefficients in Appendix A.

Transport coefficients χHP and VHP can be obtained from the real part and the
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imaginary part of Eq. (10) as a function of the frequency and the wavenumber as,

χHP = χc

(
1 − ε + ε2

)
(14)

and

VHP = Vc

(
1 − ε + ε2

)
+ χc

k′
i

kiγ
(1 − ε) , (15)

respectively. The parameters χc and Vc show the diffusion coefficient and the convective

velocity with the first order cylindrical correction given as

χc =
1

k2
r + k2

i γ
2

kiγ

kr

ω, (16)

and

Vc =
k2

r − k2
i γ

k2
r + k2

i γ
2

1

kr

ω, (17)

respectively. The factors γ and ε show the first order and the second order of the

cylindrical geometry corrections, which are given as

γ = 1 − 1

kix
(18)

and

ε =
−kiγ

kr
k′

r + k′
i

k2
r + k2

i γ
2

, (19)

respectively. See Appendix B for the derivation of Eqs. (14) and (15). The radial

derivative of the wavenumber may be difficult to obtain from the experimental data due

to the noise issue. Instead, we evaluate k′ terms by use of Eq. (13) as

k′ = −k0

[
i

C1

k0x2
+ 2

C2

k2
0x

3
+ i3

C3

k3
0x

4
+ 4

C4

k4
0x

5

]
, (20)

where the coefficients Ci (i = 1, 2, 3, 4) are obtained using χc and Vc at the first step.

Then the newly obtained χHP and VHP are again used to obtain more plausible Ci, in
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order to obtain the more plausible χHP and VHP (iterative approach). If one does not

take into account the higher order terms, the evaluated transport coefficients suffer large

errors at the low frequency region or at the inner radial position.

3. Numerical Simulation

In order to demonstrate the validity of the proposed method, we perform a set

of numerical studies that examine how the heat pulse propagates in the cylindrical

coordinate.

We solve the transport equation Eq. (1) with the radial heat flux Eq. (2) using the

“Crank-Nicolson method” [9, 21] in the cylindrical coordinate. Here, the transport

coefficients are taken as constant against either T or ∇T , therefore χ = χHP and

V = VHP. The parameters in the simulation are scaled to be realistic values of high

temperature torus plasmas in the SI units. Boundary condition at the core region

is defined as ∂T/∂x = 0. The convection term in x < 0.1 m is forced to be zero.

Outside the plasma radius a = 0.6 m, i.e., x > a, a buffer region with a strong outward

convection term of V > 30 m/s is set, in which a heat sink at the scrape off layer

(SOL) is simulated. The outermost point of the simulation is a = 0.7 m, in which the

temperature is forced to be T = 0. The choice of the boundary condition does not affect

the results of the perturbation experiment if the observation radius is not too close to

the boundaries. The discussion for the boundary condition will be given in Sec. 4. The

density profile is taken as constant in time and space. Two types of heating schemes are
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simulated, i.e., the delta function type ECH and the Gaussian type Ohmic or Neutral

Beam (NB) heating. By using the Fourier decomposition, the amplitude profile and

the phase profile are obtained, by which the real part and the imaginary part of the

wavenumber are fitted.

As an example, the results of the numerical simulation with the transport

coefficients of χHP = 4 m2/s and VHP = −5 m/s (inward pinch) are shown, where the

radial dependence of the transport coefficients and the finite value of τ are not taken into

account. The radial profiles of the heating power and the given transport coefficients

are shown in Figs. 1 (a) and (b). The input power of the NB is 1 MW. A modulation

ECH (MECH), 50 % duty cycle block wave with the frequency of 20 Hz, is deposited at

the very core region, x = 0.05 m. The 100 % modulation with the amplitude of 1 MW

peak to peak is applied. Outward propagating heat pulse is analyzed at x = 0.3 m. A

typical time evolution of the electron temperature profile is shown in Fig. 2. A time

period 1 s ≤ t ≤ 3 s is analyzed where the temperature reaches the saturated profile

as shown in Fig. 1 (c). The Fourier decomposition is performed to obtain the radial

profiles of the electron temperature modulation power (square root of the amplitude)

and the phase difference with respect to the MECH cycle. Shown in Fig. 3 is the result

of the Fourier analysis for the fundamental frequency and the third, fifth, and seventh

harmonic frequencies. A red shaded area at x > 0.6 m corresponds to the scrape off layer,

in which a large outward convective velocity is applied. Except for the core region and

the edge region, the power spectrum and the phase difference are almost on straight
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lines, i.e., almost constant ki and kr are expected. On the contrary, the boundaries

deform the heat pulse propagation. The linear fitting of the power profile and the phase

profile provide the wavenumbers ki and kr at the radius of interest x = 0.3 m, from

which the transport coefficients can be analyzed using Eqs. (14) and (15).

