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Abstract

This paper proposes a method for predicting an unusual emission of visible light

inside the plasma vessel by using a Support Vector Machine (SVM) because the

unusual emission of visible light can be caused by unexpected heating on the

vessel surface. This emission must be predicted to avoid unexpected situations

in which it causes some damage to the vessel. The light reflected from the

divertor tiles is used as the unusual emission light. This study aims to predict

such unusual emission through pictures before the start of the unusual emission,

regardless of the plasma physics. This study experimentally confirms that the

unusual emission of visible light inside the plasma vessel can be predicted with

an accuracy rate of 96.4%, and approximately 0.3 seconds before the start of an

unusual emission.
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1. Introduction

At the National Institute for Fusion Science (NIFS), high-temperature plasma

experiments have been conducted using the Large Helical Device (LHD) [1],

which is a superconducting plasma confinement device that adopts a heliotron

magnetic configuration. During these experiments, visible light emissions are5
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observed after ignition of plasma discharges. Fig. 1 shows an example of visible

light emission. At NIFS, images of visible light inside the plasma vessel have

been recorded as videos and stored in disk devices [2]. The duration of a plasma

video ranges from a few seconds to one hour. More than 100,000 videos are

currently stored.10

In LHD experiments, unexpected heat influxes to plasma-facing walls occur

occasionally, which might incur severe damages to the vacuum vessel. In such

situations, intense light emissions from the red-heat wall tiles are incidental,

so that we must identify them in the LHD video data. Accordingly, this study

investigated ways to predict such undesirable situations in advance so as to elicit15

evasive actions.

Disruption phenomena have been extensively investigated in several tokamak

experiments. Some studies have attempted to detect disruption by taking signal

processing approaches, including the Wavelet transformation [3–6]. Others have

attempted to predict disruption by using machine learning methods, among20

which the Support Vector Machine (SVM) and the Neural Network (NN) stand

out [7–14].

Nakagawa et al. proposed methods for predicting unusual light emission us-

ing the SVM and the NN [7, 15–17]. They used the light reflected from divertor

tiles as the unusual visible light. Fig. 2 shows an example of the light, where25

the gold or yellow curves can be seen in the upper right quadrant. This rep-

resents the light emitted by the overheated divertor tiles, which appears to be

reflected on the inner surface of the vacuum vessel. The divertor is directly ex-

posed to particle and heat fluxes from the plasma, which are transported along

magnetic field lines. The divertor acts by exhausting impurities and removing30

the heat load from the plasma. Fig. 3 depicts the sectional view of the LHD

including divertors [18]. Divertors are placed apart from the plasma and are

placed below the plasma shown in Fig. 2. The objective of this study is the

prediction of this unusual emission through pictures before the start of unusual

emission, regardless of plasma physics. Notably, this unusual visible light is35
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often observed. As sufficient number of frames1 including this light can be ob-

tained, machine learning methods, which usually require a considerable amount

of data for precise estimation, can be used in estimating this light. This study

also considers this light as an unusual visible light. In addition, Nakagawa et

al. used plasma videos rather than plasma parameters because observations of40

unusual light emissions are never intended to analyzing the plasma behaviors,

but to investigate the possibility of using this method for predicting unusual

light emission phenomena only by using a time series of camera pictures. They

showed that the performance of the method using the SVM is better than that

using the NN [15]. The probability of an unusual emission, however, fluctuates45

too much to be used in the prediction. Although they attested the performance

of the method, their evaluation was still preliminary.

This study improves the SVM method proposed by Nakagawa et al. [15].

The proposed method calculates the probability of unusual emission by taking

the mean values of the probability values of several frames. This study also50

precisely evaluates the proposed method to show its effectiveness.

The remainder of this paper is organized as follows. Section 2 presents the

existing literature. Section 3 describes the study methods. Section 4 evalu-

ates the proposed method. Section 5 discusses the results. Finally, Section 6

concludes the paper.55

2. Related works

2.1. Support vector machine

SVMs comprise the supervised machine learning methods [19], which use

training data in the learning process. An SVM attempts to find the hyperplane

by dividing data into two sub-spaces with the maximum distance between the60

data closest to the hyperplane. This hyperplane is called the separate hyper-

plane. The distance between the hyperplane and the data is called the margin.

1A frame is one of the still images constituting a video.
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The data closest to the hyperplane are called support vectors. This situation is

illustrated in Fig. 4. As the data are divided into two subsets of data, there are

two types of support vectors: those for a data subset and a diffent data subset.65

These are often called positive and negative support vectors, respectively.

