
Design for the Distributed Data Locator Service for Multi-site Data Repositories

H. Nakanishia,c,∗, K. Yamanakab,c, S. Tokunagad, T. Ozekid, Y. Hommad, H. Ohtsud, Y. Ishiid, N. Nakajimaa, T. Yamamotoa,
M. Emotoa, M. Ohsunaa, T. Itoa, S. Imazua, M. Nonomuraa, M. Yoshidaa, H. Ogawaa, H. Maenoa, M. Aoyagia, M. Yokotaa,

T. Inouea, O. Nakamuraa, S. Abeb,c, S. Urushidanib,c

aNational Institute for Fusion Science, NINS, Toki, Gifu 509-5292, Japan.
bNational Institute of Informatics, Chiyoda-ku, Tokyo 101-8430, Japan.

cThe Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan.
dNational Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori 039-3212, Japan.

Abstract

The Remote Experimentation Centre (REC) in Japan has been preparing to replicate the full dataset of ITER over 10 000 km
distance. In such a multi-site data repository environment, the data location informing service will be essential to find and retrieve
the data efficiently. Considering the long latency time and the self sustainability of remote sites, the data location database should
be running at each repository site. Multi-master asynchronous replication between cooperating databases will be essential to realize
the remote experimental collaborations in fusion research. This study has investigated the functional differences of some relational
databases and found that Postgres BDR has the expected database replication capabilities. Bi-directional replication (BDR) tests
by using the LHD database and SNET revealed that the throughputs are sufficient for remote collaborations in fusion experiments.

Keywords: multi-site data repository, data locator service, bi-directional replication, Postgres BDR, ITER REC, LHD, SNET

1. Introduction

In modern fusion experiments, remote data access has al-
ready come into wide use in both domestic and international
research collaborations. The SNET fusion data exchanging
platform in Japan interconnects four fusion experimental sites,
LHD, QUEST, GAMMA10, and TST-2, over 1 000 km distance
[1]. SNET enables remote collaborators to seamlessly access
each site’s data as if they were in a local site.

Similarly, the Remote Experimentation Centre (REC) in
Rokkasho, Japan is planning to replicate the full dataset of
ITER data over 10 000 km distance, where high-performance
computing resources are ready for off-site analyses on ITER
physics data [2]. Prior to this study, our group has performed
some series of inter-continental massive data replication tests
between ITER and the REC sites [3, 4, 5].

In such multi-site data repository environments, the data lo-
cation informing “locator” service will be essential for find-
ing the best data server from which users can retrieve the data
most efficiently. Considering that the latency time is more than
100 milliseconds for inter-continental network transactions, not
only the data repositories but also the locator servers should be
distributed to multiple sites. Since the data location informa-
tion will be stored and served by means of a relational database
(RDB), such as PostgreSQL or MySQL, realtime synchroniza-
tion between the distributed RDBs will be necessary to provide
a consistent data locator service around the world.

∗Corresponding author; phone: +81 572 58 2232,
Email address: nakanishi.hideya@nifs.ac.jp (H. Nakanishi)

From years’ operational experience of the SNET remote
sites, we also found that the operational independence of the
remote site is quite important against unexpected and planned
service outages of the original site. A typical example is the an-
nual electricity inspection by law with an power outage of the
whole site, which never and should not concern the remote site
work continuity such as data accesses for analyses.

In this study, bi-directional replications between multi-
master locator RDBs has been tested by using the LHD data
system and SNET. Since the current structure of the SNET dis-
tributed data system adopts a master-slave RDB replication ar-
chitecture, the system structure must be redesigned for apply-
ing the multi-master bi-directional replication. Such structural
refinements for the distributed databases would be a common
issue not only for SNET’s multiple sites but also for the bi-
directional replication between ITER and the REC.

In addition, some performance tests have been performed
by using the PostgreSQL version 9.4 with the extension of bi-
directional replication (BDR) [6]. It is because PostgreSQL
has been selected as the standard RDB by ITER CODAC [7].
Before the actual performance test, some technical surveys on
other RDB replication methods have been made with some
comparisons and discussions.

2. LHD Data System and SNET Platform

After almost twenty years of high-temperature hydrogen
plasma experiments, the Large Helical Device (LHD) has suc-
cessfully started the deuterium experiment since March 2017,
in which further plasma performance improvement is envisaged
to contribute to the fusion reactor design [8].

