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The spatio-temporal dynamics of turbulence with the interaction of geodesic acoustic modes

(GAMs) are investigated, focusing on the phase-space structure of turbulence, where the phase-

space consists of real-space and wavenumber-space. Based on the wave-kinetic framework, the

coupling equation between the GAM and the turbulence is numerically solved. The turbulence

trapped by the GAM velocity field is obtained. Due to the trapping effect, the turbulence intensity

increases where the second derivative of the GAM velocity (curvature of the GAM) is negative.

While, in the positive-curvature region, the turbulence is suppressed. Since the trapped turbulence

propagates with the GAMs, this relationship is sustained spatially and temporally. The dynamics of

the turbulence in the wavenumber spectrum are converted in the evolution of the frequency spec-

trum, and the simulation result is compared with the experimental observation in JFT-2M tokamak,

where the similar patterns are obtained. The turbulence trapping effect is a key to understand the

spatial structure of the turbulence in the presence of sheared flows. Published by AIP Publishing.
https://doi.org/10.1063/1.5008541

I. INTRODUCTION

The interaction between turbulence and sheared flows

has been an important subject in studies of magnetically con-

fined plasmas. Theoretical models for turbulence suppression

have been proposed such as the suppression due to the flow

shear1 and due to the flow curvature.2 The experimental vali-

dation for the interaction between sheared flows and turbu-

lence has been reported.3–7 The spatial structure of the

energy transfer functions between the turbulence and the

zonal flows (ZFs) has been observed in a basic plasma exper-

iment.8 In researches on the interaction between ZFs and tur-

bulence, the predator–prey model has been widely

studied9–13 and applied to experiments.14–16 However, the

spatial structure of turbulence within the wavelength of the

ZFs cannot be predicted by the predator-prey model, since

the spatial integral over the wavelength of the ZFs is implic-

itly performed in the derivation of the model. It should be

noted that the wavelength of ZFs is comparable to the scale

length of the radial electric field which induces the transport

barriers.14 A model that can predict the spatial structure of

turbulence in the presence of shear flows is required.

The turbulence trapping effect can be treated when the

phase-space dynamics is considered, where the phase-space

consists of real-space and wavenumber-space.17,18

Turbulence trapping could have a significant impact on the

spatial profile of the turbulence.19 Therefore, the phase-space

dynamics should be considered for the interaction between

turbulence and sheared flows. In addition, validation of theo-

retical models is essential for understanding experimental

observations. Geodesic acoustic modes (GAMs) are rela-

tively easy to be observed experimentally, and the details of

their properties have been reported.20–27 Thus, there is a

chance to test models of the interaction between turbulence

and sheared flows in the study of GAMs.

In this study, we investigate the phase-space dynamics

of turbulence with the interaction of the GAMs, based on the

wave-kinetic framework. Spatial structures of the turbulence

and the GAMs are obtained, and they are compared with

experimental observation. Due to the turbulence trapping by

the GAM, the turbulence is accumulated at regions where

the curvature of the GAM (spatial-second-derivative of the

GAM flow) is negative, and the turbulence is suppressed at

the positive curvature region. This phase relation is sustained

with the propagation of the GAM. If one observes this rela-

tion by a local measurement, the turbulence is observed to

increase and decrease when the poloidal flow is in the elec-

tron and ion diamagnetic drift directions, respectively. A

guideline for identifying the turbulence trapping effect is

obtained by rewriting this relation for the evolution of the

frequency spectrum. This is because simultaneous measure-

ment of the turbulence wavenumber spectrum at different

radial locations is still challenging. The simulation results

are compared with the experiment, where a similar relation

is obtained. The rest of the paper is organized as follows.

The model is introduced in Sec. II, and the simulation results

are shown in Sec. III. The comparison with the experiment is

described in Sec. IV. A summary is given in Sec. V.

II. MODEL

We consider a high aspect ratio, circular cross-section

toroidal plasma. The toroidal coordinate ðr; h; fÞ is used,

where rr;rh and rf are the radial, poloidal and toroidal

directions, respectively. The governing equation for the cou-

pling of the turbulence with the GAM is as follows:9,28,29
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@tNk þ
@xk

@kr
rrNk � khrr

~Vh
@Nk

@kr
¼ cLNk � DxN2

k ; (1)

@t
~Vh þ 2�2Rh~n sin hi ¼ �rrPrh þ lGr2

r
~Vh ; (2)

@t~n �
2

R
~Vh sin hþrk ~Vk ¼ �rrCr: (3)

