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Abstract. In this paper, we elaborate the electric field excitation mechanism during the L-H

transition in the JFT-2M tokamak. Using time derivative of the Poisson’s equation, models

of the radial electric field excitation is examined. The sum of the loss-cone loss current and

the neoclassical bulk viscosity current is found to behave as the experimentally evaluated radial

current that excites the radial electric field. The turbulent Reynolds stress only plays a minor

role. The wave convection current that produces a negative current at the edge can be important

to explain the ambipolar condition in the L-mode.



2

1. Introduction

Comprehensive understanding of the L-H transition mechanism is one of the most

important issues towards realization of the future controlled fusion reactors. After

the first discovery of the H-mode in the ASDEX tokamak [1], many researchers had

attempted to unveil the key physics of the confinement improvement in the H-mode.

Thanks to these efforts, the crucial role of the radial electric field was revealed by

theoreticians [2, 3] to explain the observed bi-state in the confinement, i.e., the L-mode

and the H-mode. Then, the existence of the radial electric field as the edge transport

barrier was experimentally confirmed in the JFT-2M [4] and in the DIII-D [5].

The radial electric field in torus plasmas can be excited by several mechanisms

even in the quasi-neutral plasmas. For the models of the L-H transition, two of them

are mainly treated, i.e., the non-ambipolar particle flux that enhances the radial charge

separation and the micro-scale turbulence dynamics [6]. The former is originated by the

independent kinetic properties of ions and electrons that are brought by geometrical

effects of torus plasmas, including the direct loss-cone loss of the ions across the

separatrix [2, 3] and the neoclassical flux of the ions [3, 7]. In contrast, the latter

corresponds to the fluctuation induced flow generation, i.e., the turbulent Reynolds

stress effects [8] and the wave convection contribution in the momentum transport

[2]. These processes can embrace both the electric field excitation and the turbulence

suppression during the transition [8]. While, the former only explains the radial

electric field excitation and the turbulence damping is undertaken either by the E × B
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shearing [9, 10] or by the modulational coupling [11, 12, 13] (see a review [14] for the

categorization). In particular, significant progresses in understanding the critical role

of the turbulence and the zonal flow on excitation of the radial electric field in the

H-mode have been brought in the last decades [11, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Both the neoclassical effect [24] and the bulk viscosity effect [25] were also examined

independently. However, to the best of authors’ knowledge, few systematic studies that

include several possible processes in parallel have ever been reported. Here we examine

proposed possible mechanisms for the radial electric field excitation during the L-H

transition simultaneously, as an extension of Ref. [26].

In this paper, we elaborate the electric field excitation mechanism during the L-

H transition in the JFT-2M tokamak. The radial electric field excitation mechanisms

including the direct loss-cone loss, the neoclassical bulk viscosity, and the turbulent

Reynolds stress are systematically and quantitatively examined, using a data set

obtained with a heavy ion beam probe system. Examining time derivative of the

Poisson’s equation, the sum of the loss-cone loss current and the neoclassical bulk

viscosity current is found to behave as the experimentally observed radial current within

a few factors of magnitude. While, the turbulent Reynolds stress only plays a minor

role. The wave convection current that produces a negative current at the edge can be

important to explain the ambipolar condition in the L-mode. This paper is organized

as follows. In section 2, theoretical models of the electric field excitation is overviewed

in detail. Section 3 explains the experimental setup in the JFT-2M tokamak. The
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main body of the paper showing the experimental results and the discussions for the

radial electric field excitation mechanism is given in section 4. Section 5 summarizes

the contents of the paper.