Preprint submitted to Fusion Engineering and Design December 1, 2020



As for the data system of LHD, the recommend-type fa-
cilitator model has been adopted [9], in which two indepen-
dent transactions are required in every data access: At first
the data client makes an inquiry to the relational database to
know the necessary data location(s), and secondly the client
requests to retrieve data from the previously identified data
server(s). Those two steps use different protocols. The former
uses an SQL-based database query, and the latter uses an FTP-
like homemade protocol. Such a separation has been adopted to
avoid any bottlenecks for handling a large number of simulta-
neous data users and also massive-sized data inputs and outputs
at the same time.

The LHD data system once adopted a distributed key-value
store (KVS) which is a kind of the so-called NoSQL database.
Even though it had many advantageous features, we sometimes
suffered from operational troubles especially in recovering from
some node failures [10]. Such the lack of the system durability
in recovering from fault conditions let us conclude to abandon it
and continue using a SQL-based RDB instead because we have
never experienced any troubles at all for more than 20 years
PostgreSQL operation in LHD.

Together with three universities employing fusion experi-
mental devices, the LHD data system has been organizing the
Fusion Virtual Laboratory (FVL) in Japan since 2008 [11].
At the present time, the participating sites are LHD at NIFS,
QUEST at Kyushu University, GAMMA10/PDX at University
of Tsukuba, and TST-2 at the University of Tokyo, connecting
through the layer-2 and layer-3 virtual private network (VPN)
of SNET [12].

In such a multi-site data production and consuming environ-
ment, we sometimes suffered from the accidental loss of net-
work connectivity. Under the present system structure shown
in Fig. 1 (left), the acquired raw data can be queued within the
DAN archiver while waiting for the network connectivity to be
restored thereby allowing the raw data to be sent to the primary
data server. However, it is difficult for the connection-lost site
users to make an inquiry to search the data locations because
the proxy server cannot relay requests if the primary indexing
DB or intermediate network is down. Likewise, new data reg-
istration is not possible thus that they cannot be found by any
other data consumers.

The LHD data storage adopts the multiple stages: i) on DAQ
node, ii) SSD array, iii) HDD raid cluster, and iv) Blu-ray Disc
library, in which the archiving data can be queued and served at
every stage. However, the indexing DB has only master-slave
replication locally for the data safety.

Consequently, the ideal condition for such multi-site data
sharing cases can be considered that the remote site should con-
tinue the data operation independently from the primary data
archiving repository and the indexing DB even while the net-
work connectivity was lost. Of course, the queued data and
the modified location information should be automatically re-
synchronized to the primary data archiving repository and to
the indexing DB as soon as possible when the network connec-
tivity is back.

To satisfy the above mentioned requirements, the multi-
master database synchronization should be applied for the

SNET distributed data system. Figure 1 (right) shows the
schematic diagram of the structural refinement. Being differ-
ent from the proxy-based remote query-forwarding service, this
multi-master databases can accept the local read/write trans-
actions even while an accidental loss of network connectivity
happens at the remote site. While network connectivity lost,
the data retrieving clients can look for the data locations on the
replicated indexing DB and read the queued data at the data ac-
quisition and archiving server (DAN Archiver) within the site.

As for the re-synchronization mechanism between primary
and replicated indexing DBs, technical discussions will be
given in the later section. However, it must be noted that all
the data producers of the fusion experimental device, including
the human data analysts, will generate their own data and reg-
ister them with a unique name given beforehand. Most of the
physics data will be also managed along with the experimental
pulse number or date, and thus, generated data will be simply
accumulated without any modification afterward.

Therefore, if the data registration/modification privileges are
properly managed, there could not be any transaction conflict
in newly registering or modifying the data records. This fact
means that the data synchronization timing and the conflicting
transaction management are not so critical for the data indexing
databases of the fusion device and plant operations.

3. ITER UDA and Replicated Repository

Under the Broader Approach (BA) activities, the ITER Re-
mote Experimentation Centre (REC) has been preparing to
make a full replication of ITER data at Rokkasho, Japan
[13]. ITER data system and its access methods are named
as ITERDB and the Unified Data Access (UDA), respectively
[14, 15, 16]. ITER UDA adopts the broker-type facilitator
model [9], in which all the client/server communications will
be carried through the UDA server. Figure 2 (left) shows the
schematic diagram [17].