Here, time and space are normalized by q�1
s Vd and qs, where

qs is the ion sound gyro-radius and Vd is the diamagnetic

drift velocity, respectively. The normalized action of the tur-

bulence is denoted by Nk, and xk is the frequency of the tur-

bulence, where Nk is a function of r and the wavenumbers, kr

and kh. The linear growth rate and the nonlinear decorrela-

tion rate of turbulence are denoted by cL and Dx, respec-

tively. The GAM fluctuations of the poloidal and parallel

flows and the density are denoted by ~Vh ; ~Vk and ~n, respec-

tively. The geometry factor � is defined as � ¼ Ln=R, where

Ln is the density scale length and R is the major radius. The

GAM is coupled with the turbulence via the turbulence

driven Reynolds stress Prh and the particle flux Cr. The vis-

cosity for the GAM, lG, is introduced. We consider the drift

wave type turbulence. Thus, xk and Nk are given as

xk ¼
kh

1þ k2
r þ k2

h

þ kh ~Vh ; (4)

Nk ¼ 1þ k2
r þ k2

h

� �2j/kj2; (5)

where /k is the normalized turbulent electrostatic potential.

The turbulence frequency xk includes the Doppler shift due

to the GAM velocity. The Reynolds stress can be given as

Prh ¼ �
ð

krkh

1þ k2
r þ k2

h

� �2
Nkd2k: (6)

We focus on plasmas with high safety factor q� 1 and

weak magnetic shear. In this case, the return flow effect,

which comes from the parallel compression, the third term in

the left-hand side (LHS) of Eq. (3), can be neglected. Note

that this term is important for the low frequency zonal flow,

where the effective inertia is enhanced by a factor

1þ 2q2.30,31 In addition, the contribution from the particle

transport modulation [dynamics shearing, the right hand side

of Eq. (3)] can be ignored in the low magnetic shear case.28

In order to simplify the situation, we use the slab coordinate

x instead of r, hereafter. In this situation, the GAM evolution

can be obtained as

@2
t

~Vh þ x2
G

~Vh ¼ �@x@tPxh þ lG@
2
x@t

~Vh ; (7)

where the GAM frequency is defined as xG ¼
ffiffiffi
2
p

�, which

corresponds to
ffiffiffi
2
p

cs=R in the dimensional form.

In the conventional theories for the interaction of ZFs

with turbulence,9 the predator–prey model is deduced from

the linear response of Nk. In the derivation of the

predator–prey model, the spatial integration within the ZFs

wavelength is used. Thus, the predator–prey model, includ-

ing its extension for the one-dimensional model,11 cannot

predict the spatial structures of the turbulence within the

scale of the ZFs wavelength. In this study, we investigate

the spatial structure of the turbulence, by considering the

phase-space dynamics of the turbulence, where the evolu-

tion of the GAM is calculated without any assumptions for

the evaluation of the Reynolds stress within the framework

of the wave-kinetic theory.

The coupling equations, Eqs. (1) and (7), are calculated

numerically. The dynamics of the turbulence in ðx; krÞ-space

is simulated. The simulation conditions are as follows. A spa-

tially homogeneous turbulence is assumed, where cL and Dx
are given constant in space. The wavenumber-dependence of

cL is given as cL ¼ c0 exp ð�ðkr � k0Þ2=Dk2Þ. The poloidal

wavenumber kh is conserved in the interaction with the

GAMs, so that the kh is given as a parameter. The parameters

are chosen to be c0 ¼ 0:5;Dx ¼ 1:5; k0 ¼ 0:3;Dk ¼ 1;
kh ¼ 1;xG ¼ 0:1; lG ¼ 0:1. The periodic boundary condition

for the x-direction is used. The perturbation is introduced to

the turbulence as the initial condition, and the time evolution

of the turbulence and the GAM are investigated.

III. SPATIAL-TEMPORAL RELATION BETWEEN GAMs
AND TURBULENCE

In this section, we describe the simulation results on the

spatio-temporal structures of the GAM and the turbulence.

The nonlinear saturated state is obtained by solving Eqs.

(1) and (7). The time evolution of the energy is shown in

Fig. 1, where the energies of the GAM and turbulence are

defined as EGAM ¼
Ð
jVhj2dx and Eturb ¼

Ð
ð1þ k2

r

þk2
hÞ
�1Nkdxdkr, respectively. The turbulence energy is

reduced when the energy of the GAM becomes large. The

spatio-temporal patterns of the GAM velocity and the turbu-

lence at the saturated state are shown in Fig. 2. The GAM

propagates in the x-direction monotonically. The turbulence

intensity also has the similar pattern with the GAM; the

region where the turbulence is suppressed propagates with

the GAM. The phase relation between the modulated turbu-

lence intensity and the GAM is sustained with the propaga-

tion of the GAM.

