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Abstract. The formation of an electron internal transport barrier (eITB) has been

observed for the first time with centrally focused electron cyclotron heating (ECH)

microwaves injected into plasma in Heliotron J. When the heating power per electron

density (PECH/n̄e) exceeds a threshold of 250×10−19kW m3, transient increases of both

the central Te and the core Te gradients are observed. A neoclassical (NC) calculation

using the Sugama-Nishimura moment method predicts that the large positive radial

electric field (Er) is formed in the core region. Heat transport analysis shows a

significant reduction of the effective electron thermal diffusivity in the plasma with

the eITB related to that without the eITB. The large gap between the experimentally

obtained effective thermal diffusivity and the NC thermal diffusivity suggests that

the suppression of anomalous transport contributes to the core improved confinement

of the eITB plasma. The electron cyclotron emission measurement shows both the

transient increase and the hysteresis phenomena during the eITB formation.

Submitted to: Plasma Phys. Control. Fusion

1. Introduction

The electron internal transport barrier (eITB) formation has been observed in several

stellarator/heliotron devices[1, 2, 3, 4]. It is thought that the eITB is characterized

by the transitions between the “ion root” (with a small magnitude of radial electric

field(Er), usually negative) and the “electron root” (with a large positive Er) that are
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based on a bifurcation mechanism[5]. According to this feature, in LHD and CHS,

a large positive Er in the core region and a transient formation of a peaked electron

temperature (Te) profile with a density and a heating power threshold are observed

when an eITB is formed[6, 7].

The effects of the magnetic field configuration on eITB formations, particularly in

terms of the effective helical ripple (ϵeff )[5] and magnetic islands[8, 9, 10], have been

observed. In contrast, the mechanism of the effect of such a magnetic configuration is

not well studied. Various types of stellarator/heliotron devices exploit unique concepts

for the optimization study of the helical configuration. While LHD and CHS have

a strong variation of ι (strong shear) to reduce the island width, Heliotron J, TJ-II,

HSX, and W7-X have almost flat ι profiles (shearless) close to (but outside) the low

order rationals, where the density of the rational numbers is smaller. A comparative

study between these stellarator/heliotron devices can contribute to the elucidation of

the mechanism of magnetic field configuration effect on the eITB physics.

Heliotron J belongs to the extended family of the “quasi-isodynamic symmetric

optimization” devices, where a continuous L = 1 helical winding is used instead

of modular coils. The helical-axis heliotron creates a vacuum magnetic well in the

entire confinement region by using an advanced three-dimensional (3D) magnetic axis.

Heliotron J is a medium-sized helical-axis heliotron device (the averaged plasma major

radius is R = 1.2 m, the averaged minor radius is a = 0.17 m, and the averaged

magnetic field strength at the magnetic axis is Bax = 1.35 T) with an L/M = 1/4

helical coil, where L and M are the pole number and pitch numbers of the helical

coil, respectively[11, 12] . The Boozer magnetic field spectrum is varied with two

sets of toroidal coils, inner vertical coil, outer vertical coil, and external vertical coil

connected to the helical coil. This flexible helical axis heliotron device allows the study

of core confinement in a wide configuration space. This research aims at identifying

the eITB formation and revealing the detailed characteristics of the eITB in the

helical-axis heliotron configuration, namely the unique configuration of Heliotron J.

The characteristics are investigated from the profiles of Te and Er, formation condition,

and heat transport by using an advanced electron cyclotron heating (ECH) system

and various diagnostics and by comparing the obtained results to those for the other

helical devices. The research of eITB physics in the helical-axis heliotron configuration

contributes to expand the variety of configuration research in the stellarator/heliotron

devices.

Section 2 discusses the eITB profile characteristics in Heliotron J. An eITB

formation condition is investigated in terms of ne in Section 3, and the estimation of a

neoclassical (NC) Er using the Sugama-Nishimura moment method[13, 14] is described

in Section 4. In Section 5, the heat transport of the eITB is analyzed using the

experimental results and the experimental heat transport and the NC heat transport

are compared. Section 6 illustrates temporal dynamics during the eITB formation using

the electron cyclotron emission (ECE) measurements. Finally, conclusions are presented

in Section 7.
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2. Typical Characteristics of Plasma with Peaked Temperature Profile in

Heliotron J

Plasmas are produced and heated by ECH in Heliotron J. The ECH system of Heliotron

J can continuously vary the injection power PECH during a single discharge. The

continuous control enables the investigations of the plasma response for wide heating

power range, which is useful for studying of the dynamics of plasma transport. While

ECH modulation techniques are used in the heat pulse propagation experiments, few

experimental results have been reported for plasma dynamics with continuously varied

ECH. The continuously varied ECH enables the investigations of the transition and

back-transition for the eITB regime during a single shot. Due to the NC bifurcation

characteristics of the helical plasma, hysteresis during eITB formation has been reported

for Er in CHS[15] and W7-AS[16]. The continuously varied ECH is also effective for

studying hysteresis phenomena.