2. Theoretical models for electric field excitation

The radial electric field can be excited by the radial current that induces the charge

separation. The relation between the radial electric field and the radial current is given

by the Poisson equation,

ε⊥ε0
∂Er

∂t
= −Jr, (1)

where ε⊥ is the relative dielectric constant of toroidal plasmas [6, 27]. It is given as

ε⊥ = 1 + Mtor
c2

v2
A

, (2)

where c/vA denotes the ratio between the speed of light and the Alfvén velocity

vA = B/
√

nimiµ0. Inertia enhancement factors Mtor in plateau regime and banana

regime are given as

Mtor ∼ 1 + 2q2, (3)

and

Mtor ∼ 1 +
1.6q2

√
εt

, (4)

respectively, where q is the safety factor and εt = a/R is the inverse aspect ratio. In

the toroidal devices, the inertia enhancement factor typically takes the value of several

tens. Since E × B velocity in the poloidal direction has a finite divergence due to the



5

toroidal geometry, the parallel return flow that maintains the divergence free condition

is generated. As a result, the effective acceleration in the poloidal direction is reduced

by the factor of Mtor [6, 27, 28]. The high speed measurement of the radial electric

field with the heavy ion beam probe (HIBP) allows us to evaluate the radial current by

Eq. (1). Meanwhile, possible radial currents are modeled theoretically as

Jr = J lc
i + Jbv

i − Jwave
e−i + Jv∇v

i + JCX
i + others. (5)

The terms in the r.h.s refer the loss-cone loss current, the neoclassical bulk viscosity

current, the wave convection current, the Reynolds stress current, and the charge

exchange damping [6]. The charge exchange contribution is assumed to be negligibly

small in this discharge, since the edge neutral density is expected to be low enough due

to the carbon wall and divertor [29]. Unfortunately, we do not have a data set for the

quantitative examination of the charge exchange contribution for this discharge. The

first four terms are explicitly given in literatures as a function of the plasma parameters

[6]. Nonlinearity of each current term against the radial electric field can provides

multiple confinement states and transition between them as shown in Refs. [2, 3]. In the

stationary H-mode, the neoclassical contribution is found to be dominant for maintaining

the edge radial electric field well in ASDEX-Upgrade [30]. Here, we attempt to clarify

the impact of each term during the L-H transition.

The loss-cone loss current J lc
i is caused by the direct orbit ion loss across the

separatrix. The loss-cone loss current is regulated by the radial electric field since the

loss-cone boundary depends on the radial electric field [31]. The loss-cone loss current J lc
i
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is given as a function of the normalized radial electric field, X ≡ ρpeEr/T (ρp = qε−1
t ρi

is the ion gyroradius at the poloidal magnetic field and ρi is the ion gyroradius) as

J lc
i = eneνiiρp

ν∗√
ν∗ + X4 + (r − a)4/w4

bi

exp
[
−

√
ν∗ + X4 + (r − a)4/w4

bi

]
, (6)

where ν∗ = νii/ωtε
3/2 is the ion collisionality defined as a ratio of the ion-ion collision

frequency νii and the ion transit angular frequency ωt. The banana width is given as

wbi = qρi/
√

εt =
√

εtρp.

The neoclassical bulk viscosity current Jbv
i originates in the different trajectories of

ions and electrons caused by their mass separation and the magnetic field inhomogeneity

along the magnetic field. The neoclassical bulk viscosity current takes a finite value when

the condition X = −λ violates, where λ ≡ ρpL
−1
n is the normalized inverse density

gradient length. The expression of Jbv
i is given as,

Jbv
i = −eneDpρ

−1
p (−λ − X) Im Z (X + ivii/ωt) , (7)

where Dp = εtqρiT/
√

πreB is a typical diffusivity. Plasma dispersion function

Im Z (X + ivii/ωt) is given in Ref. [32] as a similar function of Gaussian exp(−X2).

An intuitive model of the wave convection term is given in Ref. [2] as

Jwave
e−i = −eneDeρ

−1
p (−λ − X), (8)

where De is the typical turbulent diffusivity and should be a function of Er. The quasi-

linear part of the wave convection term Jwave
e−i is related to quasi-linear contribution in

the Reynolds stress term Jv∇v
i for the case of drift waves [33]. At the L-H transition

where the turbulence activity is suppressed by Er, the value of De is supposed to sharply
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decrease. In the L-mode, the shape of Jwave
e−i resembles to Jbv

i since Im Z (X + ivii/ωt) ∼

1 when X � 1.