The formulae we obtained are then examined by the numerical simulation. Here,

the plasma radius is doubled to reduce the outer boundary effect on the heat pulse

propagation. Figures 4 (a), (b), and (c) show obtained ki, kr, and γ as a function of

the frequency. The green curves show the expected wavenumbers given by Eq. (13).

The order parameter (k0x)−1 is smaller than unity at f > 5 Hz, and monotonically

decreases as the frequency increases. Figures 4 (d) and (e) show the evaluated transport

coefficients χHP and VHP. The error bars are calculated using Eqs. (35) and (36) (see

Appendix C) from the scatter of the wavenumbers δki and δkr. For comparison, the

transport coefficients are also evaluated with ε = 0 and γ = 1 and with ε = 0,

i.e., neglecting the first order and the second order cylindrical coordinate corrections,

respectively. With ε = 0 and γ = 1, the obtained value of VHP has a large negative

offset. Even with the value of γ given by Eq. (18), the obtained transport coefficients

have frequency dependences unless considering the correction of ε. By considering the

cylindrical coordinate corrections, the evaluation errors are drastically reduced, and the

given diffusion coefficient and convective velocity can be successfully obtained at any

harmonic frequency. The small deviation comes from more higher order contribution

that we truncated in Eqs. (14) and (15).
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4. Harmonic Frequency Dependence of the Transport Coefficients due to

Other Origin

Using Eqs. (14) and (15), one can discuss whether there is a harmonic frequency

dependence in the transport coefficients that is due to the transport hysteresis. However,

there are still some sources that can provide the estimation error of the transport

coefficients depending on the frequency. There are the plasma boundaries, the radially

dependent transport coefficients, and the finite damping term. In this section, we study

the harmonic frequency dependence of the transport coefficients due to these sources.

A bidirectional heat pulse propagation analysis is proposed to distinguish the frequency

dependence of the transport coefficients due to the hysteresis from that due to the other

sources.

4.1. Boundary effect

At the plasma center or the plasma edge, the propagation of the imposed heat pulse is

expected to be disturbed. When the radius of interest for the analysis is not far enough

from the boundaries, the obtained transport coefficients can also suffer the boundary

effect. The effective distance to the boundaries may depend on the wavelength of the

heat pulse, and thus inversely depend on the frequency [19]. Therefore, the estimation

error is expected to decrease at the higher harmonic frequency. Appendix D numerically

shows the relation between the effective distance to the boundary and the estimation

error of the wavenumber. Here we propose an asymptotic approach by means of both



12

the outward and inward propagating pulses, which we call the bidirectional heat pulse

propagation to estimate the true values of the transport coefficients. At lower frequency,

the estimated transport coefficients with Eqs. (14) and (15) suffer a relatively large

amount of error. The amount of the error is considered to be different in the cases of

the outward propagating pulse and the inward propagating pulse. At higher frequency,

the estimation error becomes smaller and the transport coefficients estimated from both

the outward and inward propagating pulses are expected to converge to the true value.

By observing the convergence property of the transport coefficients against the harmonic

frequency, the true values may be estimated.

We numerically examine the bidirectional heat pulse propagation manner. The heat

pulse propagation is simulated in the plasmas with the radius of a = 0.6 m. Shown in

Fig. 5 is the radial profile of the NB heating power and the ECH heating power for the

bidirectional heat pulse propagation analysis. Two ECHs are deposited at two different

radii, x = 0.2 m and 0.4 m, where the radius of interest for the transport coefficient

analysis is x = 0.3 m. One at x = 0.2 m (noted as MECH) is modulated in time with

the frequency of 20 Hz, and the other (noted as SECH) at x = 0.4 m is stationary

inputted. Both have the time averaged input power of 0.5 MW. By exchanging the

MECH and SECH depositions, both the outward and inward propagating pulses can

be analyzed at the position between them, keeping the total heat input constant. A

similar scheme is used in Refs. [22, 11]. Figure 6 shows the results of the bidirectional

heat pulse propagation analysis obtained by Eqs. (14) and (15), indicating that the
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evaluated values of χHP and VHP converge to the given value as the frequency increases.