The snapshots of the turbulence Nk in the phase-space

are shown in Fig. 3, in which the initial condition and the sat-

urated state are shown. At t¼ 0, a small perturbation is

applied to the spatially homogeneous turbulence, and the

perturbation evolves to form the GAM structure. Note that

the nonlinear saturated state is independent on the pattern of

FIG. 1. Time evolution of the energies of the GAM and turbulence.
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initial conditions. At the nonlinear saturated state, the turbu-

lence is trapped in the GAM velocity, and their phase rela-

tion is sustained spatially and temporally. Thus, the trapped

turbulence propagates with the phase velocity of the GAM.

Due to the trapping, the turbulence is accumulated where the

second derivative of the GAM velocity field is negative,

@2
x Vh < 0.19 While, in the region of @2

x Vh > 0, the turbulence

is suppressed. If one observes this system by a local mea-

surement, like a Langmuir probe or heavy ion beam probe

(HIBP),20,21 one can see that the turbulence decreases when

the GAM velocity is in the ion-diamagnetic drift direction,

and increases when the GAM velocity is in the electron-

diamagnetic drift direction. This property could be a guide-

line to identify the island structure in the phase space.

The mechanism of the turbulence trapping can be

explained as follows.17–19 The wave-kinetic equation, Eq.

(1), can be written by using the Poisson bracket as

@tNk þ fxk;Nkg ¼ cLNk � DxN2
k : (8)

One can see that xk is the constant of motion in the case

when cL ¼ 0;Dx ¼ 0. The turbulence frequency, xk, corre-

sponds to the characteristics of Eq. (1), in the same way that,

for example, the Hamiltonian for the plasma particles corre-

sponds to the characteristics of the Vlasov equation. Thus,

the turbulence moves along the contour of xk. When the

sheared flow exists, the contour of xk is deformed by the

Doppler-shift to form the island structure in the phase space,

as shown by the white lines in Figs. 3(a) and 3(b). Here, the

island width Dk can be estimated by using Eq. (4) as

Dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ k2

hÞ
2VG

1� 2ð1þ k2
hÞVG

s
; (9)

where VG is the amplitude of Vh. As the turbulence moves

along the contour of xk, the turbulence in the region jkrj < Dk
is trapped in the GAM, which propagates with the phase

velocity of the GAM. Here, the separatrix of the island in the

phase space corresponds to the region where the curvature of

the GAM is positive. Therefore, the turbulence is suppressed/

accumulated in the positive/negative curvature region.

In order to clarify the spatial structure of the energy trans-

fer between the GAM and the turbulence, the energy equa-

tions are discussed here. The energy equations of the GAM

and the turbulence are obtained from Eqs. (1) and (2) as

@tI þ @x v̂gI
� �

¼ Wturb þ ĉLI � Dx̂I2; (10)

@t
~Vh

2 ¼ WG þ 2lG
~Vh@

2
x

~Vh ; (11)

where I is the energy density of the turbulence defined as

Iðx; tÞ ¼
Ð
ð1þ k2

r þ k2
hÞ
�1Nkdkr , and the terms, v̂gI; ĉLI, and

Dx̂, are given as

v̂gI ¼
ð

vg 1þ k2
r þ k2

h

� ��1
Nkdkr; (12)

ĉLI ¼
ð

cL 1þ k2
r þ k2

h

� ��1
Nkdkr; (13)

Dx̂I2 ¼
ð

Dx 1þ k2
r þ k2

h

� ��1
N2

k dkr: (14)

Here, the effective linear growth rate and nonlinear decorre-

lation rate are denoted by ĉL and Dx̂, respectively. The

FIG. 2. Spatio-temporal patterns of (a) GAM velocity and (b) turbulence

intensity.

FIG. 3. Snapshots of action of turbulence, Nkðx; krÞ, in the phase-space. (a)

The initial condition and (b) the nonlinear saturated state are shown. The

white contour corresponds to that of xk.
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energy exchange rates between the GAM and the turbulence,

WG and Wturb, are obtained as

Wturb¼
ð

2krkh

1þk2
r þk2

h

� �2
Nkdkr

" #
@x

~Vh ¼�2Pxh@x
~Vh ; (15)

WG ¼ �2 ~Vh@xPxh: (16)

The spatial profiles of the energy transfer functions, Wturb and

WG, are different from each other. Namely, the region where

the GAM obtains energy from the turbulence is different from

the region where the turbulence loses energy. It should be

noted that the net exchange energy between the GAM and the

turbulence is conserved,
Ð
ðWG þWturbÞdx ¼ 0.

We describe the spatial profiles of the energy equation for

the turbulence, which are calculated from the simulation result.

