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Abstract. In this Letter, we investigate the spatial structure of a low frequency global potential

oscillation, which is likely ascribed as the low frequency zonal flows, in TJ-II laboratory plasmas.

In two plasmas produced by different heating schemes (electron cyclotron resonance heating

and neutral beam injection heating) and characterized by different mean radial electric field

structures, frequency-space-decomposed spectra of the global potential oscillation is obtained.

In both cases, the oscillatory field has a single-peaked potential structure and a dipole radial

electric field structure. The oscillating structure depends on its frequency as well as on the

heating scheme.
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1. Introduction

Hierarchy of fields, including global fields and local turbulent fields, exists in a wide

variety of systems in nature. For example, nonlinear interaction between global zonal

flow and turbulent flow is seen in atmospheric circulation and magnetically confined

plasmas, which impacts on dynamics of whole systems. Their generality can be found by

the fact that the dynamics are described by the identical equation [1, 2]. Experiments in

laboratory plasmas have a significant advantage that stationary fields can be relatively

easily controlled to study the hierarchy of fields. Moreover, importance of the low

frequency zonal flows (LFZFs) for turbulent transport regulation in future fusion

plasmas has been proposed [3, 4]. A large number of studies including experimental

identifications of the LFZFs [5, 6, 7, 8, 9, 10, 11, 12, 13] as well as theoretical modeling

and numerical simulation [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] have been performed to

achieve a better understanding of zonal flow nature.

Despite the intensive investigations, spatial structure of the LFZF, which is crucially

important to estimate the capability of turbulent transport suppression, is not fully

understood. Since the frequency of the LFZF is considered to be zero, direct prediction

of the mode structure is difficult, unlike the case of the high frequency branch of the

zonal flows [24]. The LFZF is predicted to have a short lifetime, which corresponds to

the frequency spectrum broadening [21]. It is also challenging to distinguish the very low

frequency component of the LFZF from the equilibrium E×B flow within such a short

duration of the LFZF. Therefore, some statistical approaches having a fine frequency
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resolution are necessary to identify the spatial structure of the LFZF. Although there are

some theoretical attempts to predict the LFZF spatial structure [15, 16, 17, 18], a small

number of experimental observations available for examining the theoretical hypotheses

hampers further progress. It is claimed that the properties of the LFZFs depend on

plasma conditions, e.g., the mean radial electric field Er profile [9, 13] or ion mass [12].

In particular, the mean Er profile can modify the turbulent stress that drive the LFZF

on the one hand [25, 26, 27], and the LFZF damping can be altered too by the value of

Er on the other hand [19, 20, 22]. However, experimental investigation focusing on the

relation between the spatial structure of the LFZFs and the mean Er profile has not

been sufficiently performed to validate these theoretical models.

In this Letter, we investigate the spatial structure of a low frequency global

potential oscillation, which is likely ascribed as the LFZFs, in the TJ-II stellarator

[9, 10, 11, 12, 13]. The ambipolarity condition has two stable roots in stellarators: the

ion root with typically negative Er, which is usually achieved in high density plasmas

heated by neutral beams, and the electron root with positive Er, which is typically

realized when electrons are subject to strong heating. The neoclassical transport

determines the radial electric field on long (tens of gyroradius) length scales [28, 29].

In two plasmas characterized by the different ambipolarity conditions, frequency-space-

decomposed spectra of the global potential oscillation is obtained. The oscillating Er

structure depends on its frequency as well as on the heating scheme.
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2. Experimental setup

The TJ-II stellarator is a four-period heliac with the major radius R = 1.5 m and the

averaged minor radius a = 0.2 m. The vacuum magnetic field of Bt ∼ 1 T has a low

magnetic shear configuration with the rotational transform at the core ι(0)/2π ∼ 1.55

and that at the plasma surface ι(a)/2π ∼ 1.65 (the standard configuration). The

lower safety factor q = 2π/ι ∼ 0.6 is favorable for driving the LFZFs rather than

the geodesic acoustic modes [14]. A favorable MHD stability is realized by a magnetic

well configuration.