Even without knowing the precise edge boundary condition, one can determine the true

transport coefficients as the converged values of the bidirectional heat pulse propagation

experiment. The fact that the true transport coefficients can be evaluated by means

of the bidirectional heat pulse propagation is robust for the specific choice of the edge

boundary condition in the numerical simulation.

4.2. Radially dependent transport coefficients and finite damping term

If one attempts to obtain χHP and VHP using the dispersion relation including the radially

dependent transport coefficients and the finite damping term Eq. (9), additional terms

appear in Eqs. (14) and (15) as

χHP,a = χHP +
1

k2
r + k2

i γ
2

[
ki(γ − 1)χ′

HP − V ′
HP − 1

τ

]
(21)

and

VHP,a = VHP +
1

k2
r + k2

i γ
2

[
(k2

i + k2
r )χ

′
HP + ki(γ + 1)V ′

HP + ki(γ + 1)
1

τ

]
. (22)

Under the existence of finite χ′
HP, V ′

HP or τ , the transport coefficients calculated by

Eqs. (14) and (15) suffer estimation errors. The impact of these terms except for

the second term in Eq. (22) decreases at the higher harmonic frequencies since the

denominators having a quadratic order of ki and kr grow faster than the numerators.

Although Eqs. (21) and (22) cannot be directly evaluated, the bidirectional heat pulse

propagation would be useful to estimate the true values of χHP and VHP. Only the

second term in Eq. (22) can be an offset of the evaluated VHP. That offset value slowly
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approaches to χ′
HP since γ → 1 at a higher frequency regime. Note that the coefficients of

Eqs. (13) and (20) do not contain the effect of χ′
HP, V ′

HP nor τ . Therefore, the prediction

of the wavenumber becomes inaccurate when large values of χ′
HP, V ′

HP or τ−1 exist. In

the case that the density gradient is unknown, the estimated transport coefficients suffer

the error as well. This error due to the density gradient behaves similar to that due to

χ′
HP and V ′

HP, and the substitutions χ′
HP → χ′

HP − χHP/Ln and V ′
HP → V ′

HP − VHP/Ln

give the expression involving the density gradient contribution.

The convergence property is examined by means of the numerical simulation. In

order to focus on the errors due to finite χ′
HP, V ′

HP or τ−1, the boundary effect discussed

above is desired to be suppressed. For this purpose, the plasma radius is again doubled

as the case in Fig. 4. In the presence of a finite damping term of τ = 10 ms, the transport

coefficients are fitted using Eqs. (14) and (15). Two ECH sources, the MECH and the

SECH, are deposited at x = 0.45 m (x = 0.75 m) and x = 0.75 m (x = 0.45 m) for

the analysis of the outward (inward) propagating pulse at x = 0.6 m. Figure 7 shows

the result of the transport coefficients estimation using the bidirectional heat pulse.

Because of the finite τ , the obtained values show frequency dependences. However,

at the high frequency regime, the obtained values converge to the given values. By

observing the asymptotic behavior against the frequency, the true values of χHP and

VHP can be estimated even with a finite value of τ .

The case involving the radially dependent χHP and VHP is also examined. The

heating profile is the same as previous. The given radial profiles of χHP and VHP for
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the simulation are shown in Fig. 8. At the radius of interest x = 0.6 m, χ′
HP = 10 m/s

and V ′
HP = 5 s−1 are given. These values are in the same order with the experimentally

determined values [13, 14]. (The experimentally determined values cover a relatively

wide range.) Figure 9 shows evaluated transport coefficients. The evaluated value of

χHP from the outward pulse and inward pulse changes similarly, and the convergence

feature of both results with respect to the frequency is somewhat ambiguous. The value

of VHP converges to a value including an offset due to χ′
HP as predicted by the third

term in Eq. (22).

