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Abstract

Neutral drag effect on the parallel velocity gradient driven instability (PVG) in
the presence of density inhomogeneity is theoretically investigated. The dispersion
relation of PVG mode with the effect of density gradient and neutral particle drag
is derived, and its solution is analytically obtained. The neutral particle drag gives
rise to the phase shift between parallel flow and electrostatic potential fluctuations,
and modifies the parallel compression. As a result, the stability of the PVG mode
changes. It is found that the neutral particle drag does not only reduces but also
enhances the instability. Especially, near the marginal condition, the neutral particle
effect suppresses the density gradient effect, and the parameter region where the
PVG mode is linearly unstable significantly expands.

1 Introduction

In magnetically confined plasmas, plasma flows parallel to the magnetic field [1, 2, 3]
play important roles of controlling the MHD instability and of suppression of turbulence
[4]. The shear of the parallel flow can be a free energy source for the instability, which
is called D’Angelo mode or parallel velocity gradient (PVG) mode or Kelvin-Helmholtz
(KH) instability[5]. (In this study, we use PVG mode to describe the parallel flow shear
instability, and we use perpendicular KH instability for that due to the perpendicular
flow inhomogeneity [6, 7].) The PVG mode has been identified in a basic experiment [8].
The PVG mode is important for the cases of NBI plasmas [9], internal transport barrier
[10, 11], and scrape off layer (SoL) [12]. PVG mode has been found to drive the inward
particle flux theoretically and experimentally [13, 14, 15]. Recently, it has been pointed
out that PVG mode in the H-mode plasmas can be precursor of the type-III ELM [16, 17].
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In this way, PVG mode has been an important topic in the study of magnetic confined
plasmas.

The parallel flow is often strong in a low temperature plasma, such as in the SoL
and in basic experiments [8, 18, 19]. In such plasmas, neutral particles exist and drag
the flow, which should be taken into account. In the series of studies on PVG mode in
confined plasmas, the neutral particle effect has not been considered [9, 10, 11, 12, 13]. For
the space plasmas, the PVG mode with the effect of neutral particles has been analyzed
without considering the density inhomogeneity. Density inhomogeneity is important for
the confinement plasmas, which suppresses the PVGmode linearly and nonlinearly [12, 13,
20]. Thus, it is important to study the PVG mode stability with considering the neutral
particle effect and the density inhomogeneity. In this study, we investigate the neutral
particle effect on the PVG mode stability in the presence of the density inhomogeneity.
The rest of the paper is organized as follows. In section 2, the model equations are
introduced, and the dispersion relation of the PVG mode is derived. The characteristics
of its solution of the dispersion relation are discussed in section 3. The summary is given
in section 4.

2 Model

In this section, the situation we consider is described, the reduced fluid model equations
are introduced. Then, the dispersion relation of the PVG mode with the effect of the
neutral particle is derived with the assumption of the Boltzmann relation between the
density and the potential fluctuations. With this assumption, the drift wave becomes
linearly stable, and we can avoid the hybrid branch of the PVG and the drift wave [21].

We consider inhomogeneous magnetized plasmas, where the magnetic field direction
is chosen to be z-direction, and the density and the parallel flow have gradients in x-
direction. This situation is similar to that of the basic plasma experiment in a linear
device, where the drift wave and the PVG mode have been observed [8, 14, 15, 22, 23].
In such a situation, Hasegawa-Wakatani model coupling with the parallel flow [20, 21]
can be used, which is derived from the electrostatic two fluid equation (the details of the
model is described in Appendix.A). The model equations are given as follows

∂tN +
[
ϕ,N

]
= −V∇∥N −D∇2

∥ (ϕ−N)−∇∥V, (1a)

∂t∇2
⊥ϕ+

[
ϕ,∇2

⊥ϕ
]
= −V∇∥∇2

⊥ϕ−D∇2
∥ (ϕ−N)− ν∇2

⊥ϕ, (1b)

∂tV +
[
ϕ, V

]
= −V∇∥V −∇∥N − νV. (1c)

Here, N,ϕ, V are the normalized electron density, electrostatic potential and ion parallel
flow, which are normalized by the stationary density, electron temperature and the sound
speed, respectively. The space and time are normalized by the ion gyro-radius calculated
by the sound speed and the ion gyro-frequency, respectively. The convective derivative,
[ϕ, · · · ], is expressed by using the Poisson bracket. The parallel diffusivity is denoted by
D and the ion-neutral collision frequency are expressed by ν. The neutral particle effect
is introduced by the drag forces on flows due to the ion-neutral collision (the last terms
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of Eq. (1b) and Eq.(1c) in the RHS), which we focus on as the dominant neutral particle
effect. Although these terms have been considered in numerical turbulence simulations
[20, 21, 7] and a theoretical study [24], the stability analysis of the PVG mode that focuses
on the effect of the neutral drag terms has not been performed, which is the central topic
of this paper.