The the Reynolds stress Πrθ refers the radial transport of the poloidal momentum by

turbulent eddies. The turbulent Reynolds stress caused by the radial velocity fluctuation

ṽr and poloidal velocity fluctuation ṽθ is defined as

Πrθ ≡ 〈ṽrṽθ〉 = −krkθS
2/2B2, (9)

where S is the turbulent potential fluctuation amplitude. Here S is defined as the

potential fluctuation component having a frequency range of 30 kHz ≤ f ≤ 90 kHz.

The poloidal direction θ is taken in the electron-diamagnetic drift direction following the

right-hand rule of the toroidal magnetic field direction (z). Since the velocity fluctuation

can be replaced by the potential fluctuation in the magnetized plasma, the transform

using the potential fluctuation amplitude S and the turbulence wavenumbers kr and

kθ works. Note that this transformation includes implicit assumption that the cross

coherence between ṽr and ṽθ is unity. Therefore, the evaluated Πrθ corresponds to the

upper limit of the practical value. The local accumulation of the momentum transport

−r−1∂rΠrθ/∂r corresponds to the flow acceleration force that can be equivalently

rewritten by the form of the radial current Jv∇v
i as

Jv∇v
i = −eneω

−1
ci r−1∂rΠrθ

∂r
, (10)

where ωci = eB/mi is the ion gyro angular frequency.
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3. Experimental setup

The models of the radial current shown above are examined one by one using the

experimental data obtained in the JFT-2M tokamak. Dimension of the JFT-2M plasma

is a major radius (R) of 1.3 m and an averaged minor radius (a) of 0.3 m. The neutral

beam (NB) of the power of PNB = 750 kW is injected into the low density plasma at the

line averaged electron density of n̄e = 1.1×1019 m−3. The toroidal confinement magnetic

field is set to B = 1.17 or 1.28 T. An upper single-null divertor configuration is employed,

where the ∇B drift of ions is directed toward the X-point and the safety factor at the

flux surface enclosing 95% of the total poloidal flux, q95, is 2.9. The plasma current Ip

is 190 kA. The present experimental condition corresponds to the marginal condition

for the L-H transition, i.e., slightly above the threshold heating power. At the plasma

edge, the ion collisionality is slightly below unity so that the neoclassical transport is in

the banana regime. The inertia enhancement factor at the edge is Mtor ∼ 30. JFT-2M

has been shutdown in 2004.

The heavy ion beam probe (HIBP) provides the electrostatic potential φ and the

electron density ne at four sample volumes (6 mm × 2 mm) simultaneously, with a

sampling time of 1 µs [34, 35]. The distances between channels projected on the outer

mid-plane are ∼ 2.5 mm. The two key parameters of the model validation, i.e., the radial

electric field Er ≡ −∂φ/∂r and the inverse density gradient length L−1
n ≡ −n−1

e ∂ne/∂r,

are evaluated by taking the difference of two HIBP signals measured at neighboring

sample volumes. In the series of experiments, the radial positions of the HIBP sample
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volumes were scanned in the edge region (−5 cm < r − a < 0 cm, where r − a is the

radial distance from the saparatrix), in a shot-to-shot basis. The bandwidth of the

measurement is up to 100 kHz so that simultaneous measurement of the mean profile

and the turbulent fluctuation is feasible.

4. Experimental results

4.1. Basic observations

Figures 1 (a)-(c) overview the time evolution of the Dα intensity, the potential at the

location of the radial electric field well in the H-mode, r − a ∼ −1 cm (see the radial

profile of Er in Fig. 3), and the wavelet power spectrum density of φ for the target

discharge #90055. The NB is injected from t = 0.7 s and the L-H transition occurs at

tLH ∼ 0.734 s (dashed vertical line in Fig. 1), where the rapid drops of Dα and φ are

seen [26]. In the early stage of the L-mode in 0.7 s < t < 0.715 s, the geodesic acoustic

mode (GAM) is observed at f ∼ 15 kHz as a coherent spectral peak [34, 35]. A few tens

millisecond before the transition, the GAM activity disappears and a low frequency

fluctuation power increases in f < 5 kHz. This low frequency perturbation in the

potential is regarded as the limit cycle oscillation (LCO), which refers the quasi-periodic

repetition of the L-H transition [36, 37]. The LCO in JFT-2M is characterized by a

relatively smaller amplitude of the Dα perturbation. Radial profiles of the parameters

such as the density and the potential during the LCO phase are similar to those in

the L-mode phase, where the density pedestal formation is not completed. There is
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an interplay among the turbulence, the radial electric field, and the density gradient,

exhibiting the periodical formation and the deformation of the small edge transport

barrier at the LCO frequency [36]. See a variety of the LCO characteristics in Ref. [38].