Floating potential are measured by two systems of Langmuir probe arrays separated

poloidally by ∼ 155 deg. and toroidally by ∼ 160 deg. A radial probe array, the so-

called rake probe, consists of 8 tips radially separated by ∼ 1.7 mm each, whose radial

position is scanned on a shot-to-shot basis and is fixed during each discharge. The radial

scan covers the range 0.82 < ρ < 1.02 with 8 discharges (#43702-43709), where ρ is

normalized averaged minor radius. Another probe, the so-called poloidal probe, which

has two tips poloidally separated by 6 mm, is used for evaluating the poloidal structure

of fluctuation. Position of the poloidal probe is fixed at ρ = 0.9 for use as the reference

probe for evaluating the long range correlation with respect to the rake probe.
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3. Results

3.1. Target plasmas

Figure 1 (a) shows a typical time evolution of a target discharge. At the first half of the

discharge, the plasma is sustained by two electron cyclotron resonance heating (ECH)

systems with the port through power of 250 kW each, which is deposited at the plasma

center. At the middle of the discharge t = 1.15 s, the heating scheme is switched to the

co-directed neutral beam injection (NBI) heating having the equivalent port through

power to the two ECHs. Time periods of the ECH discharge and the NBI discharge

in steady state are 1.08 ≤ t ≤ 1.13 s and 1.17 ≤ t ≤ 1.235 s (1.17 ≤ t ≤ 1.215 s for

# 43707), respectively, and data in those periods are used for the data analyses below.

Both plasmas are in the L-mode state. The ECH plasma has a lower line averaged

density and a larger Hα emission, which is mainly caused by neutral recycling from

the walls induced by outward particle flux, than the NBI plasma. Typical edge plasma

parameters are the electron density of ne ∼ 0.3×1019 m−3 and the electron temperature

of Te ∼ 50 eV. Both plasmas have similar collisionality of the order of unity, where the

ion temperature Ti is assumed to be Ti ∼ Te, and are in the collisional regime (plateau

or Pfirsch-Schlüter).

Figure 1 (b) shows the time evolution of the wavelet power spectrum density (PSD)

of the floating potential fluctuation, P (t, f) = X(t, f)X∗(t, f), whereX(t, f) denotes the

wavelet decomposition of the signal and ∗ represents the complex conjugate, measured

by the reference probe at ρ = 0.9. Overall, the spectrum is composed by a large
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amplitude oscillation in the low frequency range (defined as f < 20 kHz) as well as by a

turbulent broadband spectrum in the high frequency range (f > 20 kHz). Peaks in the

low frequency region are split in time and frequency, indicating that the low frequency

potential dynamics is characterized by short lifetime sinusoidal-like waveforms, unlike

the case reported in [11]. In the ECH period, fluctuation amplitude is larger than that

in the NBI period in the entire frequency range.

The radial profiles of the mean floating potential V̄f and its gradient as a proxy of

the mean radial electric field Ēr are shown in Figs. 1 (c) and (d), respectively. Data

points in those figures correspond to long-time averaged data in each analysis period,

and the error bars correspond to the standard error. Curves are the smoothed profile

obtained with a numerical lowpass filter, whose cutoff scale is ∆ρ ∼ 0.033, because

the spatial scale of the neoclassical electric field is expected not to be much finer than

that of kinetic profiles. Here, the kerneled moving averaging filter [30] is used as the

numerical filter. The error bands of the curves correspond to the absolute value of

difference between the data points and the curve, which is smoothed with the same

filtering manner afterwards. The finite width of the error bands can be brought by, e.g.,

imperfect alignment of the probe tips and shot-to-shot difference, which are much larger

than the statistical errors of each data points. The −∇V̄f profiles presented here are

in a qualitative agreement with previously measured Ēr profiles using other diagnostics

[31, 32]. Validity of the use of −∇V̄f as a proxy of Ēr is discussed below as well. After

the switch of the heating scheme, −∇V̄f flips from positive to negative as caused by
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the neoclassical electron-ion root transition. Despite the difference of the polarity, both

plasmas have similar Ēr well structures. The plasma in the NBI period has a deeper

and narrower well compared to the plasma in the ECH period.