The linear dispersion relation of the PVG mode is derived by neglecting the nonlinear
terms. First, we express the physical quantity as X = ⟨X⟩ + X̃, where X = {N,ϕ, V },
and ⟨X⟩ is the stationary part and X̃ is the fluctuating part. The spatial derivative in x
for the stationary density and parallel flow, ∂x ⟨N⟩ and ∂x ⟨V ⟩, are finite. The stationary
component of the potential, whose spatial derivative drives the perpendicular flow through
E×B drift, is assumed to be constant in space in order to exclude the perpendicular KH
instability [6, 7] and to focus on the PVG mode. The fluctuating part is decomposed into
Fourier modes as X̃ = Xk exp (−iωt+ ik · x). Using the Fourier modes, the convective
derivative terms for the density and the parallel flow are calculated as

[ϕ,N ]k = iωnϕk, (2a)

[ϕ, V ]k = −iωV ϕk, (2b)

where ωn = −ky∂x ⟨N⟩ and ωV = ky∂x ⟨V ⟩ indicate the inhomogeneity. The linearized
response of the parallel flow perturbation is obtained as

Vk = −
(
1 + i

ν

Ω

)−1 [ωV

Ω
ϕk −

k∥
Ω
Nk

]
, (3)

where Ω is the frequency with the Doppler shift, defined by Ω = ω − k∥ ⟨V ⟩ . Due to
the neutral particle drag, the phase shift between the parallel flow and the potential and
density perturbations becomes finite. The parallel flow perturbation contributes to the
parallel compression through the last term in Eq. (1a) of RHS, so that the phase shift
due to the neutral particle drag modifies the property of the parallel compression and as
a consequence the stability significantly changes. Combining the Eqs. (1a), (1b) and Eq.
(3) to eliminate the parallel diffusion terms, we obtain(

Ω−
k2
∥

Ω + iν

)
Nk +

(
−ωn + k2

⊥Ω + iνk2
⊥ +

k∥ωV

Ω + iν

)
ϕk = 0. (4)

The relation between the density and potential perturbations is obtained from Eq. (1b)
as

Nk =

[
1− i

k2
⊥ (Ω + iν)

Dk2
∥

]
ϕk. (5)

The second term in the square bracket causes the phase shift between the density and
potential. Conventionally, Dk2

∥ ≫ 1 is assumed, and the phase shift is treated as a

smallness parameter [21]. If one considers the resistive drift wave instability, the finite
phase difference is necessary to realize the instability. For the PVG mode, the phase shift
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between the density and potential is not necessary for the destabilization [13]. Therefore,
in this study, we consider a limit, Dk2

∥ ≫ 1, and Nk = ϕk is obtained, which is the
Boltzmann relation. Using the Boltzmann relation, the dispersion relation ∆ = 0 is
obtained as

∆ = Ω− ωD + iνα−
k2
∥ − k∥ωV

(Ω + iν)(1 + k2
⊥)

= 0, (6)

where ωD = ωn(1+k2
⊥)

−1 and α = k2
⊥(1+k2

⊥)
−1. The fourth term stems from the coupling

with the parallel flow. If one neglects the coupling with the parallel flow (this corresponds
to the limit, k∥ → 0), the drift wave branch is obtained as

Ω = ωD − iαν. (7)

It is noted that the phase difference between the density and potential is neglected, and
thus only damping due to the neutral particle drag appears. On the other hand, when
one ignores the inhomogeneities of the density and parallel flow, ωn → 0 and ωV → 0.
Then, the ion sound wave branch is obtained as

Ω =
±k∥√
1 + k2

⊥
− iν

α + 1

2
. (8)

As seen above, the neutral particle drag works as the damping for the ion sound wave, as
well (where the higher order of ν is not considered here). In the next section, we discuss
the PVG branch obtained from Eq. (6), and describe the neutral particle drag effect on
the PVG mode.