As the ITER data archiving repository is the original full set
of ITER data, not only the bulk dataset but also the indexing
DB would be a single point of failure (SPOF). Long-distance
accesses to the only one indexing DB may involve a large risk
for the remote users suffering from any accidental losses of the
network connectivity.

The SPOF problem of the indexing DB should be solved
by introducing the service and server redundancy. If having
the replicated indexing DBs at the remote sites, each of them
might improve the site independence because it can accept re-
mote users’ inquiries for the data locator service even when the
primary indexing DB would have an accident.

In fusion experimental data analyses, the requirement con-
ditions for the replicated indexing DBs considering the off-site
data users can be thought of as follows:

(i) Service continuity, no coincident with any stops of pri-
mary indexing DB

(ii) Service suspension at any time and the subsequent recov-
ery of synchronization, not only for system failures but
also for planned maintenance or site power outage, etc.

2



⇒

Figure 1: LHD data system only with a primary indexing DB (left) and the multi-site extension having bi-directionally replicated indexing DBs at each remote site
(right): The SQL proxy server can forward the SQL query commands and their returned results to/from the primary indexing DB. Not only DAN but also some
other synchronous data (SDN) and plant operation data (PON) archivers migrate and register their data to the repository. Real-time data monitoring streams are
independently transfered between their own client and server.

⇒

Figure 2: ITER UDA structure and the replicated repository: The yellow-hatched areas for remote sites are added by us upon the original UDA design of white
background (left) [17]. If the there is only one indexing DB, it would be a single point of failure (SPOF). Remote site’s independence against accidental loss of long-
distance network connectivity or planned power outages can be improved if the replicated indexing DB could continue operation independently from the primary
indexing DB even though the realtime synchronization is temporarily lost (right). The indexer process should always register a new data entry synchronously with
the data migration process making a new copy of the data or moving to other place, locally or remotely.

(iii) Delayed replication ability, against any loss or temporary
failure of intermediate network links.

There are primarily two choices for the way to synchronize the
DB records between primary and replicated DBs: the master-
and-slave(s) or the multiple-masters structure. Because no slave
DBs can continue to accept the write transactions independently
from the primary DB, it is expected to adopt multiple-master
formation between ITER and the replicated indexing DBs of
the remote sites. A typical example of the conceivable structure
between ITER primary and the REC replicated data archiving
repositories is shown in Fig. 2 (right).

As for the data archiving repository itself, automatically gen-
erated ITER primary data should be promptly replicated to the
remote site(s) according to the pulse sequences. On the other
hand, secondary data products such as analyses results made
outside IO could be generated independently from the primary
site operation. Not for disturbing the off-site data analyses,
the replicated repository should accept new data registrations
for those secondary data products. Those data should be also

served or shared together with the indexing DB for at least the
site users, as shown in Fig. 2 (right).

4. RDB Replication Methods

Replication is a technology to improve load balancing
and/or fault tolerance capabilities having a replicated “replica”
database with the same contents. There are two types of repli-
cation: synchronous replication and asynchronous replication
[18].

Synchronous replication transfers the update information to
all the related master and slave databases, and waits for the
completion of all the database updates. Although synchronous
replication always guarantees the data consistency between
each database, it involves performance degradation in synchro-
nizing every data update.

In asynchronous method, the update information will be at
first stored in the master database, and later transferred to
the other databases for replication. Asynchronous replication
causes less performance degradation. However, there remain

3



some time gaps of data inconsistency until the update propa-
gation is completed. Due to the gap time, information incon-
sistency would possibly be caused if some conflicting transac-
tions would be executed. Then, some special treatment would
be necessary to dissolve the inconsistency. Many asynchronous
replication methods adopt rather a simple treatment basis, “Last
update wins,” in which the transaction executed last in time al-
ways rewrites the previous transactions and remains effective
thereafter.

As mentioned in the previous section, the multiple-master
configuration of the DB replication will be necessary for the
internationally collaborating fusion experiment such as ITER.
Every physics and engineering data of fusion experiments are
generally distinguished by a unique name given beforehand and
a unique number given sequentially for each experimental dis-
charge. Therefore, accidental collisions of update information
will not occur in principle if data revision management is car-
ried out properly. This is why the asynchronous replication is a
realistic solution considering the long-distance distributed DB
operation at remote collaboration sites.