A peaked Te profile is observed with an on-axis ECH. Here, we show the typical

peaked and non-peaked Te plasmas obtained in a single plasma discharge by changing

PECH. The second-harmonic 70 GHz ECH beam with the extraordinary mode is

perpendicularly injected in the experiment. The parallel refractive index N|| is set to

approximately 0.0 and the magnetic field strength is adjusted such that the EC power

absorption can be peaked on the axis. In this heating condition, the electron cyclotron

driven current (ECCD) is nearly zero and the bootstrap current of only several kA is

observed. The vacuum central iota is ι(0)/2π ∼ 0.56 and the magnetic configuration

is set to avoid placing the low order resonances in the core region. In this experiment,

PECH is controlled by temporally changing the gyrotron beam voltage for a constant

ne plasma. Figure 1(a) shows the time evolution of the line-averaged electron density

n̄e, the plasma stored energy W dia
p , and PECH. In the ECH power control experiment,

PECH is controlled to be gradually reduced from 330 to 120 kW after t = 210 ms under

the constant n̄e ∼ 1.0 × 1019 m−3. W dia
p slightly decreases as PECH is reduced. Figures

1(b) and 1(c) show the typical Te and ne profiles with PECH values of 175 and 240 kW,

respectively. Here, the Te and ne profiles are measured using a Nd:YAG laser Thomson

scattering (YAG-TS) system[17, 18]. In this plasma condition, the ne is sufficiently

high for neglecting the effects of the high energy electrons on the Te measurement. The

ne profiles are nearly identical for the two heating power cases. On the other hand,

different Te profile shapes are observed during the PECH change. The maximum value

of central Te [Te(0)] reaches 1.5 keV with PECH = 240 kW with the steep Te gradient

of 30 keVm−1 at r/a = 0.2. A high Te region is created around the center (r/a < 0.3).

Moreover, the reduction of PECH results in a decreased Te gradient in the core region

(r/a < 0.3), while the Te in the outer region (r/a > 0.3) is almost identical for the two

heating power cases [see Figs. 1(b) and 1(c)].
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Figure 1. (a) Time evolution of the plasma stored energy, line-averaged electron

density, and electron cyclotron heating (ECH) injection power. Profiles of (b) Te and

(c) ne with ECH (injection power: 175 and 240 kW).

3. Density Threshold for eITB Formation

To explore the conditions for the formation of the peaked Te profiles, we investigate the

density dependence on central Te and the Te gradient. In this experiment, we control

ne by changing gas-puff fueling under a constant PECH. Figure 2(a) shows the time

evolution of n̄e, W
dia
p , and PECH. Figures 2(b) and 2(c) show the typical Te and ne

profiles. The peaked Te profile in the plasma core (r/a < 0.2) disappears in the case

of high ne, while the profile shape of the outer region (r/a > 0.2) does not vary in the

experiment [see Figs. 2(b) and 2(c)]. The maximum value of Te(0) reaches 2 keV with

a steep Te gradient.

Here, the Te profiles are fitted using the following function.

Te(ρ)

Te(0)
= g − h+

1− g + h

(1− ρp)q
+ h

{
1− exp

(
−ρ2

w2

)}
, (1)

where ρ = r/a, g = Te(1)/Te(0), and h and w are the hole depth and width, respectively.

In this equation, Te(ρ) denotes radial Te profiles. The central and peripheral (r/a = 0.5)
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Figure 2. (a) Time evolution of the plasma stored energy, line-averaged electron

density, and ECH injection power. Profiles of (b) Te and (c) ne at 240 and 280 ms,

respectively.