When data cannot be divided linearly into the original space, a mapping

function called kernel can be used for mapping the data to a higher-dimensional

space, where the data can be divided linearly (Fig. 5). Gaussian kernel and

Polynomial kernel are popular kernels.70

2.2. Disruption prediction using machine learning

In a tokamak device, disruption is an event in which the plasma suddenly

shuts down.

Many disruption prediction methods using machine learning methods have

been reported. Murari et al. proposed a disruption prediction method using the75

SVM [8–10] and found three best SVMs [9]. Farias et al. attempted to predict

the time to the occurrence of a disruption using multilayer NNs and multilayer

SVMs [11]. Yokoyama et al. also attempted to predict the disruption [7], and

showed that the effective combination of parameters improves the prediction

performance of the disruption risk. Vega et al. proposed the use of Venn80

predictor, a multi-probability classification system [12].

Tang et al. proposed a method using a Recurrent Neural Network (RNN),

which treats time-series data [13]. Farias et al. proposed a method using Long

Short-Term Memory (LSTM) (a type of RNN), which learns the normal state

and detects the abnormal state using LSTM [14].85

Although disruption has been extensively investigated, studies on unusual

emissions are still scarce. To address this gap in knowledge, this study treats

unusual emissions and seeks to predict them.
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3. Prediction method

3.1. Feature values90

The luminance value of the frame is used as a feature value [15]. The width

and the height of the original video frame are 352 and 240 pixels, respectively.

The unique number of the video and the playing time are included at the top

and the bottom of a video. As these are not related to the plasma phenomenon

itself, we removed them and set the frame to the size of 256×128 pixels. The95

frame was converted to a grayscale image and divided into 64×64 blocks. This

means that one block comprises four pixels in width and two pixels in height.

By making the mean value of the luminance values of the pixels in a block a

pixel value, a frame of 64×64 pixels was obtained. A vector of 4,096 dimensions

was obtained from the 64×64 pixel frame. This was used as a feature vector.100

This procedure is shown in Fig. 6.

In addition, the value of each dimension was normalized by being divided

by 255. A non-luminous frame was considered inappropriate to be included in a

dataset; thus, frames with a mean luminance value less than 40 were excluded.

3.2. Support vector machine105

We used an SVM as a basic two-class classifier to classify input data as

unusual or usual emissions [15]. As the data could not be classified linearly,

some kernel function is used for the classification.

3.3. Calculation of the probability

The method proposed by Nakagawa et al. estimates whether a frame con-110

tains an unusual emission [15]. If a frame contains an unusual emission, the

value of the frame is one. If a frame does not contain an unusual emission, the

value is zero. The values may change frame by frame and are difficult to use in

prediction.

This study used the mean value of N frames as the probability of unusual115

emission. When the values of all N frames are zero, the probability is zero.
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When the values of several frames are one, the probability is greater than zero.

When the values of all N frames are one, the probability is one. The mean value

of these values can function as the probability of unusual emission.

4. Experiment120

4.1. Dataset

Videos on LHD of NIFS were used. Visible light is frequently observed inside

the plasma vessel during high-temperature plasma discharge experiments, which

have been conducted at NIFS. The images of the visible light inside the vessel

have been stored in disk devices at NIFS in the MPEG-1 format with a frame125

rate of 29.97 frames/sec. NIFS provided the plasma videos used herein.

The videos used were obtained from the plasma experiment in the 10th

experimental campaign. Unusual visible light emission is sometimes observed

in the plasma vessel under certain plasma discharge conditions. A bright flash

can be observed on the internal sidewall when an unusual emission occurs. This130

bright flash is defined as a sequence of more than 10 frames, including the points

whose colors are as shown in Eq. (1) in the Hue-Saturation-Value color space:

55 ≤ Hue ≤ 63

25 ≤ Saturation ≤ 35 (1)

V alue = 100

Examples with and without unusual emissions are shown in Fig. 7. Figs.

7(a) - (c) show examples with unusual emissions. Fig. 7(d) - (f) show examples

without unusual emissions.135

This study used 199 unusual emission videos and 254 videos without unusual

emissions. A video containing unusual emission also contains some frames of

non-unusual emission from before the start of the unusual emission. A total of

27,681 frames were obtained as the dataset. Of them, 7,968 frames included

unusual emission (positive examples), while 19,713 frames did not (negative140

examples).
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4.2. Experimental method

The dataset was prepared for learning an SVM. For machine learning, the

dataset was divided into 2 : 8 for the test and training datasets.