5. Discussion and Summary

In theory, it is predicted that the higher the harmonic frequency reaches, the larger

difference of the transport coefficients obtained from the outward propagating pulse

and the inward propagating pulse become in the presence of the hysteresis [16]. When

the hysteresis exists in the flux-gradient relation, higher harmonic components of the

temperature perturbation tend to propagate with a weaker decay with respect to

the local prediction. Deviation of the experimentally fitted wavenumber from the

locally predicted values becomes larger at higher harmonic frequency, which makes the

difference of the transport coefficients obtained from the outward propagating pulse

and the inward propagating pulse larger. That feature is opposite to the frequency

dependence due to the plasma boundaries, the radially dependent transport coefficients,

or the finite damping term. By observing the asymptotic convergence property, it is
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possible to judge whether the frequency dependence of the transport coefficients is due

to the transport hysteresis or due to other reasons.

In this paper, we proposed a new set of formulae for estimating the harmonic

frequency dependence of the diffusion coefficient and the convective velocity in the heat

pulse propagation experiment in order to investigate the transport hysteresis. The

assumptions that were used to derive the formulae can result in dummy frequency

dependences of the transport coefficients. It was shown that these dummy frequency

dependences of the transport coefficients can be distinguished from the true frequency

dependence due to the transport hysteresis by using a bidirectional heat pulse

propagation manner, in which both the outward propagating heat pulse and the inward

propagating heat pulse are analyzed. The validity of the new formulae were examined

by a simple numerical calculation.
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Appendix A: Coefficients of the Heat Pulse Wavenumber Obtained by the

Perturbative Expansion

The coefficients of the heat pulse wavenumber shown in Eq. (13) can be obtained by

the perturbative expansion. Substituting Eq. (13) into Eq. (10) gives

−iω = − χHPk2
0 − iVHPk0

+
1

x
[ik0χHP(−2C1 + 1) + VHP(C1 − 1)]

+
1

x2

1

k0

[
k0χHP(−2C2 + C2

1) − iVHPC2

]
+

1

x3

1

k2
0

[ik0χHP(−2C3 − 2C1C2 − C2) + VHPC3]

+
1

x4

1

k3
0

[
k0χHP(−2C4 − C2

2 + 2C1C3 + 2C3) − iVHPC4

]
+

1

x5

1

k4
0

[ik0χHP(−2C5 − 2C1C4 − 2C2C3 − 3C4) + VHPC5] . (23)

The coefficients are calculated in each order as

C1 =
Vn

Vd

, (24)

C2 = k0χHP
V 2

n

V 3
d

, (25)

C3 = −k2
0χ

2
HP

V 2
n

V 5
d

(4k0χHP + i3VHP), (26)

C4 = −k3
0χ

3
HP

V 2
n

V 7
d

(25k2
0χ

2
HP − 13V 2

HP + i36k0χHPVHP), (27)

and

C5 = −k4
0χ

4
HP

V 2
n

V 9
d

[
208k3

0χ
3
HP − 304k0χHPV 2

HP + i(435k2
0χ

2
HPVHP − 71V 3

HP)
]
, (28)

where

Vd = 2k0χHP + iVHP (29)
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and

Vn = k0χHP + iVHP. (30)

Appendix B: Derivation of the Diffusion Coefficient and the Convective

Velocity

First, we derive the diffusion coefficient and the convective velocity with the first order

cylindrical correction, i.e., χc and Vc, respectively. The dispersion relation Eq. (10) is

analyzed neglecting the second order correction term, i.e., the fifth term in the r.h.s.

The real part and the imaginary part of the dispersion relation become

−χc

(
k2

r − k2
i +

ki

x

)
+ Vc

(
ki −

1

x

)
= 0 (31)

and

−χc

(
2krki −

kr

x

)
− Vckr + ω = 0, (32)

respectively. These two equations can be solved for χc and Vc as Eqs. (16) and (17) with

the parameter γ.

Leaving the second order correction term, the real part and the imaginary part of

the dispersion relation become

−χHP

(
k2

r − k2
i +

ki

x

)
+ VHP

(
ki −

1

x

)
− χHPk′

i = 0 (33)

and

−χHP

(
2krki −

kr

x

)
− VHPkr + χHPk′

r + ω = 0, (34)
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respectively. Finally, χHP and VHP can be obtained by solving Eqs. (33) and (34) as

Eqs. (14) and (15) with the parameter ε.