In this section, brief overviews will be given for some vari-
eties of replication methods for PostgreSQL relational database
[19]. PostgreSQL is a widely used open source software (OSS)
having a long history of development by mostly volunteer de-
velopers. Therefore, various implementations can be found
for its replication methods. Their functional comparisons are
shown in Table 1.

4.1. Synchronous Replication Methods

There are two major approaches for the implementation of
the synchronous replication between PostgreSQL DBs. One is
to use the SQL statement-based middleware which duplicate
the received SQL statements to deliver to each related DB and
wait for the completion of all the transactions. One well-known
problem on this method is that generated results of some SQL
functions, such as random() or now(), might be different be-
tween multiple DBs.

Another problem is the working location of this middleware.
Since such the middleware works as a “proxy” server transfer-
ring the SQL statements, it could not run independently with-
out communicating with the backend DB. The configuration
is easy to setup and therefore is very popular so that we have
applied this method between the LHD data system and the
SNET remote sites, as shown in Fig. 1(left). The server soft-
ware “Pgpool-II” is used as the SQL proxy for the remote SNET
sites [21]. However, this configuration does not realize the site
independence of the remote sites for the operations of data up-
dates.

Another synchronous replication method is to use the stream-
ing replication with synchronous commit= on where Post-
greSQL waits for the transaction committed on both master and
slave databases [20]. Multi-master configuration is not realized
by using this method.

Postgres-XC and Postgres-R are the projects for enabling the
shared-nothing DB cluster configuration by modifying the orig-
inal PostgreSQL codes [22, 23]. They apply the two-phase

commit capability on PostgreSQL for implementing the multi-
master synchronous replication. These tightly coupled cluster-
ing databases have different objectives, such as high-availability
(HA), failover, parallel transaction processing, load balancing
and performance scale-out, comparing to the loosely coupled
long-distance DB replication between ITER and the REC.

4.2. Trigger-based Asynchronous Replication

Database trigger is a commonly implemented function which
can automatically execute user defined procedures awaken by
every transaction event on the specific tables. It can execute
not only the stored scripts but also external commands through
the procedure, and thus, is often used for implementing the pro-
cesses running to monitor and transfer the DB changes for repli-
cation. As the replication will be made asynchronously, this
solution involves a risk of data loss in case the primary server
would have an accidental stop.

There are some popular software packages for master-slave
and multi-master replications, such as Slony-I and Bucardo.

Slony-I can make single-master multi-slave DB replication
asynchronously. Its replication is triggered by INSERT, UP-
DATE, DELETE, TRUNCATE on the target table, and the up-
date log is transferred to the slave DBs. Setup for Slony-I
replication is somewhat complicated because both side’s ap-
plications require different but mutually dependent settings.
Londiste is another row-based implementation similar to Slony-
I [24].

Bucardo is a free OSS developed for enabling asynchronous
replication on PostgreSQL [25]. By using triggers and queu-
ing in the database, it can provide row-based master-slave and
multi-master replications. Background daemon processes writ-
ten in Perl programming language are needed to transfer the
transaction data and replicate them to the related DBs. For
multi-master configurations, standard or customized method
can be selected for resolving the transaction conflicts. It can-
not handle SQL commands on data definition language (DDL),
such as CREATE, DROP, or ALTER, nor the large objects be-
cause PostgreSQL has no triggers on them.

In both Slony-I and Bucardo cases, a trigger processing dae-
mon should be running which should be called externally from
the master database service. Such an independent service dae-
mon could be another SPOF in the DB replication system, and
also increase some computing overheads of external process
calls, compared to the streaming replication method mentioned
below.

4.3. Streaming Replication (Physical Replication)

Streaming replication is implemented by applying the trans-
action log shipping mechanism. At the master server, modifica-
tions on the database are logged to the binary write-ahead log
(WAL), which is transferred to the slave DBs and restored via
WAL recovery method. This scheme regenerates completely
the same database at every slave DB server so that it is often
called a “physical replication.”