3.2. Fluctuation spectrum

Auto PSD of the floating potential fluctuation at ρ ∼ 0.9 is shown in Figs. 2 (a)

and (d) for the ECH discharge and the NBI discharge, respectively. It is defined as

P (f) = ⟨P (t, f)⟩, where ⟨⟩ represents the time average in the time periods for both

heating scenarios. Since the turbulence is stationary in the time period of the data

analysis, the time average is regarded to be equivalent to the ensemble average. To

examine the reproducibility of turbulence spectrum, PSDs from different discharges are

overplotted. Since the rake probe is radially scanned between discharges, the PSD

from a probe tip closest to ρ = 0.9 is shown for each discharge. As a result, PSDs in

0.866 < ρ < 0.927 are displayed. They appear as almost overlapped curves, showing

a reasonable reproducibility of the fluctuation power throughout the discharges. The

fluctuation amplitude on the same magnetic surface is approximately equivalent, which

is indicated by the mostly overlapping PSDs obtained by different probes. In both

heating cases, the shapes of the PSDs are similar. A peak at f ∼ 200 kHz in the NBI

period is an energetic ion driven MHD mode.

The radial and poloidal wavenumbers are given as kr,θ = ∆αr,θ/dr,θ, where dr,θ

is the distance of two probe tips measuring the radial and poloidal phase differences



8

∆αr,θ. The frequency resolved phase difference is given as the complex argument of

the cross spectrum density (CSD). The CSD is defined as C(f) = ⟨X1(t, f)X
∗
2 (t, f)⟩,

where X1(t, f) and X2(t, f) indicate the wavelet spectra of the signals from the pair

of the probe tips of the rake probe or the poloidal probe. As is the case above,

the pair of the probe tips is chosen to be closest to ρ = 0.9 in each discharge. The

cross phase is only meaningful when it has a nonzero squared cross coherence, i.e., the

normalized magnitude of the CSD, defined as γ2(f) = |C(f)|2/P1(f)P2(f). The squared

cross coherence and the wavenumbers in the radial direction and the poloidal direction

are shown in Fig. 2 (b) [(e)] and (c) [(f)], respectively, for the ECH [NBI] discharge.

Results from different discharges are overplotted as in the case of the PSD, showing a

reasonable agreement here also. The standard deviation of the phase difference estimate

is given as s.d.[∆αr,θ] = (1 − γ2)/|γ|
√
2nd, where nd is the number of the ensembles

[33] (refer also to [34] for an example of its application). Effective nd depends on

the target frequency range because we have employed the wavelet scheme for spectral

decomposition. Thanks to the large number of statistically independent ensembles,

e.g., more than 1,000 ensembles for 100 kHz fluctuation, uncertainty of cross phase is

significantly reduced even with low coherence. Since the standard deviations of the

phase difference estimate are much smaller than the shot-to-shot difference, they are

not shown here.

As will be discussed below, the long range correlation appears in f < 20 kHz,

which is in agreement with previous observations [9, 10, 12, 13]. In the frequency
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range of f < 20 kHz for the ECH case and that of f < 10 kHz for the NBI case,

kθ ∼ 0, which is consistent with a property of the LFZFs. A small but finite kθ in

10 < f < 20 kHz in the NBI case can be plausibly explained by linear overlapping of

the global LFZF and local turbulences having a finite wavenumber, whose amplitudes

are comparable. Looking at the high frequency components in f > 20 kHz, signs of

both kθ and kr are opposite in the ECH case and the NBI case, even taking into account

a finite scatter of curves. This observation is consistent with the polarity change of Ēr.