The onset of the LCO is somewhat ambiguous in this discharge. After the L-H transition,

there can be seen another low frequency ELM type oscillation at f < 1 kHz [39].

Focusing on the dynamics of the L-H transition, the detailed time trace of Dα, the

soft-x-ray (SX) emissions and the HIBP measured quantities (Er, L−1
n and Jr) for the

instance of the transition is given in Fig. 2 at the location where the transport barrier

is strongest. In order to clearly observe the time evolution of the mean parameters

reducing the noise component, all spatial channels of the HIBP are averaged, after which

a numerical low-pass filter having a cutoff frequency of 2 kHz is operated. As discussed

in Ref. [36], the LCO does not directly account for the trigger of the L-H transition.

The mean plasma parameters and the turbulence characteristics in the LCO phase are

similar to these in the L-mode phase [37]. The L-H transition seems to be triggered by

the reach of the sawtooth heat pulse at the edge, as shown in the SX emissions. The

radial electric field at the edge transport barrier drops within less than 100 µs. After

the first drop of the radial electric field, there exists ∼ 2 ms of a meta-stable state in

1 ms ≤ t ≤ 3 ms, which we call the ‘MH-mode’. Then, the second drop in the radial

electric field appears with a longer period of ∼ 1 ms and the plasma reaches the final

‘H-mode’. The increase of the density gradient also emerges at both steps. The bottom

trace of Fig. 2 (c) is the evaluated radial current using Eq. (1). During the first L-MH
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transition, the positive current takes the largest peak of ∼ 3.5 A/m2. In addition, the

second smaller peak is also seen at the MH-H transition.

There are 5 discharges having a high reproducibility and different HIBP

measurement range, from which the radial profiles in each confinement state can be

determined. Shown in Fig. 3 is the radial profile of the radial electric field. Green

symbols show the mean values of each measurement point in the H-mode where the

different symbols come from different discharges. Width of the curves represent the

scatter of the values from the fifth-degree polynomial fitting curve. The L-mode profile

shown in the blue curves is characterized by a low radial electric field. At the L-MH

transition, the radial electric field well of -10 kV/m emerges, and deepens to -25 kV/m

at the final MH-H transition.

4.2. Model validation for radial electric field excitation mechanism

Validation of the theoretical models is discussed by comparing the modeled Jr and the

experimentally evaluated Jr, following the framework performed in Ref. [24]. First, let

us examine the loss-cone loss current J lc
i and the neoclassical bulk viscosity current Jbv

i

given by Eqs. (6) and (7), respectively. Figure 4 shows the possible values the radial

current expected by the loss-cone loss process and by the neoclassical bulk viscosity

process as functions of the normalized radial electric field X and the normalized inverse

density gradient length λ. Although J lc
i , Jbv

i and X are functions of the ion temperature

Ti too, we first do not take into account the change of Ti during the transition for
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simplicity. Possible uncertainty due to the change of Ti is discussed below. Note that

by surveying the ambipolar condition using these two terms, a model that predicts the

existence of the bi-state of the radial electric field, i.e., the L-mode and the H-mode,

was developed [3]. The black curve shows the trajectory of the experimental parameters

shown in Fig. 2 (c). The expected radial currents based on these models are the values

of Fig. 4 on the trajectory. Figure 5 shows the time evolutions of J lc
i and Jbv

i as well as

the experimentally evaluated radial current based on Eq. (1). The loss-cone loss current

is shown to take a positive value of ∼ 2 A/m2 in the L-mode, which sharply disappears

after the L-MH transition. The neoclassical bulk viscosity current is composed of two

terms, i.e., the gradient contribution Jbv,L−1
n

i and the radial electric field contribution

Jbv,Er

i . Positive value of λ corresponds to the positive radial current, that enhances the