Appendix C: Error Propagation into the Transport Coefficients

Estimation errors of ki and kr, denoted as δki and δkr, respectively, can be given by the

linear fitting of radial profiles of the modulation power and phase. Assuming that δki

and δkr are independent, the estimation error of χHP and of VHP are given as

δχHP =

√√√√(∂χHP

∂ki

δki

)2

+

(
∂χHP

∂kr

δkr

)2

(35)

and

δVHP =

√√√√(∂VHP

∂ki

δki

)2

+

(
∂VHP

∂kr

δkr

)2

, (36)

respectively. Partial derivatives can be obtained from Eqs. (14) and (15) as

∂χHP

∂ki

=
k2

r − k2
i γ

2

kr(k2
r + k2

i γ
2)2

ω, (37)

∂χHP

∂kr

=
−3k2

r kiγ − k3
i γ

3

k2
r (k

2
r + k2

i γ
2)2

ω, (38)

∂VHP

∂ki

=
−kik

2
r (1 + 3γ) + k3

i γ
2(1 − γ)

kr(k2
r + k2

i γ
2)2

ω, (39)

and

∂VHP

∂kr

=
−k4

r + k4
i γ

3 + k2
r k

2
i γ(3 + γ)

k2
r (k

2
r + k2

i γ
2)2

ω. (40)
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Appendix D: Effect of the Harmonic Frequency on the Estimation Error of

the Wavenumber due to the Plasma Boundary

Here, we scan the effective distance to the boundaries by scanning the zeroth order

wavenumber k0 via given χHP value. Figure 10 plots χHP and x dependence of the

evaluation error of the real part of the wavenumber defined as ∆kr = (ksimulation
r −

kexpected
r )/kexpected

r , where ksimulation
r and kexpected

r denote the obtained value from the

simulation and the expected value from Eq. (13), respectively. The edge boundary

effect on the outer propagating pulse is discussed. Note that the inner boundary effect

on the inward propagating pulse was also examined, and qualitatively similar results

were obtained. To examine the frequency dependence as well, the plots are given for

the fundamental frequency and the seventh harmonic frequency. Note that with the

small value of χHP, the radial amplitude decay is too fast and the amplitude reaches

down to the noise level at the edge side, in which the evaluated wavenumber scattered.

For the sake of clarity, the region where the coherence is less than 0.9 are shaded out.

The dashed curves on the contour indicates x = k−1
0 and a − k−1

0 . The error becomes

large when the radius approaches to the edge and the edge boundary effect becomes

significant. The error is also large when either the frequency or χHP is small. The same

tendency is also seen in the imaginary part of the wavenumber. In addition to the edge

side, the error is also large at the inner side, because the order parameter approaches

to unity.
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Figure 1. (Color online) Radial profiles of (a) the NB heating power and the ECH heating

power, (b) the given χHP and VHP, and (c) the mean electron temperature.
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Figure 2. (Color online) (a) Spatiotemporal evolution of the electron temperature and (b) time

evolution of the input MECH power.
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Figure 3. (Color online) Radial profiles of (a) the modulation power and (b) the modulation

phase for the first, third, fifth, and seventh harmonics. Radius x > 0.6 m corresponds to the

SOL, in which a strong outward convective velocity is set.
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VHP.



26

0 0.2 0.4 0.6
x [m]

0

0.2

P N
B/∆

V

0
2
4

P EC
H/∆

V[MW/m3]!

MECH!

SECH!

Figure 5. (Color online) Radial profiles of the NB heating power and the ECH heating power

for the bidirectional heat pulse propagation analysis.
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Figure 6. (Color online) Evaluation of the transport coefficients by the bidirectional manner in

the presence of the edge boundary effect: frequency dependences of (a) the evaluated χHP and

(b) the evaluated VHP.
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Figure 7. (Color online) Evaluation of the transport coefficients by the bidirectional manner in

the presence of a finite damping term: frequency dependences of (a) the evaluated χHP and (b)

the evaluated VHP.
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transport coefficients depend on radius.
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Figure 9. (Color online) Evaluation of the transport coefficients by the bidirectional manner in

the presence of the radially dependent transport coefficients: frequency dependences of (a) the

evaluated χHP and (b) the evaluated VHP.
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error of the imaginary part of the wavenumber at (a) the fundamental MECH frequency and (b)

the seventh harmonic frequency.