Under the assumption that the turbulence intrinsic phase velocity is negligibly small

compared to the background E×B velocity, the frequency of fluctuations is determined

by the E × B velocity and the poloidal wavenumber as 2πf = kθ/(Ē
−1
r Bt). Therefore,

kθ,E×B = 2πfĒ−1
r Bt should meet the measured kθ if the estimated E ×B velocity from

the floating potential measurement is reasonable. Green curves in Fig. 2 (c) and (f)

show kθ,E×B. A reasonable agreement between kθ and kθ,E×B provides a support of use

of −∇V̄f as a proxy of Ēr. A small mismatch between kθ and kθ,E×B may be due to the

∇Te offset of ∇V̄f with respect to Ēr and a finite phase velocity of the turbulence.

3.3. Spatial structure of the low frequency global potential oscillation

By combining data of the rake probe from different discharges, the spatial structure

of the auto PSD, P (f, ρ), is reconstructed. It is shown in Figs. 3 (a) and (d) for the

ECH period and the NBI period, respectively. In the reconstruction, a discontinuity

of the spatial pattern that comes from an imperfect reproducibility of the discharges
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is mitigated by normalizing the PSDs with a factor. The factor is defined as F (f) =

P (f, ρ = 0.9)/P#43702(f, ρ = 0.9), and shows difference between spectra in discharges

and that in the reference discharge (#43702). Although this factor improves the

reconstruction, a small corrugated vertical patterns having a regular separation, which

is not real fluctuation structures, still remain. The long range coherence is defined as

γ2(f, ρ) = |C(f, ρ)|2/P (f, ρ)Pref(f), where C(f, ρ) = ⟨X(t, f, ρ)X∗
ref(t, f)⟩ is the CSD

between the tips of the rake probe and the reference probe (a tip of the poloidal probe

at ρ = 0.9) and Pref(f) is the power spectrum from the reference probe. It is shown in

Figs. 3 (b) and (e). The value of γ2(f, ρ) is largest at ρ = 0.9, where the two probe tips

are on the same magnetic surface. In the high frequency range, f > 20 kHz, γ2(f, ρ)

becomes much smaller, but still nonzero, in both cases. The cross phase with respect

to the reference probe, the complex argument of C(f, ρ), is also shown in Figs. 3 (c)

and (f). Here, the regions in which the standard deviation of the cross phase estimate

is less than 0.1 × 2π are masked. Positive value indicates phase delay with respect to

the reference signal. In the low frequency region, f < 20 kHz, the phase difference

at ρ ∼ 0.9 is approximately zero in both cases, being in agreement with a feature of

the global symmetric oscillation (m = 0 and n = 0, where m and n are the poloidal

mode number and the toroidal mode number, respectively). The radial variations of

the coherence and the phase significantly depend on the frequency. For example, in the

ECH plasma, a high value of γ2(f, ρ) covers a wider radial range 0.83 < ρ < 1, and the

phase is almost flat at the lowest frequency range. At higher frequencies the width of the
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structure in γ2(f, ρ) is shortened and a phase delay at the edge region becomes finite.

On the contrary, in the NBI case, the specific width of the γ2(f, ρ) structure increases

and the phase delay becomes smaller as the frequency increases up to f ∼ 10 kHz.

Structure of the oscillation is further quantified by frequency integration analysis.

The frequency integrated PSD and CSD are defined as P̄ (ρ) =
∫ f2
f1

P (f, ρ)df and

C̄(ρ) =
∫ f2
f1

C(f, ρ)df , respectively. By use of them, the frequency integrated squared

cross coherence is given as γ̄2(ρ) = |C̄(ρ)|2/P̄ (ρ)P̄ref . The radial profile of the

fluctuation amplitude is given as Ā(ρ) =
√
γ̄2(ρ)P̄ (ρ) for a semi-quantitative estimate.