Te are plotted as a function of n̄e in Fig. 3. Clear transitions are observed for both Te and

Te gradients. As n̄e decreases below the threshold value(1.1−1.3×1019 m−3), central Te

increases significantly, and the Te shape is transformed to the peaked profile. Central Te

increases to 3 keV at the low n̄e ∼ 0.6×1019 m−3, while the Te variation of the peripheral

region is small. The Te gradient at the core region shows the same transient increase as

that shown by Te. When n̄e is below the threshold density (1.1−1.3×1019 m−3), the Te

gradient at r/a = 0.1 increases from approximately 20 to approximately 80 keV/m. In

contrast, the gradient at r/a = 0.3 is nearly constant at approximately 10 keV/m. The

difference in the Te gradient responses for the ne change between the core and peripheral

regions shows that there is a clear difference of the transport characteristics between

the two regions. The difference between the Te profiles is also observed in the ECH

power control experiment described in Section 2. The findings that both higher PECH

and lower ne contribute to the formation of the peaked profile are consistent with the

predictions that the ion-electron root transition occurs in the collisionless regime and
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in a plasma with a high Te/Ti ratio, respectively. The transient increase of both Te and

Te gradient suggest that these phenomena have bifurcation nature explained by the NC

theory.

In LHD, the large size of helical device (R ∼ 3.6 m), the clear transition of Te and

Te gradient have also been observed, while the normalized threshold value of PECH/n̄e for

the eITB formation is larger (approximately 700× 10−19kWm3) than that of Heliotron

J (approximately 250 × 10−19kWm3)[19, 20]. The much higher helical field ripple in

the core region caused by the strong helical axis of Heliotron J (factor of 25 compared

to LHD) could increase the ripple transport of the electrons and decrease PECH/n̄e at

which the eITB formation occurs. ϵeff , which indicates the property of the NC helical

ripple transport in the 1/ν regime, is a candidate for understanding the differences

between the threshold values[21]. Table 1 lists the threshold values of PECH/n̄e of the

stellarator/heliotron devices and their characteristics including ϵeff in the ascending

order of PECH/n̄e. In the table, we calculate the threshold value of PECH/n̄e referring to

the reports for each device. A comparison of Heliotron J (ϵeff (ρ = 0.2) ∼ 0.1), W7-AS

(ϵeff (ρ = 0.2) ∼ 0.016), and LHD (ϵeff (ρ = 0.2) ∼ 0.009 or 0.004) shows that larger

ϵeff corresponds to smaller threshold values and therefore easier eITB formation. While

the explanation is certainly plausible, in CHS which has nearly the same magnetic

configuration as that of LHD, the threshold value of PECH/n̄e ∼ 260 × 10−19kWm3

is nearly the same as that of Heliotron J[22]. Furthermore, a comparison of CHS

(ϵeff (ρ = 0.2) ∼ 0.01), W7-AS (ϵeff (ρ = 0.2) ∼ 0.016), and TJ-II (ϵeff (ρ = 0.2) ∼ 0.07)

shows that the trend in the threshold values is opposite to the order expected based

on ϵeff . Therefore, additional factors that determine the threshold value may exist,

such as the presence of a magnetic island. For LHD[23] and TJ-II[24], the effects of

the magnetic island on plasma flow, turbulence, and heat transport were investigated,

and it was reported that the existence of a magnetic island triggers the eITB formation.

The effects of a magnetic island on the eITB formation are also under investigation in

Heliotron J.

4. Estimation of a NC Radial Electric Field

In stellarator/heliotron devices, the NC theory predicts a large Er in the core region

in an eITB plasma, with the experimental results supporting the NC predictions[5].

A NC calculation is conducted using the moment method (Sugama-Nishimura’s

method)[13, 14] to estimate the Er value for the peaked profile. The magnitude of

the NC ambipolar Er is reported to be in good agreement with the measured Er in

stellarator/heliotron devices.

We calculate Er using the Te and ne profiles with the peaked Te plasma, as shown

in Fig. 1 (PECH = 240 kW). In this calculation, we assume the ion temperature

profile as Ti(r) = 150(1 − (r/a)1.57)1.11 (in eV), the typical profile of the Heliotron J

plasma whose validity has been previously confirmed by charge exchange recombination

spectroscopy(CXRS)[27]. Due to the nonlinear dependence of the NC particle fluxes on
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Table 1. Threshold power/density and parametric overview of

stellarator/heliotron devices.