PostgreSQL 9.0 and higher versions enable the streaming
replication from a single master to multiple slave DBs. Both

4



Table 1: Replication types and related packages for PostgreSQL [20]. PG means a build-in function of PostgreSQL.
based-on sync/async m-s/m-m software solution note

SQL statement sync multi-master Pgpool-II may cause inconsistent results
DB trigger async master-slave Slony-I, Londiste needs external daemon process
′′ ′′ both Bucardo ′′

WAL shipping both master-slave PG streaming replication WAL is a binary block
logical decoding both both PG logical replication table and row-based

′′ ′′ ′′ Postgres BDR ′′ + “Last-update-wins”

synchronous and asynchronous replications have been realized,
even though some performance degradation may occur in syn-
chronous replications [20].

This method has some restrictions that the replication can
only be made on a per-database basis, not on a per-table or per-
row basis. Also, the replicated slave DB servers cannot process
any data updating transactions. Streaming replication would be
rather effective for the use in failover DB cluster configurations.

4.4. Logical Replication

Logical replication is based on similar mechanism to the
streaming replication. At the WAL sender on the publisher
server, binary WALs are logically decoded from binary blocks
to higher-level data manipulations on tables and rows so that
they are transferred to the WAL receiver to be applied on the
subscriber DB server. This is why the stored results of the SQL
commands “random” and “current timestamp” can be consis-
tent.

Basically, logical replication allows updating transactions to
flow to multiple recipients without fixing the role of a spe-
cific server as a master or slave. Accordingly, the subscriber
databases can accept and process updating transactions. There-
fore, there is no apparent way to find the transaction conflict.

Logical replication is still under active development on the
most recent version of PostgreSQL. Some expected function-
alities are not implemented yet, such as replicating the DDL
commands [20]. Postgres BDR is one of the practical imple-
mentations of PostgreSQL logical replication.

4.5. Postgres BDR

In case of multiple data repositories and/or data production
sites, distributed data locator service will be essential to man-
age the data indexes locally and also exchange their information
with remote sites. To establish the bi-directional database repli-
cation is the key technology to enable a research collaboration
over far remote sites.

PostgreSQL 9.4 and higher versions have been equipped with
the multi-master bi-directional replication (BDR) [6]. Postgres
BDR adopts a loosely coupled shared-nothing multi-master ar-
chitecture. Since BDR is implemented as an extension mod-
ule of PostgreSQL 9.4 and the higher, it can be loaded to
PostgreSQL just by “CREATE EXTENSION bdr” command.
As the BDR is based on the PostgreSQL logical replication,
data will be replicated on “row-based” rule which is neither
by higher-level “statement-based” nor by “log-shipping” algo-
rithm.

One of the most advantageous points of Postgres BDR is that
it does not require other external processes than the standard
PostgreSQL services so that all the necessary configurations
can be written in the PostgreSQL setup files or stored in the em-
bedded database schema. It is quite easy and straightforward to
establish multi-master bi-directional replication.

The updating data will be once stored in the local database,
and also queued for asynchronous replication, which is not
concerned with whether the connection to the remote database
is healthy or not. Replication of the queued data would be
restarted automatically when the connection is recovered. Such
loosely coupled databases are very appropriate for the require-
ments of ITER-REC and SNET multi-site collaborations.

Postgres BDR has many favorable features, as mentioned.
However, there still remain some technical constraints. Some
DDL commands, such as CREATE, DROP, and ALTER, are
still not supported. A primary key or keyset should be definitely
given for every record on tables, which should not be the stan-
dard object identifier (OID) on each record. To cope with the
transaction conflicts, BDR adopts a simple “Last update wins”
rule.

To maintain the favorable replication throughput, the repli-
cation interval is expected to be 2 seconds as default. Such a
quasi-realtime synchronization does not fit for the time-critical
applications. However, it adequately satisfies the requirements
for the data replication of fusion experiments.

The performance test results by using the LHD indexing
database are shown below.

4.6. Replication of other RDBMS

Oracle database is a well-known commercial RDB manage-
ment system, which has long been known to provide single-
master or multi-master synchronous and asynchronous repli-
cations called “Advanced Replication.” However, for Oracle
Database 12c Release 2 (12.2) and later releases, replication
functionalities have been separately provided by the Oracle
GoldenGate which enables replications between different ver-
sions and different RDB products [26].

Oracle GoldenGate can be understood as a kind of log-
shipping streaming replication from the master database to the
slave one(s). However, it can setup the streaming replication
in the opposite direction in parallel. At the moment, Oracle
GoldenGate has a restriction that PostgreSQL cannot be a pri-
mary DB to be replicated. This restriction may cause a difficulty
for some fusion experimental projects, such as ITER and LHD,
which already adopted PostgreSQL as the standard RDB.