The frequency integrated cross phase is given as the complex argument of C̄(ρ) as

Θ̄(ρ) = tan−1 Im[C̄(ρ)]/Re[C̄(ρ)]. The frequency width of the integration is taken as

f2− f1 = 3 kHz, in which changes in the oscillation properties are small. Error bars are

given according to [33]. Here, the number of independent ensembles that depends on the

frequency range is estimated using the frequency center (f1 + f2)/2. Data of Θ̄(ρ) are

shown only in the radial ranges where the error bars are smaller than 0.1× 2π. Radial

profiles of Ā(ρ) and Θ̄(ρ) are shown in the top two rows of Fig. 4 for three different

frequency ranges. In both heating cases, the global potential oscillation has a single-

peaked structure within the observable range, whose peak radius depends on the heating

scheme. The peak amplitude decreases monotonically as the frequency increases. In the

NBI case, a discrete phase inversion exists at ρ ∼ 0.97. The gradients of Ā(ρ) and Θ̄(ρ)

seem in-out asymmetric with respect to the amplitude peak.

In order to quantify the gradients in Ā(ρ) and Θ̄(ρ), the radial wavenumber of the
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global potential oscillation is evaluated. Here, the complex wavenumber is introduced

as kr = kRe + ikIm, where i is the imaginary unit. The potential oscillation can be

approximated as the local plane wave, Ā(ρ) exp[iΘ̄(ρ)+ iωt] = exp(i
∫
kRedρ−

∫
kImdρ+

iωt), in the both sides of the amplitude peak. Therefore, the real part and the imaginary

part of the wavenumber are given as kRe = ∇Θ̄ and kIm = −∇Ā/A, respectively. The

radial gradient is evaluated by the linear fitting within certain radial ranges for both

the inner side and the outer side of the amplitude peak, which are shown as the colored

rectangles in Fig. 4 top panels. Figures 4 (c) and (f) are the wavenumber of the global

potential oscillation as a function of the frequency. In both cases, kRe and kIm are highly

in-out asymmetric. In the ECH case, an increasing trend of the absolute value of the

wavenumbers with respect to the frequency is similar in the inner part and the outer

part. However, the magnitude of the wavenumbers from the outer part is much larger

than that from the inner part. On the contrary, the case of the NBI is more complicated.

The absolute values of the wavenumbers from the inner part have a decreasing trend

with the frequency. For the outer part, the imaginary part of the wavenumber dominates

the real part of the wavenumber. The value of the imaginary part of the wavenumber

weakly depends on the frequency.

To examine robustness of the discussion above, another attempt of the gradient

evaluation is performed with 80 % of the radial range (10 % each from both sides).

The result obtained remains qualitatively unchanged. The frequency dependence of the

global potential oscillation wavenumber is shown for the first time. In addition, different
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features are observed depending on the plasma operation condition. The collisionarity

dependence of the zero frequency zonal flow wavenumber has been quantified in JET

[8]. As is stated above, the collisionarities of both discharges are in the same regime so

that the difference in oscillation characteristics seems to be ascribed to the difference in

polarity and structure of the global radial electric field.

By use of the amplitude and phase of the global potential oscillation, the waveform

of the radial electric field oscillation is reconstructed as Er = −∇ [A cos(−fτ +Θ)].

Before the reconstruction, smoothing by use of a numerical lowpass filter is performed

for A and Θ to remove shot-to-shot scatter of the points. Figures 5 (a) and (c) show the

reconstructed waveforms as a function of the frequency and the radius for the instance

of fτ = 0. Here, the band width of the frequency integration is 3 kHz as the case of

Fig. 3, but data at up to the higher frequency are shown. In the NBI case, a clear

dipole structure of the oscillatory Er can be seen. The amplitude is large only when the

frequency is low. In the ECH case, the radial structure of the oscillatory Er seems to be

wider. Although the range ρ < 0.82 is out of observable radius, from a decreasing trend

in the Vf amplitude [Fig. 4 (a)], the counterpart of the dipole Er structure is expected

to exist, and to compose the dipole structure as well. In contrast to the NBI case, the

frequency dependence of the Er amplitude is weak. From the series of analyses, it is

confirmed that a preferential oscillatory state, in terms of the frequency and the spatial

structure, exists depending on plasma conditions. Phase inversion point of the dipole

structure at the lowest frequency range seems to approximately agree to the inner shear
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region in both cases. An interpretation, the lowest frequency structure is smoothly

connected to the zero frequency structure, is possible.