3 Stability of PVG including neutral particle drag

In this section, we describe the properties of the solution of the dispersion relation Eq.
(6), and show that, due to the neutral particle drag effect, the parameter regime where
the PVG mode is linearly unstable significantly expands.

First, we remind the PVG stability without the neutral particle drag. In this limit,
ν → 0, and the PVG mode branch is obtained as

Ω =
1

2

[
ωD +

√
ω2
D + 4

k2
∥ − k∥ωV

1 + k2
⊥

]
. (9)

The linear instability arises when the term in the square root becomes negative. This
condition is expressed as [12, 13]

k∥ωV − k2
∥ >

1

4

(
1 + k2

⊥
)
ω2
D. (10)

Here, the sign of the LHS terms, k∥ωV −k2
∥, is the same as that of the parallel compressional

term −∇∥V . In order for the PVG to be unstable, the negative compression is necessary,
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and the density inhomogeneity gives the critical threshold for the instability. From the
instability condition, Eq. (10), one sees that the density gradient, which corresponds
to ωD, increases the threshold for the PVG mode to be unstable, and thus the PVG
mode is rarely driven in the presence of the steep density profile. From Eq. (9), the
the most unstable parallel wavenumber, which maximizes the growth rate, is found to be
k∥ = ωV /2.

Next, we describe the neutral particle drag effect. Equation (6) is numerically solved
to show how the topology of the solution curves in the complex plane changes due to
the neutral particles, which is shown in Fig. 1, where the following parameters are used
in the calculations, k⊥ = 0.3, k∥ = 0.05 and ωV = 0.1. In order to clarify the neutral
particle effect, we show the following four cases in Fig. 1: one is with ωn = 0.09, which
satisfies the marginal condition without the neutral particle Eq. (10) for (a)ν = 0 and
(b)ν = 0.02, and the other is with ωn = 0.12, which does not satisfy Eq. (10) for (c)ν = 0
and (d)ν = 0.02. The black and red lines correspond to the lines which satisfy Re∆ = 0
and Im∆ = 0, respectively, so that the solutions are the points of the intersection of them.
For the case of Fig. 1(a), (Reω, Imω) = (0.041, 0.024) is the unstable PVG branch, and
(0.053, 0.019) is the solution for Fig. 1(b). The growth rate, Imω, becomes small due to
the neutral particle drag in this case. On the other hand, in the case when the density
gradient is large and Eq. (10) is not satisfied, the solution (Reω, Imω) = (0.083, 0.0)
without the neural particle effect, Fig. 1(c), is modified to be (0.087, 0.0066) due to the
neutral particle drag as in Fig. 1(d). The neutral particle drag increases the growth
rate. As seen, the topology of the solution curves change due to the neutral particles; the
curves which satisfy Im∆ = 0 are symmetry with respect to the sign of ImΩ without the
neutral particles, and change to be asymmetry with finite ν. The curves which satisfy
Re∆ = 0 also becomes asymmetry to the sign of ImΩ due to the neutral particles, and
a closed curve appears in addition to a line which extends from up to down in the case
of ωn = 0.12 (Eq. (10) is not satisfied). In this way, the neutral particle drag does not
always reduces but also enhances the growth rate, depending on the parameters.

The analytical solution of the dispersion relation Eq. (6) can be expressed as

Ω =
1

2

[
ωD +

1√
2

√
Dr +

√
D2

r +D2
i + i

{
− (1 + α) ν +

1√
2

√
−Dr +

√
D2

r +D2
i

}]
,(11)

where Dr and Di are defined as

Dr = ω2
D + 4

k2
∥ − k∥ωV

1 + k2
⊥

− ν2 (α− 1)2 , (12a)

Di = 2 (1− α)ωDν, (12b)

respectively. This expression agrees with Eq. (9) in the limit of ν → 0. Without the
neutral particle effect, the instability condition is Dr < 0, which agrees with Eq. (10),
as well. The term Di stems from the coupling with the neutral particle effect and the
density inhomogeneity, which significantly affects the stability of the PVG mode. As seen
in the imaginary part of Eq. (11), Dr < 0 is not required for PVG mode to be unstable
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when Di is finite. The instability condition is given as√
D2

r +D2
i −Dr > 2 (1 + α)2 ν2, (13)

which can reproduce Eq. (10) in the limit of ν → 0. Equation (13) can be rewritten as
follows only when Dr > 0 (the conventional PVG mode is stable) and ν ̸= 0.