5



Table 2: Performance results on Postgres BDR: Each record size is rather small, practically less than 1 kB. Bold types show the BDR’s elapsed time per record.
DB (# of tables) SQL # of records elapsed time /s time per record /s

ex note (5) insert (bdr) 144772 243.6 16.8 × 10−4

′′ copy (bdr) ′′ 23.1 1.60 × 10−4

′′ ′′ (local) ′′ 0.978 6.76 × 10−6

setup (167) copy (bdr) 11557821 971.6 0.84 × 10−4

′′ ′′ (local) ′′ 62.15 5.37 × 10−6

index (22) copy (bdr) 207911053 35654 1.72 × 10−4

′′ ′′ (local) 237544798 581.5 2.45 × 10−6

MySQL and its derivative MariaDB are also very popular
free RDBMS. On their own, MySQL servers provide master-
slave replication capabilities based on the binary log shipping
method. Not only asynchronous replication but also semi-
synchronous replication are possible for faster failover and
crash recovery on HA systems [27].

MySQL Cluster enables active-active multi-master replica-
tion for mission-critical HA systems with performance scala-
bility [28]. For the cluster configuration, it adopts different data
engines and control schemes than the standard MySQL, where
more than three nodes should be running for the DB operation.

MariaDB Galera Cluster is a similar HA cluster system based
on MariaDB [29]. Both the MySQL Cluster and MariaDB
Galera Cluster apply the majority rule for avoiding the split-
brain problem so that the minority nodes cannot continue the
DB operations [30]. In other words, such cluster configurations
do not fit for the loosely tied DB replication over the wide-area
network.

5. Performance Verification on Postgres BDR

Actual throughputs of Postgres BDR have been investigated
between NIFS, Toki and REC, Rokkasho with the following test
conditions:

distance : ∼ 1100 km
RTT : 16.2 ms (RTT = round-trip time)
Ethernet : Intel X710-DA4, 10 Gbps
motherboard : ASUS X99-E-10G WS
cpu : Xeon E5-2650 v4, 2.2 GHz, 12c/24t
memory : DDR4-2400 ECC RDIMM, 128 (32x4) GB
storage : Samsung 960 PRO 512GB (NVMe SSD)

Table 2 shows the actual elapsed time observed by our bi-
directional replication tests using the major databases of
LHD. Here, BDR’s default queuing time of 2 seconds
(bdr.default apply delay= 2000 ms) was used as it is.

We can find that the processing times with BDR are mostly 2-
digit longer than those without BDR. However, BDR copy even
takes 0.172 ms or less per record. Not the whole table copy but
a single insertion command takes approximately 1.68 ms per
record, which is still 1/10 smaller than the network round-trip
time of 16.2 ms. In case of ITER and the REC, it becomes
less than 1 % of about 180 ms round-trip time. These results
show that 2-second replication queuing is effective in keeping

the slowdown to an acceptable level even under high-latency
networks.

Long elapsed time, such as 35 654 seconds shown in Table 2,
is to copy or insert numerous records with the BDR relation al-
ready established. Postgres BDR only transfers the differential
information between BDR DBs, so that initial data importation
for a new replica DB should be made locally on the replica DB
before starting the BDR relation. Based on Table 2 results, the
necessary time to make a new replica DB would be rather 581.5
seconds of local copy, than 35 654 seconds of BDR copy. It is
adequately fast for practical uses even considering the number
of records being higher in case of ITER.

As a consequence of our tests, we have found that each
replication transaction in Postgres BDR takes rather a short
time comparing with the network round-trip time between dis-
tant sites with RTTs of more than 10 ms like ITER and the
REC, LHD and the SNET. Since every network communication
cannot overcome the network latency, i.e. RTT, bi-directional
database replication like Postgres BDR can be of practical use
to be applied between multiple remote collaboration sites for
some fusion experiments.

6. Conclusion and Future Works

In order to put widely distributed data repositories of prac-
tical use for off-site data analyses, the data location informing
service should be running at each repository site to sustain the
independent operation against any accidental or scheduled stops
of other sites. To satisfy the conflicting requirements of both the
site independence and the mutual data synchronization, asyn-
chronous multi-master, i.e., bi-directional, replication should be
applied between the cooperating relational databases that serve
the data location indexes.