The overview of the three-step experiment is shown in Fig. 8. The first145

step comprised training. The SVM was trained using the training dataset. Af-

ter training, the SVM worked as a predictor of unusual emission. The second

step comprised evaluation. The test dataset was used to evaluate the predictor

through the metrics described in 4.3.1. The third step comprised examination,

in which the effectiveness of the probability was examined. For the examina-150

tion, six unusual emission videos and six videos without unusual emissions were

selected at random from the videos correctly predicted in the second step. In

this paper, we included a maximum of 12 videos to explain the examination

result. The predictor used these videos, and the probability of occurrence of

unusual emissions was calculated.155

A Python machine learning library scikit-learn [20] was used for implement-

ing the SVM. The Gaussian kernel was set for the SVM kernel function. In

addition, the grid search method was applied to 1,431 examples randomly se-

lected by varying the parameter γ of the Gaussian kernel in the range of 0.05,

0.1, and 0.5. The cost parameter C varied in the range of 0.1, 1, and 10. This160

study set γ=0.05 and C = 10 with the highest evaluation values as SVM pa-

rameters.

4.3. Evaluation methods

4.3.1. Metrics for evaluation

Accuracy, precision, and recall were used as metrics for evaluating the learn-165

ing results. These results were used in classification and information retrieval to

show the soundness of classification and retrieval. Here two-class classification is

treated, i.e., Yes (Positive) or No (Negative). Accuracy refers to the ratio of the

number of instances correctly classified to the number of all instances. Preci-

sion refers to the degree to which positive instances are included in the instances170
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examined. Recall refers to the degree to which positive instances are obtained

from all positive instances. These are defined by Eqs. (2) - (4), respectively.

Accuracy =
TP + TN

TP + FN + FP + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

where, TP is the number of examples correctly judged as positive examples; FN

is the number of positive examples judged as negative examples by mistake; FP

is the number of negative examples judged as positive examples by mistake; and175

TN is the number of negative examples correctly judged as negative examples.

In the SVM, if the output of the prediction is one, the output is regarded as

positive.

When there is no mistake, i.e., FN and FP are equal to zero, accuracy is

1.0, i.e., 100 %. On the other hand, when there is no positive example judged180

as a negative example by mistake (or vice-versa), precision (recall) is 1.0 even

if there are some negative examples judged as positive examples by mistake (or

vice-versa).

4.3.2. Prediction examination

To examine the performance of the predictor, the probability of unusual185

emission was calculated for 12 examination videos. Here, we used five as N,

which is the number of frames used to calculate the probability. We calculated

the probability using five frames by five frames.

4.4. Results

4.4.1. Evaluation results190

The confusion matrix of the test data is shown in Table 1. The numbers

of false negatives and false positives are 93 and 107, respectively. Among 5537

frames, 200 frames were wrongly predicted .
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The evaluation values of the test data are shown in Table 2. All values of

metrics are over 0.9, which are remarkably high since 0.8 is usually considered195

high in the information retrieval and machine learning research areas. This

means that unusual emissions were correctly predicted.

4.4.2. Examination results

The probabilities of unusual emissions obtained are shown in Figs. 9 and 10

for unusual and usual emissions, respectively. The number on the top of each200

graph indicates the serial number of the video. The horizontal axis shows the

last frame number of the frames used in taking a mean value. As we used five

frames in taking the mean value (N = 5), the number on the axis is the frame

number of the 5th frame. The graphs shown in Figs. 8 to 9 begin at five. This

means that the 1st point of the graph is the mean value of the 1st to the 5th205

frame. The vertical axis represents the probability of unusual emission. The

unusual emission began at one to four frames after the last frame of each graph

shown in Fig. 9. For example, the unusual emission began at the 31st to the

34th frame of the video, whose serial number is 2007-1-2373676 shown in Fig.

9(a), where the last frame in the graph is the 30th frame.210

According to Figs. 9(a) - 9(f), unusual emission is predicted in the SVM

the moment before its start. In addition, the probability of unusual emission

becomes high in 10 or more frames. Except for Fig. 9(c), this is maintained

until just before the start point of the unusual emission.

According to Figs. 10(a) - 10(f), the probability of unusual emission is low215

for videos that do not include unusual emissions.

5. Discussion

5.1. Prediction performance

As shown in Table 2, the recall is higher than the precision. This means that

there are few false dismissals, which are unusual but reported as not unusual.220
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Although the difference between precision and recall is not expressive, this ten-

dency is preferable because it is required that unusual emissions be correctly

predicted.