k∥ωV − k2
∥ >

α (1 + k2
⊥)

(1 + α)2
ω2
D + α

(
1 + k2

⊥
)
ν2. (14)

Noted that this can not reproduce Eq. (10), because the devision by ν is performed and
Dr > 0 is assumed. The first term in the RHS is the density inhomogeneity effect and
the second term is the neutral particle effect. These two terms determine the threshold
for the PVG instability. The coefficient of the density term, ω2

D (the first term in the
RHS), is significantly reduced by the neutral particle effect, as α (1 + k2

⊥) (1 + α)−2 =

k2
⊥ (1 + k2

⊥)
2
(1 + 2k2

⊥)
−2
. Here, the wavelength of the PVG is typically longer than the

ion gyro-radius, k⊥ < 1. It is noted that this coefficient becomes (1 + k2
⊥) /4 without the

neutral particle effect, which is much larger compared to that with the neutral particle
effect. Thus, the neutral particle drag largely suppresses the critical vale for the instability.
As seen in Eq. (14), the sign of the LHS term is the same as the parallel compression, and
thus the negative compression is still necessary for the instability. Noted that the most
unstable parallel wavenumber is k∥ = ωV /2, which is the same with the case without the
neutral particle effect.

Figure 2 illustrates the dependence of the real frequency and the growth rate on the
neutral particle drag, where one is the case when Eq. (10) is satisfied ((a) ωn = 0.09), and
the other is not ((b) ωn = 0.12). The real frequencies for both cases gradually increase
with the neutral particle drag. The growth rate in the case when Eq. (10) is satisfied
constantly decreases with the neutral particle drag. In the case when Eq. (10) is not
satisfied, the growth rate once increases and then decreases with the drag, so it has a
peak around ν ∼ 0.04, and becomes stable when Reω ∼ ν.

The instability diagram in the ωn−ωV plane is shown in Fig. 3 in the case of ν = 0.02,
where the color corresponds to the growth rate of the PVG mode. The solid and dashed
lines are the marginal conditions for ν = 0.02 and ν = 0, respectively. When both the
density gradient and the parallel flow shear are not strong (ωn < 0.1, ωV < 0.1), the
parallel flow shear which is necessary for the instability becomes large due to the neutral
particle drag. Thus, in this region, the neutral particle effect works to suppress the
instability. On the other hand, in the case of the strong density gradient (ωn > 0.1), the
instability region expands significantly due to the neutral particle effect. Therefore, the
PVG mode can be unstable even with the steep density profile when there are sufficient
number of neutral particles. The neutral particle drag gives rise to the phase shift between
the parallel flow and potential fluctuations, which modifies the parallel compression, and
thus the stability of the PVG mode is greatly changed. In particular, near the marginal
condition, the effect of the neutral particles becomes important, and the instability region
greatly widens.
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Next, we discuss the characteristics of the eigenfunction, which is useful for the exper-
imental identification. The amplitude and phase relations between the parallel flow and
potential fluctuation is given as follows by using Eq. (3) and the Boltzmann relation.

|Vk|
|ϕk|

=
|ωV − k∥|√
Ω2 + ν2

, (15a)

tanΨ =
Im
[
Vkϕ

∗
k

]
Re
[
Vkϕ∗

k

] = νk∥
ΩωV

, (15b)

The amplitude of the parallel flow fluctuation normalized by the potential decreases with
the neutral particle drag. Noted that the expression, Eq. (15a), is just for the identifica-
tion of the PVG mode in experiments. The sign of the phase difference Ψ is determined
by the combination of k∥ and ωV . The characteristics of the eigenfunction are drawn
in Fig. 4, by using Eqs. (15a) and (15b) with the solution of the dispersion relation.
The amplitude of the parallel flow fluctuation normalized by the potential is above unity
without the neutral particle effect [25], but with the neutral particle effect it typically
becomes |Vk|/|ϕk| ∼ 0.5. The phase difference increases with the neutral particle drag,
where it is noted that the reason why the phase shift becomes zero at ν = 0 is that we
assume the Boltzmann relation.