Through a functional survey on popular open-source and
commercial RDBMS software, we found PostgreSQL to be the
most promising solution, at the moment, for such multi-site
DB replications between ITER and the REC, and also between
LHD and SNET. Since ITER and LHD have already adopted
the PostgreSQL as their standard RDBMS, its extension for the
bi-directional replication might cause fewer compatibility is-
sues. Other popular RDB products, such as Oracle and MySQL,
seem to be aiming for densely coupled cluster configurations
and are oriented towards being applied to mission-critical cases
rather than being used in collaborative research uses.

6



To verify the replication performance, the throughputs of
Postgres BDR have been measured on SNET by using the LHD
indexing databases. The result shows that the replication speeds
are adequately fast compared to the network round-trip time.
Thus, we can conclude that Postgres BDR is a very practical
solution in both functional and performance viewpoints for our
multi-site database replication in fusion experiments.

Even though BDR 1.x was the OSS based on the PostgreSQL
9.4, the successor BDR 2.0 on PostgreSQL 9.6 and the current
3.0 on PostgreSQL 11 and 12 are now non-free licensed soft-
ware, unfortunately [31]. Nevertheless, we still expect further
developments on the standard PostgreSQL logical replication
because the BDR developer continues the contribution on it
[32]. Our investigations on this matter will be also continued
in the near future.

We also plan to make another verification test on relaying
replication through more than two sites. In such environments,
some selection schemes would be necessary to choose the most
efficient repository and also the indexing database.

Acknowledgments

This work is performed with the support and under the
auspices of the NIFS research programs (NIFS19KKSH006,
NIFS19PLHH281, NIFS19ULII001, NIFS19ULHH006). It
was also supported by the QST Collaboration Research under
the Broader Approach Activity in 2012–2020.

References

[1] H. Nakanishi, M. Ohsuna, M. Kojima, S. Imazu, M. Nonomura, T. Ya-
mamoto, M. Emoto, M. Yoshida, C. Iwata, M. Shoji, Y. Nagayama,
K. Kawahata, M. Hasegawa, A. Higashijima, K. Nakamura, Y. Ono,
M. Yoshikawa, S. Urushidani, Data acquisition system for steady-state
experiments at multiple sites, Nuclear Fusion 51 (11) (2011) 113014.

[2] IFERC, CSC, https://www.iferc.org/CSC Scope.html (2019).
[3] K. Yamanaka, S. Urushidani, H. Nakanishi, T. Yamamoto, Y. Nagayama,

A TCP/IP-based constant-bit-rate file transfer protocol and its extension
to multipoint data delivery, Fusion Eng. Design 89 (5) (2014) 770–774.

[4] K. Yamanaka, H. Nakanishi, T. Ozeki, S. Abe, S. Urushidani, T. Ya-
mamoto, H. Ohtsu, N. Nakajima, Long distance fast data transfer experi-
ments for the ITER Remote Experiment, Fusion Eng. Design 112 (2016)
1063–1067.

[5] K. Yamanaka, H. Nakanishi, T. Ozeki, N. Nakajima, J. Farthing, G. Man-
duchi, F. Robin, S. Abe, S. Urushidani, High-performance data transfer
for full data replication between ITER and the Remote Experimentation
Centre, Fusion Eng. Design 138 (2019) 202–209.

[6] PostgreSQL Global Development Group, Postgres BDR,
http://bdr-project.org/docs/stable/ (2016).

[7] ITER IDM, System Design Description for CODAC, CODAC DDD
(ITER D 6M58M9) (2014).

[8] Y. Takeiri, et al., Extension of the operational regime of the LHD towards
a deuterium experiment, Nuclear Fusion 57 (10) (2017) 102023 (10pp).

[9] J. Bacon, Concurrent Systems, Addison-Wesley, Reading, 1993,
[Japanese translation: Toppan, Tokyo (1996)].

[10] H. Nakanishi, M. Ohsuna, M. Kojima, S. Imazu, M. Nonomura,
M. Emoto, T. Yamamoto, Y. Nagayama, T. Ozeki, N. Nakajima, K. Ida,
O. Kaneko, Revised cloud storage structure for light-weight data archiv-
ing in LHD, Fusion Eng. Design 89 (5) (2014) 707–711.