Device
Magnetic

configuration

Major/minor

radius

Rotational

transform

Effective

helical ripple

Threshold

power/density
Ref.

R/a [m] ι(0)/2π ϵeff (ρ = 0.2)
PECH/n̄e

[10−19kWm3]

Heliotron J
Helical-axis

heliotron
1.2/0.17 0.56 ∼ 0.1 ∼ 250 [11, 12]

CHS Heliotron 0.92/0.19 0.31 ∼ 0.01 ∼ 260 [22]

W7-AS Helias 2.0/0.18 0.4 ∼ 0.016 ∼ 400 [1, 25]

TJ-II Heliac 1.5/0.2 1.51 ∼ 0.07 ∼ 500− 750 [4, 25]

LHD(Rax=3.5) Heliotron 3.5/0.6 0.4 ∼ 0.009 ∼ 700 [20]

LHD(Rax=3.75) 3.75/0.59 0.35 ∼ 0.004 ∼ 1400 [26]
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Er in the helical plasma, Er is determined by the ambipolar condition as follows:

Γe(Er) = Γi(Er), (2)

where Γ represents the particle flux of the plasma species with “e” for electrons and

“i” for ions. In Figs. 5(a)-5(c), the calculated Γi and Γe are plotted as a function of

Er at r/a = 0.17, 0.5 and 0.77 for the peaked Te plasma. At r/a = 0.77 [Fig. 5(a)],

the ambipolarity provides the ion-root Er. An increase of Te in the core region leads to

the rapid growth in Γe. When Te reaches a value larger than that in the radial inner

region, the second solution for a large positive Er appears (the third solution appears

simultaneously but is thermodynamically unstable) [Fig. 5(b)]. This solution is called

the electron root. A further increase in core Te at r/a = 0.17 leads to the further growth

in Γe and only the electron root appears [Fig. 5(c)]. Figure 6(b) shows the radial

profiles of the theoretically expected ambipolar Er of both the peaked and non-peaked

plasmas. For both plasmas, only the electron root (large positive Er) is predicted in the

core region (r/a < 0.3), while the electron and ion roots are predicted to coexist in the

outer region (0.3 < r/a < 0.6). The experimentally obtained Te profile is sufficient for

considering the ion-electron root transition. A large positive Er(12 kV/m) is expected

for the peaked Te profile while the value of Er is nearly half (5 kV/m) for that of the non-

peaked Te profile, as shown in Fig. 6(b). The Bohm and gyro-Bohm mixed transport

model with the E × B shear flow effect has already been compared to the helical and

tokamak experimental ITBs[28, 29]. The most widely accepted explanation for the ITB

formation relies on the suppression of TEM or ITG turbulence due to the E×B shear

flow. The turbulence suppression may occur when the E ×B flow shearing rate ωE×B

exceeds the linear growth rate of these turbulences. In our case (Fig. 6), it is possible

that the ωE×B of the peaked Te plasma exceeds these growth rates while the positive Er

is formed.

This calculation result and measured Te profile suggest that (1) the large positive

Er similar to that observed in other stellarator/heliotron devices can form in Heliotron

J and (2) the Er is sufficiently large for suppressing both the NC transport and the

turbulence.

5. Heat Transport Characteristics and Comparison with NC Calculation

5.1. Heat Transport Analysis Using Experimental Results

The analysis of heat transport characteristics is indispensable for identifying eITB. We

estimate the electron thermal diffusivities for the ECH power control experiment. The

effective electron thermal diffusivity (χeff
e ) profiles are evaluated using the Te and ne

profiles obtained from the YAG-TS measurement and the single-pass ECH deposition

profiles QECH for the cases of PECH ∼ 240 and 175 kW (Fig. 7). χeff
e is defined as

follows:

χeff
e (r/a) =

QECH

ne∇Te

. (3)
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Here, the QECH is calculated using the TRAVIS ray-tracing code[30, 31]. TRAVIS

is a ray-tracing code for ECH/ECCD and ECE diagnostics in arbitrary 3D magnetic

configurations. The code has been applied and validated for Heliotron J[31]. Figure 7(a)

shows the calculated QECH for the peaked and non-peaked plasmas for the ECH power

control experiment shown in Fig. 1. In this estimation of χeff
e , we neglect the electron-

ion energy transfer and the impurity radiation losses, for which the contributions are

considered to be negligible, particularly in the core region. The uncertainty in χeff
e is

due to the uncertainties in the Te and ne profile measurements.