Although 200 frames were wrongly predicted, their ratio to all 5537 frames

is considerably small. This can be understood by 0.964 of accuracy.225

5.2. Prediction of unusual emissions

Let us consider 0.8 or more of the probability as high probability. Two or

more consecutive mean values whose values are 0.8 are seen in Figs. 9(a) -

9(f). Although the probability mean values just before the unusual emission

of Figs. 9(c) and 9(e) were less than 1.0, unusual emission can successfully230

be predicted because two consecutive high mean values appeared before the

unusual emission. As five frames were used in calculating the mean value (N =

5) in this experiment, two consecutive mean points mean ten consecutive frames.

Therefore, ten consecutive frames whose mean values of every five frames are

equal to or more than 0.8 may be the criterion to trigger an alarm of unusual235

emission. This means that it takes approximately 0.3 seconds to trigger an

alarm because the frame rate is around 30 frames/second. This also means

that an unusual emission can be predicted approximately 0.3 seconds before it

begins.

Although the graphs shown in Fig. 9 report the correct prediction, this does240

not mean that there is no prediction failure. An example of prediction failure

is shown in Fig. 11. After the 30th frames, the probability remained zero.

Figs. 10(a), 10(c), and 10(d) show that the probabilities of unusual emission

are higher than zero at some frames. These are, however, only seen at the

beginning of plasma emissions.245

From these results, the SVM is considered effective in predicting unusual

emissions. It can trigger an alarm of an unusual emission approximately 0.3

seconds before it begins. It is considered that the luminance value of the frame

is effective as a feature value in predicting unusual emissions.
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5.3. Machine learning methods250

As previously mentioned, NNs are often used in machine learning. Although

it is often said that an NN attains good estimation performance and that feature

values are not required, an NN needs considerable training data (usually 100,000

or more data). We used approximately 22,000 data, which may not be sufficient

for an NN. As the literature reports that several hundreds of data are sufficient255

for the SVM [21], our data are sufficient for the SVM.

Nakagawa et al. used a Hidden Markov Model (HMM) to estimate a plasma

transition, which is the transition of visible light inside the plasma vessel [16].

As an HMM treats time series data, the prediction in this paper may be treated

by using an HMM. However, an HMM is more difficult to be used than an SVM.260

An HMM does not always attain better performance than an SVM [22]. If an

SVM attains good prediction performance, an SVM is preferred.

6. Conclusion

We proposed a method for predicting unusual emission of a plasma video.

A predictor was constructed by learning with the SVM, using the frames of265

plasma videos with or without unusual emissions. Accuracy, precision, and

recall were used as evaluation metrics. High accuracy and high precision were

obtained with the proposed machine learning method. This study confirmed

experimentally whether an unusual emission could be predicted in advance by

using the predictor. It was shown that the SVM is effective in predicting unusual270

emissions before they start. It was also found that the luminance value of the

frame is effective as a feature value for predicting unusual emissions.

Although the precision of the prediction is remarkably high, the prediction of

unusual emissions still fails. When we attempt to achieve complete prediction,

that is, no prediction failure, precision usually degrades. Therefore, achieving275

higher recall with keeping high precision is the scope for further research. We

used the luminance value as the feature value. Although the luminance value

works well for the prediction of the unusual emission, there may be other values
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suited to feature values. Identifying the characteristics of plasma videos for more

effective prediction should be included in future studies, as this may improve280

the recall of the prediction.
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Table 1: Confusion matrix of test data

Actual prediction (positive) prediction (negative)

data (positive) 1,462 93

data (negative) 107 3,875

Table 2: Evaluation values of test data

model accuracy precision recall

SVM 0.964 0.932 0.940
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Figure 1: Example of a scene of a plasma video

Figure 2: Example of the light reflected from the divertor tiles
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Figure 3: Sectional view of the Large Helical Devise (LHD) including divertors [18].

Figure 4: Support vector machine (SVM)

Figure 5: Kernel of support vector machine
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Figure 6: Procedure of feature extraction

(a) unusual 1 (b) unusual 2 (c) unusual 3

(d) usual 1 (e) usual 2 (f) usual 3

Figure 7: Examples of frames in the dataset

Figure 8: Overview of experiment
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(a) 2007-1-2373676 (b) 2007-1-2373677

(c) 2007-1-2574071 (d) 2007-1-2674109

(e) 2007-2-875246 (f) 2007-2-1375491

Figure 9: Prediction results (unusual emission)
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(a) 2007-1-1673127 (b) 2007-1-2573957

(c) 2007-1-2573974 (d) 2007-1-2573983

(e) 2007-2-674974 (f) 2007-2-975363

Figure 10: Prediction results (usual emission)

20



Figure 11: A failed prediction example (unusual emission)
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