[11] H. Nakanishi, M. Kojima, C. Takahashi, M. Ohsuna, S. Imazu, M. Nono-
mura, M. Hasegawa, M. Yoshikawa, Y. Nagayama, K. Kawahata, Fusion
virtual laboratory: The experiments’ collaboration platform in Japan, Fu-
sion Eng. Design 87 (12) (2012) 2189–2193.

[12] T. Yamamoto, Y. Nagayama, H. Nakanishi, S. Ishiguro, S. Takami,
K. Tsuda, S. Okamura, Configuration of the virtual laboratory for fusion
researches in Japan, Fusion Eng. Design 85 (3-4) (2010) 637–636.

[13] J. Farthing, T. Ozeki, S. C. Lorenzo, N. Nakajima, F. Sartori, G. D.
Tommasi, G. Manduchi, P. Barbato, A. Rigoni, V. Vitale, G. Giruzzi,
M. Mattei, A. Mele, F. Imbeaux, J.-F. Artaud, F. Robin, J. Noe, E. Joffrin,
A. Hynes, O. Hemming, M. Wheatley, S. O’hira, S. Ide, Y. Ishii, M. Mat-
sukawa, H. Kubo, T. Totsuka, H. Urano, O. Naito, N. Hayashi, Y. Miyata,
M. Namekawa, A. Wakasa, T. Oshima, H. Nakanishi, K. Yamanaka, Sta-
tus of the ITER remote experimentation centre, Fusion Eng. Design 128
(2018) 158–162.

[14] G. Abla, G. Heber, D. P. Schissel, D. Robinson, L. Abadie, A. Wallander,
S. M. Flanagan, ITERDB—The Data Archiving System for ITER, Fusion
Eng. Design 89 (5) (2014) 536–541.

[15] R. Castro, Y. Makushok, L. Abadie, S. Pinches, D. G. Muir, J. Hollo-
combe, J. Vega, J. Faig, G. Garcı́a, ITER Unified Data Access (UDA), in:
11th IAEA Technical Meeting on Control, Data Acquisition, and Remote
Participation for Fusion Research, 8–12 May 2017, Greifswald, Germany,
2017, O-31.

[16] R. Castro, L. Abadie, Y. Makushok, M. Ruiz, D. Sanz, J. Vega, J. Faig,
G. Román-Pérez, S. Simrock, P. Makijarvi, Data archiving system imple-
mentation in ITER’s CODAC Core System, Fusion Eng. Design 96-97
(2015) 751–755.

[17] ITER IDM, UDA architecture diagram, UDA user manual (TPLTKG v2)
(2018).

[18] R. Miyazawa, K. Uchida, PostgreSQL replication methods and functional
comparisons (in Japanese), https://www.techscore.com/tech/sql
/replication/ (2007).

[19] PostgreSQL, http://www.postgresql.org/ (2020).
[20] PostgreSQL Global Development Group, PostgreSQL Documentation—

Chapter 26. High Availability, Load Balancing, and Replication,
https://www.postgresql.org/docs/12/high-availability.html

(2020).
[21] Pgpool-II, https://www.pgpool.net/ (2020).
[22] Postgres-XC, https://postgresxc.fandom.com/wiki/

Postgres-XC Wiki (2013).
[23] Postgres-R, http://www.postgres-r.org/ (2010).
[24] Londiste, https://wiki.postgresql.org/wiki/SkyTools#Londiste

(2020).
[25] Bucardo, https://bucardo.org/Bucardo/ (2020).
[26] Oracle, GoldenGate, https://www.oracle.com/middleware/

technologies/goldengate.html (2020).
[27] MySQL, http://www.mysql.com/.
[28] Oracle, MySQL Reference Manual—MySQL NDB Cluster,

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

(2020).
[29] MariaDB, Galera Cluster, https://mariadb.com/kb/en/galera-cluster/

(2020).
[30] Wikipedia, Split-brain (computing), https://en.wikipedia.org/wiki

/Split-brain (computing) (2020).
[31] 2ndQuadrant, BDR—Advanced Clustering & Scalling for PostgreSQL,

https://www.2ndquadrant.com/en/resources/postgres-bdr-2ndquadrant/

(2020).
[32] 2ndQuadrant, pglogical — The next gener-

ation of logical replication for PostgreSQL,
https://www.2ndquadrant.com/en/resources/pglogical/

(2020).

7