For a low injection power of 175 kW, χeff
e does not significantly change in the entire

plasma region because of the constant Te gradient. For the 240 kW case, χeff
e drastically

decreases from 10 m2/s (at r/a ∼ 0.4) to 4 m2/s (at r/a ∼ 0.2), which is a direct

reflection of the steep Te gradient as shown in Fig. 7(a). However, in the outer region

(r/a > 0.3) χeff
e is high compared to χeff

e for the case of PECH ∼175 kW. The Te gradient

does not increase while the PECH increases, suggesting the degradation of peripheral

confinement. This phenomenon is well known as the feature of power degradation in

the L-mode confinement. The transport analysis shows a clear reduction of χeff
e for

r/a < 0.3 in the highly peaked Te profile case suggesting improved confinement in the

core region.

A comparative study of experimental and NC theory results provides more detailed

information about the transport properties of the peaked Te plasma. For this purpose,

the NC calculation is performed using the method described in Section 4, which considers

the calculated Er. In this calculation, we discuss the plasmas in the ECH power control

experiment shown in Fig. 1 (PECH = 175, and 240 kW). Figure 6(c) shows the NC

prediction of the electron thermal diffusivity (χNC
e ). The χNC

e of the peaked plasma

is lower than that of the non-peaked plasma in the core region (r/a < 0.3). However,

the difference of χNC
e between the peaked and non-peaked plasmas in the core region

(r/a < 0.3) is small compared to that of χeff
e . χNC

e and χeff
e are plotted in Fig. 7. In

the core region, χNC
e for the peaked plasma is approximately 1/7 times smaller than

χeff
e for the peaked plasma. As the experimentally obtained χeff

e contains the effects

of both NC and anomalous transport, the difference in χeff
e between the peaked and

non-peaked plasmas is attributed to the reduction of the anomalous transport in the

core region.

5.2. Evaluation of Turbulence Suppression

To quantitatively evaluate the degree of reduction of anomalous transport, we investigate

the dependence of χeff
e on Te. Figure 8(a) shows χeff

e as a function of Te inside and

outside the foot point. Here, the foot point is defined as the point where the rate of

the change in the Te gradient (d2Te/dρ
2; ρ = r/a) reaches the maximum value. The

Te dependence of χeff
e is clearly different inside and outside the foot point. Outside

the foot point, χeff
e increases as Te increases, following the relation of χeff

e ∝ T 1.9
e . In

contrast, χeff
e sharply decreases inside the foot point as Te increases with the relation
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Figure 7. Radial profiles of (a) Te and ECH deposition and (b) electron thermal

diffusivity (χeff
e ) and NC thermal diffusivity (χNC

e ) for the peaked and non-peaked

plasmas, respectively.

χeff
e ∝ T−1.7

e . χeff
e outside the foot point scales roughly as T 3/2

e (gyro-Bohm factor).

Figure 8(b) shows the effective thermal diffusivity normalized by T 3/2
e as a function

of R/LTe . Here, R is the major radius of Heliotron J and LTe is the scale length of

the radial Te profile (LTe = Te/∇Te). Note that the thermal diffusivity in gyro-Bohm

scaling is expressed as χgyro−Bohm ∝ T 3/2/B2[32]. The decrease in χeff
e /T 3/2

e suggests

that inside the foot point, the heat transport does not depend on gyro-Bohm scaling.

Outside the foot point, χeff
e /T 3/2

e values are constant regardless of the change in R/LTe .

The χeff
e /T 2/3

e values inside the foot point are lower than those outside the foot point.

χeff
e /T 2/3

e decreases as the Te gradient increases, suggesting that the heat transport

inside the foot point is smaller than that predicted by the Te dependence of gyro-Bohm

scaling.

In the previous section, we discussed the following topics that are recognized as

the typical features of a helical eITB: (1) the reduction of thermal diffusivity, (2) the

formation of a large positive Er, (3) the transient formation with a threshold value, and

(4) the reduction of turbulence. In Heliotron J, the reduction of the thermal diffusivity

is predicted by the NC calculation. Experimental analysis in this section shows the

reduction of the anomalous transport. Beam emission spectroscopy measurements[33]
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Figure 8. (a) Effective electron thermal diffusivity as a function of Te inside and

outside the foot point. (b) Normalized effective electron thermal diffusivity as a

function of R/LTe inside and outside the foot point.

will be used in future studies to confirm the reduction of the turbulence. These

characteristics are similar to those obtained from the NC theory and experimental

observation in LHD, CHS, and W7-AS[19]. According to the discussions of (1)-(4),

the peaked profile in Heliotron J is confirmed to be the eITB.