The bottom plots are snapshots of the Er oscillations at fτ = 0 and π, overlapped

on top of the mean Er profiles. Although the values of Er profiles have relatively large

errors as shown Fig. 1 (d), we omit them. Therefore, the snapshots show representative

examples of how they evolve in space and time. These figures correspond to possible

illustrations of the Er behavior. As the mean Er profiles have relatively large errors as

shown Fig. 1 (d), the actual mean Er values can have some offsets, which are not so

much interested in. By the low frequency global Er oscillation, the well depth of the Er

profile is modulated in both cases. Therefore, the Er shear and the Er curvature are

modulated by the oscillation, which can impact the transport regulation as discussed in

[10, 11].

4. Summary

In this Letter, we showed frequency and plasma condition dependent structures of the

global radial electric field oscillation. Results reported here show, with unprecedented

detail, how sensitive are the properties of zonal flows to plasma conditions. These

provide a key experimental guide for model validation. Whether this sensitivity is due

to the magnitude or sign of radial neoclassical electric fields affecting Reynolds stress

driven zonal flows and neoclassical mechanisms [20, 35] or/and plasma profile effects

remain an open question. We also note that the external parallel momentum input



15

should also impacts on the zonal flow dynamics. These experimental details will be

assessed in the future investigations.

Another important topic on the zonal flows is the isotope mass dependence

[22, 23, 12, 36]. Theoretical studies claim that the isotope mass dependence appears

in a specific spatial scale regime [23]. Therefore, the approach used in this paper, i.e.,

observation of spatial structures with a frequency resolution, would be beneficial to

reveal that theoretical proposal. Further experimental activities focusing on the isotope

mass dependence are planned in future.
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(a)
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n e-

ECH

NBI

Figure 1. Time evolutions of (a) the line averaged density n̄e and the Hα emission intensity,

(b) wavelet power spectral density of floating potential at ρ ∼ 0.9, radial profiles of (c) mean

floating potential and (d) mean radial electric field averaged in the ECH period and the NBI

period. Different symbols in (c) and (d) show the long-time averaged data from different shots.

(a) 

(c)

(d)

(f)

ECH NBI

(b) (e)

Figure 2. Left: (a) Auto power spectral density of the floating potential fluctuation at ρ ∼ 0.9,

(b) squared cross coherence between probe pairs, and (c) frequency-resolved radial wavenumber

and poloidal wavenumber in the ECH period. Right: (d-f) Those for NBI period.



19

(a) 

(b)

(d)

(e)

ECH NBI
43702

437044370643708
43703

4370543707
43709

(c) (f)

Figure 3. Left: Frequency-space-resolved (a) power spectral density of the floating potential

fluctuation and (b, c) long range cross coherence and cross phase in the ECH period. Right:

(d-f) Those in the NBI period. Correspondence between shot numbers and the radial position

of the rake probe are shown by symbols at the top of figures.

(a) 

(b)

(d)

(e)

ECH NBI

(c) (f)

Figure 4. Left: Frequency-integrated (a) fluctuation amplitude and (b) phase for three different

frequency ranges, and (c) radial wavenumber of the low frequency global potential oscillation

fitted at the inner side (cyan) and the outer side (magenta) of the amplitude peak in the ECH

discharges. The regions for the fitting indicated by the horizontal thick lines in top panels. Right:

(d-f) Those in the NBI discharges.
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(a) (c)ECH NBI

(b) (d)
ft=0

ft=p

ft=0
ft=p

Figure 5. Left: Reconstructed waveforms of the low frequency global oscillation in radial electric

field (a) plotted as a function of the frequency and (b) plotted on top of the mean profile in the

ECH discharges. Right: (c) and (d) Those in the NBI discharges. Frequency ranges used for (b)

and (d) are 3.5-6.5 kHz and 0.5-3.5 kHz, respectively.