Finally, we discuss the stability of the PVG mode in the basic experiments in linear
magnetized plasmas. The plasma parameters are chosen to be typical values as Ln =
3[cm], LV = 1[cm] and ρs = 5[mm], where Ln and LV are the scale length of the density
and the parallel flow, respectively [14, 15, 26, 27]. When the Mach number M is M = 0.5
and ky = 0.5, ωn and ωV are estimated as ωn = 0.17 and ωV = 0.13. These values are
similar to those of PANTA device [14, 15]. The ion-neutral collision frequency is assumed
to be ν = 0.02 [28, 29]. This situation corresponds to the case when the instability
condition without the neutral drag effect, Eq. (10), is not satisfied, but that with the
neutral effect, Eq. (14), is satisfied (it is in the region between solid and dashed lines
in Fig. 3). The proposed mechanism of the neutral effect can be important. Recently,
neutral particle control experiment has been performed without changing the plasma
profiles by using the gas-puffing, and the increase of the fluctuation with the neutral
particles is observed [30]. The validation of the present mechanism is desired in such kind
of experiments. In addition, in the SoL regions of toroidal plasmas, the plasma parameters
are similar to those of the linear devices. Thus, the neutral drag effect proposed in this
paper could be significant to drive the PVG mode in such cases.

It is noted that, in this paper, we simplify the model to focus on the roles of the neutral
particles on the stability of the PVG mode. In the basic experiments and the SoL region
of toroidal plasmas, the sheath effect exists, which affects the divergence of the parallel
current, so that the turbulence properties could be modified by the sheath effect [31, 32].
The stability of the PVG mode in the presence of the sheath effect is beyond the scope
of this study, which should be the future work. Moreover, in this study, we neglect the
perpendicular KH instability, which is often important in the basic experiments [7, 31].
The nonlinear interaction between the PVG mode and the perpendicular KH would be
interesting.
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4 Summary

Neutral drag effect on the PVG mode in the presence of density inhomogeneity is studied,
and the dispersion relation is derived. The analytical expression of its solution is derived
and its characteristics are discussed. The neutral particle drag causes the phase shift
between the parallel flow and the electrostatic potential fluctuations, and modifies the
parallel compression. As a result, the stability of the PVG mode changes. It is found
that the neutral particle drag does not only reduces but also enhances the instability.
Especially, near the marginal condition, the neutral particle drag effect suppresses the
density gradient effect and the parameter region where the PVG mode is linearly unstable
significantly expands. A sufficient number of neutral particles exists in a low temperature
region of plasmas, such as basic plasma experiments, and edge regions of toroidal plasmas
(including SoLs). In such cases, the parallel flow is often strong, so that the PVG mode
could dominate the transport and the system evolutions.
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Fig. 1: Solutions of the dispersion relation Eq. (6) in complex plane in cases of (a) ωn =
0.09, ν = 0.0, (b) ωn = 0.09, ν = 0.02, (c) ωn = 0.12, ν = 0.0, and (d) ωn = 0.12, ν = 0.02.
Here, the black and red lines indicate the lines which satisfy Re∆ = 0 and Im∆ = 0,
respectively, and thus the solutions correspond to the intersections of the black and red
lines.
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Fig. 2: Dependence of neutral particle drag on (a) the eigenfrequency and (b) the growth
rate of the PVG mode. The numerical solutions of Eq. (6) in the cases of ωn = 0.09 and
0.12 are shown in black and red lines, respectively.
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Fig. 3: Contour of growth rate of the PVG mode with ν = 0.02. The solid and dashed
lines are the marginal conditions for the PVG mode in the cases of ν = 0.02 and ν = 0,
respectively, which correspond to Eq. (14), and Eq. (10). The region where the PVG
mode becomes linearly unstable significantly expands.
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Fig. 4: Dependence of eigenfunction for the parallel velocity fluctuation on the neutral
particle drag in the cases of ωn = 0.09 and 0.12 with ν = 0.02.
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A Brief summary of model equation

In order to describe turbulence, whose frequency is much lower than the ion gyro-frequency,
we consider the electrostatic two fluid equations given as

∂tne +∇ · (neve) = 0, (A.1 a)

mene (∂tve + ve · ∇ve) = −∇pe − ene (−∇ϕ+ ve ×B)−meneνei (ve − vi) ,(A.1 b)

mini (∂tvi + vi · ∇vi) = −∇pi + eni (−∇ϕ+ vi ×B)

−miniνie (vi − ve)−miniνinvi, (A.1 c)

∇ · J = 0. (A.1 d)