6. Hysteresis Feature of Te between Back and Forth Transition

The temporal dynamics during the eITB formation are investigated. Figure 9(a) shows

the time evolution of n̄e, W
dia
p , and PECH. In this experiment, ne is controlled to decrease

until 210 ms and increase after that. The time evolution of Te is obtained from the ECE

diagnostic using a multichannel radiometer in the experiment. In the ECE measurement,

the optical depth of the emission is greater than 2 within 30% of the plasma minor radius

so that the radiation temperature corresponds to Te near the core of Heliotron J. The

time evolutions of Te of r/a ∼ 0.1, 0.5, and 0.95 are also shown in Fig. 9(b). The eITB

was observed at 210 ms [Fig. 9(c)] in low ne while it disappears at 260 ms [Fig. 9(d)] due

to the increase in ne. The time evolution of the ECE signal in the core region (r/a ∼ 0.1)

has the same tendency as the change in the Te profile measured using YAG-TS. When

ne decreases, the ECE signal in the core region transiently increases at around 195 ms.

When ne increases, the ECE signal transiently decreases at around 235 ms. The eITB

formed transiently and disappears at 195 and 235 ms. Figure 10 shows the trace of Te

at r/a ∼ 0.1 as a function of n̄e. In this figure, we control ne from the red arrow to

the blue arrow. When Te increase, n̄e ∼ 0.9 × 1019 m−3; however, when Te decrease,

n̄e ∼ 1.0× 1019 m−3. Therefore, a hysteresis loop of the ECE signal for the ne change is

formed during the eITB formation. Due to hysteresis, the core Te shows different values

for the ne decrease and ne increase phases even at same ne. This hysteresis indicates that

after its formation, the eITB remains in the higher ne plasma. In CHS, a bifurcation
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Figure 9. (a) Time evolution of the plasma stored energy and line-averaged electron

density. (b)Time evolution of the electron cyclotron emission (ECE) signal (at r/a ∼
0.1, 0.5, and 0.95). (c and d) Te profiles at 210 ms and 260 ms.
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Figure 10. (a and b) Te profiles at 210 and 260 ms. (c) Hysteresis of ECE signal on

line-averaged electron density.

behavior is observed in the plasma potential measurement[34]. The hysteresis loop is

ascribed to the local bifurcation nature predicted in the NC theory. It is suggested that

the behavior of the ECE signal in Heliotron J is caused by the bifurcated Er and that

the thermal transport has the hysteresis feature.
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7. Summary

The peaked Te profile of Heliotron J has the following four features: (1) heat transport

analysis shows the significant improvement of χeff
e in the plasma, with the eITB

relative to that without the eITB. (2) Numerical calculations using the moment method

predicts that a large positive Er is formed in the core region. (3) When the value of

PECH/n̄e exceeds the threshold of 250 × 10−19kW m3, both central Te and the core

Te gradient increase transiently. (4) The large gap between χeff
e and χNC

e suggests

that the suppression of anomalous thermal transport contributes to the core improved

confinement of the eITB plasma. These features provide the evidence for the formation

of an eITB in Heliotron J. Furthermore, the time evolution of the core Te obtained by

the ECE measurement shows the transient increase and hysteresis phenomena during

the formation of the eITB.

Heliotron J is a suitable device for studying eITB physics with both various

diagnostics and plasma control systems. We plan to measure Er and a plasma flow via

the CXRS. The ECH system of Heliotron J shows several advantages for the study of

dynamics such as the hysteresis phenomena obtained by utilizing the continuous control

of PECH during a single shot. The heat pulse thermal diffusivity will be evaluated by

measuring the propagation of the heat pulses for eITB plasmas using a modulation

ECH technique. In addition, we also plan to investigate the effect of the magnetic field

configurations, such as a helical ripple and a magnetic island, on the mechanism of the

eITB formation. This research is the first report of the eITB formation in the helical-

axis heliotron configuration. The research of eITB physics in Heliotron J contributes to

expand the variety of configuration research in stellarator/heliotron devices.
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