The spatial relationship between the phase-space structure of

Nk and the turbulent force is shown in Figs. 4(a) and 4(b),

where the turbulent force is defined as the radial derivative of

the Reynolds stress, �@xPxh. The turbulent force has a highly

nonlinear waveform, where it has steep gradient. The spatial

profiles of the energy transfer functions, WG and Wturb, are

plotted in Fig. 4(c). The positive WG can be seen in the regions

where the GAM velocity has a curvature, which indicates that

the GAM obtains energy from the turbulence. While, the nega-

tive Wturb is obtained in the regions where the GAM has a

shear, which implies that the energy of the turbulence is

reduced there. The profile of the propagation effect of the tur-

bulence, the second term in left-hand side (LHS) of Eq. (10),

is shown in Fig. 4(d). This term strongly reflects the effect of

the trapping. The magnitude of this term is the same order

with the energy transfer functions, so that the turbulence prop-

agation is also important for determining the turbulence pro-

file. It is noted that the predator–prey model can be obtained

by integrating Eqs. (10) and (11).9 By the spatial integration,

the turbulence propagation effect, the second term in LHS of

Eq. (10), disappears. Although the energy exchange terms,

Wturb and WG, are important for determining the spatially inte-

grated energies of the turbulence, the turbulence propagation

effect (turbulence trapping effect) is important for determining

the spatial profile as well as the energy exchange term.

IV. COMPARISON WITH EXPERIMENTAL
OBSERVATION

This relationship of the turbulence with the GAM can be

described in the real-space and frequency-space. This is

because the simultaneous measurement of the wavenumber

spectrum of the turbulence at different radial locations is still

challenging. The turbulence we consider here is the drift

wave, so that it follows the dispersion relation as shown in

Eq. (4). Using the dispersion relation, the kr-spectrum can be

interpreted in the frequency-space, as Nkðx; krÞ ! Nkðx;xÞ.
The transformation of Nkðx; krÞ to Nkðx;xÞ is possible by the

following reason: In the framework of the wave-kinetic the-

ory, the turbulence poloidal wavenumber kh is constant in

time and space in the interaction with the GAM, while kr

changes spatially and temporally, in the limit that the growth

and nonlinear damping of turbulence are absent.18,19 This is

because the deformation of the turbulence wavenumber in

the radial (poloidal) direction is due to the radial (poloidal)

inhomogeneity of the Doppler shift by the sheared flow,

where we do not consider the poloidal inhomogeneity of the

GAM velocity field. Thus, the change of the turbulence

FIG. 4. Spatial pattern of turbulent driving force. (a) Snapshots of Nk and ~Vh

at t¼ 600, (b) turbulent force �@xPxh, (c) Energy transfer functions between

GAM and turbulence, and (d) turbulence propagation term [the second term

in LHS of Eq. (10)].

FIG. 5. Time evolution of frequency

spectrum of turbulence and the GAM.

(a) Simulation result and (b) experi-

mental observation are shown.
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frequency is only due to the change of kr. Figure 5(a) illus-

trates the time evolution of Nkðx;xÞ at x¼ 0. The trapped

turbulence also forms island structures in the frequency

spectrum.

This simulation results are compared with an experiment

in JFT-2M tokamak. In this experiment, an HIBP is used to

observe the interaction of the GAMs and turbulence,20,32

where the turbulence was identified as the drift wave.30

Wavelet analysis is performed to obtain the evolution of the

turbulence spectrum. Figure 5(b) illustrates the time evolu-

tions of the poloidal velocity of the GAM component and the

frequency spectrum of the turbulence, where these time evo-

lutions are obtained at the same location. Increase of the tur-

bulent intensity is in phase of the GAM velocity. This

characteristic is similar to the simulation. The turbulence

modulated by the GAM shows the island structure in the fre-

quency spectrum, and its relation is sustained during the

period that the GAM exists. The turbulence trapping effect is

a key to understand the spatial structure of the turbulence in

the presence of sheared flows.

V. SUMMARY

Spatial structures of GAMs and turbulence are investi-

gated, focusing on the phase-space structure of turbulence.

Based on the wave-kinetic equation, the interaction between

the GAM and the turbulence is investigated. The turbulence

trapped by the GAM velocity field is obtained in the real-

wavenumber space. Due to the trapping effect, the turbu-

lence intensity increases where the second derivative of the

GAM velocity is negative, @2
x Vh < 0. While, in the region of

@2
x Vh > 0, the turbulence is suppressed. Since the trapped

turbulence propagates with the GAMs, this relationship is

sustained spatially and temporally. Namely, the turbulence

intensity increases and decreases when the GAM velocity is

in the electron and ion diamagnetic drift direction, respec-

tively. This relation is interpreted for the evolution of the fre-

quency spectrum, and the simulation result is compared with

the experimental observation in JFT-2M tokamak. The simi-

lar spatio-temporal pattern is obtained. The turbulence trap-

ping effect is a key to understand the spatial structure of the

turbulence in the presence of sheared flows.
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