Here, ne is the electron density, J is the electric current, and mj,vj and pj are the
mass, the velocity and the pressure of the jth species, respectively, where j corresponds
to the electron(e) and ion(i). The magnetic field is given as B = Bb (b is the unit
vector directed to the magnetic field), and ϕ is the electrostatic potential. The collision
frequencies between electron and ion, ion and electron, ion and neutrals are denoted by
νei, νie and νin, respectively. Noted that in order to guarantee the momentum conservation
between the electron and ion, meνei = niνie holds. Then we normalize the variables as

ωcit → t, ρs∇ → ∇, vj/cs → vj, νj/ωci → νj,

eϕ/Te → ϕ, ln (ne/n0) → N,

where n0 is the constant value for the electron density. The ion gyro-frequency and gyro-
radius are ωci and ρs = ω−1

ci cs, respectively, and the sound speed, cs, is given by
√

Te/mi.
Then, Eqs. (A.1 a)-(A.1 c) are rewritten as

∂tN + ve · ∇N +∇ · ve = 0, (A.2 a)

dtve =
mi

me

(−∇N +∇ϕ− ve × b)− νei (ve − vi) , (A.2 b)

dtvi = −Ti

Te

∇N −∇ϕ+ vi × b− νinvi − νie (vi − ve) . (A.2 c)

In the derivation of the above equations, we use the assumption that both the electron
and ion temperatures are spatially homogeneous. In the following, we assume the cold
ion Ti/Te ≪ 1, and neglect the first term of Eq. (A.2 c). From Eqs. (A.2 b) and (A.2
c), neglecting the inertial term (polarization drift) for electron, the drift motions for the
electron and ion are derived as

ve = b×∇ (ϕ−N) + ve,∥b, (A.3 a)

vi = b×∇ϕ− dt∇⊥ϕ− νin∇⊥ϕ+ vi,∥b. (A.3 b)

Using the parallel component of the equation of motion for electron without the inertia
term, the relative parallel velocity is given as

ve,∥ − vi,∥ = D∇∥ (ϕ−N) , (A.4)
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where D is defined by D = ν−1
ei mi/me. By using the charge neutrality condition, Eq. (A.1

d), and combining Eqs. (A.3 a), (A.3 b) and (A.4 ), the vorticity equation is obtained as

dt∇2
⊥ϕ+∇N · dt∇⊥ϕ =

−D∇2
∥ (ϕ−N)−D∇∥N∇∥ (ϕ−N)− νin

(
∇2

⊥ϕ+∇N · ∇⊥ϕ
)
, (A.5)

where the time derivative dt is given as

dt = ∂t + b×∇ϕ · ∇+ vi,∥∇∥. (A.6)

The ion parallel flow equation is obtained from Eq. (A.2 c) with Eq. (A.4 ) as

dtvi,∥ = −∇∥ϕ− νie
(
ve,∥ − vi,∥

)
− νinvi,∥,

= −∇∥N − νinvi,∥, (A.7)

where νie
(
ve,∥ − vi,∥

)
= −∇∥ (ϕ−N) is used (noted that νieD = 1). The continuity

equation is obtained from Eq. (A.2 a) by substituting the velocity by the drift motion
Eq. (A.3 a) as

∂tN + b×∇ϕ · ∇N + vi,∥∇∥N +∇∥vi,∥ = −D∇2
∥ (ϕ−N)−D∇∥N∇∥ (ϕ−N) . (A.8)

In this way, the complete set of the model equation, Eqs. (A.5 ), (A.7 ) and (A.8 ), is
derived, which can describe the low frequency turbulence.

In this study, we further simplify the model. First, the turbulence wavelength in
the parallel direction is assumed to be much longer than the perpendicular wavelength,
k∥ ≪ k⊥, and the parallel nonlinearity term D∇∥N∇∥ (ϕ−N) is neglected. Second, the
terms in vorticity equation Eq. (A.5 ) which couple with the density and potential are
neglected. Because these terms are much smaller than the others as∣∣∣∣−∇N · dt∇⊥ϕ

∂t∇2
⊥ϕ

∣∣∣∣ ∼ 1

k⊥Ln

,∣∣∣∣ν∇N · ∇⊥ϕ

ν∇2
⊥ϕ

∣∣∣∣ ∼ 1

k⊥Ln

,

where Ln is the density scale length. The density scale length is usually much longer than
the turbulence wavelength, so k⊥Ln ≫ 1 is satisfied. Under this situation, the model
equation is obtained as in Eqs. (1a)-(1c).
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