negative growth of the radial electric field. The excited radial electric field contributes

the negative radial current in turn. The net neoclassical bulk viscosity current takes a

positive value of ∼ 4 A/m2 in the L-mode. During the transition, the neoclassical bulk

viscosity current shows a rather gradual decay. The sum of these two terms is shown

in Fig. 5 (c) with the experimentally evaluated radial current. The two curves show a

good agreement in 0.5 ms < t− tLH < 1 ms in terms of the absolute value of the current

and the time scale of the change, during the L-MH transition. Note that a peak in the

J lc
i + Jbv

i curve at t − tLH ∼ −0.3 ms is not a meaningful event for the transition but

just a perturbation of the parameter. The transition happens without these peaks in a

different discharge. In the model current, a large positive offset is seen in the L-mode,
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and no current peak at the MH-H transition (t − tLH ∼ 3.5 ms) appears.

Figure 6 shows the radial current as a function of the normalized radial electric field

X. The black curve indicates the experimental value of Jr evaluated using Eq. (1). Each

(quasi-) stationary state, i.e., the L-mode, the MH-mode, and the H-mode, corresponds

to the trajectory at Jr = 0, as indicated by the labels. At the L-MH transition, the

positive radial current is excited that induces the negative growth of the radial electric

field. At a point X ∼ 0.7, the radial current turns to decrease down to zero, and the

plasma goes to the MH-mode. Two millisecond after, again the positive radial current

is excited, which further deepens the radial electric field. The trajectory of the radial

current against the normalized radial electric field is compared to the sum of J lc
i and Jbv

i

shown by the red curve. The shaded area in Fig. 6 (a) is the uncertainty of J lc
i + Jbv

i ,

which comes from the uncertainty of the ion temperature determination during the

transition. The time resolution of the ion temperature signal measured with the charge

exchange recombination spectroscopy system is far slower than the time scale of the

L-H transition. Here, we evaluate the uncertainty of the values of J lc
i and Jbv

i by taking

into account the possible range of time evolution of the ion temperature. Two extreme

limits are that, ∂Ti/∂t = 0 and Ti ∝ Te, where the electron cyclotron emission system is

used for estimating an edge electron temperature Te. The lower and upper boundaries

of the red shaded area correspond to the cases ∂Ti/∂t = 0 and Ti ∝ Te, respectively.

The normalized radial electric field is evaluated under the assumption of ∂Ti/∂t = 0

for simplicity. At the L-MH transition at X ∼ −1, J lc
i + Jbv

i is in agreement with the
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observation within the factor of ∼ 2. The peak in the Er − Jr curve at X ∼ −2 for the

MH-H transition is not clearly predicted by J lc
i + Jbv

i , since the established models are

not focused on such a multi-step transition. Moreover, in the L-mode, a finite positive

offset of the radial current ∼ +6 A/m2 is predicted by J lc
i + Jbv

i even in the stationary

state, ∂Er/∂t = 0, while the experimentally obtained value shows Jr = 0. Figures 6

(b) and (c) plot each term of J lc
i and Jbv

i in addition to the experimentally obtained Jr

and the prediction of J lc
i + Jbv

i under the cases of ∂Ti/∂t = 0 and Ti ∝ Te, respectively.

Contributions from Jbv
i and J lc

i seem to be in the same order in the case ∂Ti/∂t = 0,

meanwhile under the case Te ∝ Ti the contribution of Jbv
i dominates over that of J lc

i .

Figure 7 shows the time evolution of the difference between the experimentally

evaluated radial current and the sum of the loss-cone loss current and the neoclassical

bulk viscosity current. It is shown that the other current source is necessary to satisfy

the ambipolar condition in the L-mode. A possible candidate to compensate the excess

prediction of the radial current by J lc
i + Jbv

i is the wave convection current Jwave
e−i . Here

we qualitatively evaluate this current according to the given intuitive formula Eq. (8).

For the present plasma parameters, the polarity of Jwave
e−i is negative, and its absolute

value is in the same order with Jbv
i under the assumption that Dp in Eq. (7) and De

in Eq. (8) take values in the same order. This can make the modeled radial current to

be zero in the L-mode. At the onset of the transition, turbulence is rapidly suppressed

by Er, and the value of De is supposed to sharply decrease. Therefore, the previous

discussion is not altered by this term in the MH-mode and the H-mode. Exploration of
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more precise model of the wave convection contribution that is subject to the qualitative

validation has been undertaken, in order to conclude the discussion.

Next, the contribution of the Reynolds stress current is discussed. Figure 8 shows

the radial profiles of the turbulent Reynolds stress and the obtained Reynolds stress

force and the corresponding Reynolds stress current Jv∇v
i in the L-mode. At the radius

of the transport barrier r−a ∼ −0.6 cm, the expected radial current is only −0.2 A/m2,

which is one order smaller than either J lc
i or Jbv

i . Therefore, the Reynolds stress current

only plays a minor role in the L-mode. The turbulence intensity is reduced due to

the large electric field in the MH-mode and H-mode so that the lesser impact of the

Reynolds stress is expected after the L-MH transition. At the plasma boundary, a large

value of Jv∇v
i is observed. The Reynolds stress sharply changes at the very edge region

since the radial wavenumber is modified by the plasma boundary. The examination of

the ambipolar condition at the plasma boundary is relevant subject for the plasma edge

modeling.

The minor role of the Reynolds stress is also confirmed during the LCO period

[36, 37]. Figures 9 (a)-(c) show the conditional averaged time evolution of the radial

electric field, the turbulence amplitude, and the Reynolds stress for one LCO period.

Note that the sign of the mean Reynolds stress is different from that in Refs. [36, 37]

since the definition of the poloidal direction is different. The Reynolds stress modulation

is evaluated as

Π̂rθ ∼ Πrθ[1 + 2Ŝ/S + k̂r/kr + k̂θ/kθ], (11)
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where hats indicate the fluctuation quantities at the LCO frequency and Πrθ is mean

Reynolds stress given by Eq. (9). The Reynolds stress driven radial electric field

modulation is estimated by Eqs. (1) and (10). Amplitude of the Reynolds stress

modulation monotonically decreases toward the edge and disappears at the separatrix

[37], thus the substitution of the spatial derivative by the difference, |r−1∂rΠrθ/∂r| =

|Πrθ|(a − r)−1, is operational. The expected radial electric field modulation amplitude

is then given as

δ|Êr| = − 1

ωLCO

1

ε⊥ε0

Ĵv∇v
i ∼ − B

MtorωLCO

|Π̂rθ|
a − r

, (12)

where ωLCO is the angular frequency of the LCO. The r.h.s of the equation is calculated

with the parameters of ωLCO ∼ 3 × 104 s−1, Mtor ∼ 30 for q ∼ 3 and |Π̂rθ|(a − r)−1 ∼

107 m/s2 as δ|Êr| ∼ 10 kV/m. The Reynolds stress driven Êr is one order smaller than

the observed Êr ∼ 500 m/s, which indicates the minor role of the Reynolds stress. The

Lissajous diagram between |Er| and S is shown in Fig. 9 (d) in order to investigate the

causal relation between them. The direction of the rotation is the counter clockwise,

i.e., the increase of |Er| precedes the increase of S. Therefore, the majority of the

radial electric field modulation should be caused by the other player than the turbulent

Reynolds stress. These discussions are consistent with the observation during the L-MH

transition.
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5. Summary

In this paper, we elaborated the radial electric field excitation mechanism based on the

JFT-2M experimental data. The radial electric field excitation mechanisms including

the direct loss-cone loss, the neoclassical bulk viscosity, and the turbulent Reynolds

stress were systematically and quantitatively examined, using a data set obtained with

a heavy ion beam probe system. Examining time derivative of the Poisson’s equation,

the sum of the loss-cone loss current and the neoclassical bulk viscosity current was

found to behave as the experimentally observed radial current within a few factors of

magnitude. The turbulent Reynolds stress was shown to play a minor role. The wave

convection current that produces a negative current at the edge can be important to

explain the ambipolar condition in the L-mode.
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