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Abstract. The sensitivity of the growth and nonlinear evolution of fast-ion-driven

modes is examined with respect the choice of particle boundary conditions, diffusion

coefficients, fast ion gyroradii and bulk compressibility. The primary purpose of

this work is to justify the choice of parameters to be used in self-consistent long-

time simulations of fast ion dynamics using global MHD-kinetic hybrid codes that

include fast ion sources and collisions. The present study is conducted for a scenario

based on the N-NB-driven JT-60U shot E039672, which is subject to Abrupt Large

Events (ALE). We use realistic geometry, a realistic fast ion distribution, and focus

on experimentally observed harmonics with low toroidal mode numbers n = 1, 2,

3. The use of realistic boundary conditions and finite Larmor radii for the fast ions

is shown to be essential. The usual values µ0η = ν = χ ∼ 10−6vA0R0 used for

resistivity, viscosity and thermal diffusivity, and Γ = 5/3 used for the specific heat

ratio (controlling the effect of compressibility) are shown to be reasonable choices. Our

method of performing parameter scans around the threshold for the onset of convective

amplification is proposed as a strategy for nonlinear benchmark studies.

1. Introduction

When powerful negative-ion-based neutral beams (N-NB) were injected into high-beta

JT-60U tokamak plasmas, so-called “fast frequency sweeping modes” (fast FS modes)

and “abrupt large-amplitude events” (ALE) were routinely observed [1, 2, 3, 4]. Strictly

speaking, these phenomena occurred during those phases of the plasma discharge, where

the safety factor q(r) lay between 1 and 2 in the region 0.2 . r/a . 0.6 (with minor

radius a ≈ 1 m), where the beam ion pressure gradient is predicted to be large in

JT-60U. The energetic particle modes (EPM) [5] that were shown to be responsible for

these phenomena [6, 7, 8, 9] have long wavelengths with toroidal mode numbers around

n & 1, and frequencies f in the range 40-60 kHz. This corresponds to the frequency

band occupied by shear Alfvén continua between the compressibility-induced (BAE)

[10, 11, 12] and toroidicity-induced (TAE) [13, 14, 15] shear Alfvén frequency gaps:

ωBAE . ω ∼ |k‖vA| . ωTAE; (1)
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where Re{i∂/∂t} ↔ ω = 2πf is the angular frequency, vA = B/
√
µ0nimi is the Alfvén

velocity, and k‖ ↔ −i(B/B) ·∇ is the wavenumber parallel to the magnetic field B.

In order to learn more about the physical processes underlying these phenomena

(e.g., the trigger mechanism for ALEs) and determine their role in burning plasmas

(e.g., changes in fusion performance and current drive), work is currently underway

to reproduce fast FS modes and ALEs using first-principle long-time simulations

[16, 17, 18]. Since such comprehensive simulations require large computational resources

and each case can take several months to complete, it is not feasible to perform extensive

parameter scans in such a setup directly. Nevertheless, it is important to clarify the

sensitivity of the results with respect to the simulation parameters used and to identify

essential model ingredients. For this purpose, it is useful to perform conventional initial-

value simulations and study the short-time response of the system starting from a pre-

defined unstable equilibrium.

In this paper, we report results of such conventional initial-value simulations

performed with the global nonlinear hybrid code MEGA [6, 19, 20], which is also

being used for the above-mentioned long-time simulations [16, 17, 18]. We focus on

experimentally observed toroidal mode numbers n = 1, 2 and 3, and study how their

dynamics are affected by

(i) the choice made for the fast ion loss boundary,

(ii) the values of MHD diffusion coefficients,

(iii) the use of gyroaveraging to account for finite Larmor radii (FLR) of fast ions, and

(iv) the bulk plasma compressibility.

MEGA describes the bulk plasma response using the full set of magnetohydrody-

namic (MHD) equations, including resistivity η, viscosity ν and thermal diffusivity χ.

The values of these parameters are usually chosen to be much larger than what colli-

sionality alone would imply. For instance, the normalized value of the collisional Spitzer

resistivity is estimated to be η̂ = η/(µ0vA0R0) ∼ (1...5)× 10−9 in the center of the JT-

60U plasma considered here (see Appendix A), whereas MEGA simulations are usually

run with normalized dissipation parameters around η̂ = ν̂ = χ̂ ∼ 10−6.

These values are meaningful because the diffusion coefficients play two important

roles. On the one hand, they are a means for the practical realization of MHD closure

through the dissipation of small-scale structures that are not accurately described by the

MHD model; in particular, on the scale of thermal ion Larmor radii ρLi (see Appendix

A). This is also required to ensure that all structures that form during the simulation

can be resolved by spatial grids with reasonable resolution. On the other hand, diffusion

opens energy channels that may give rise to instabilities that are not present in reality.

In simulations of high-beta plasmas such as the JT-60U scenario considered here, our

main “enemies” to be evaded are resistive MHD ballooning modes (cf. Fig. 2 of Ref. [9]).

On the basis of these considerations, diffusion coefficients with normalized values

around 10−6 are a reasonable compromise, and it is useful to clarify their effect on the

mode dynamics. For this purpose, we examine in the present work how the results for
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our N-NB-driven JT-60U scenario are affected when the normalized resistivity η̂ and

viscosity ν̂ are varied between 10−7 and 10−5.

Note that simulations using extended hybrid models that include kinetic thermal

ion (KTI) effects [21] are presently run only in the drift-kinetic limit. That is, only

the thermal ion compression is kinetic (describing sound waves and Landau damping),

whereas FLR effects (in particular, radiative damping) are still being mocked up by

resistive and viscous diffusion, just as in the present work. Hence, the results of our

sensitivity study with respect to anomalously increased diffusion coefficients is also

relevant for extended hybrid simulations of interactions between fast ions and Alfvén

waves, such as those reported in Refs. [22, 23, 24].

Besides the diffusion coefficients, the full set of MHD equations used here contains

another free physical parameter: the ratio of specific heats Γ. For an ideal gas, the

relation between Γ and the number of degrees of freedom Nf is

Γ = 1 + 2/Nf . (2)

Usually, MEGA is run with Γ = 5/3, which corresponds to an ideal gas with three

degrees of freedom Nf = 3. In this paper, we also present results obtained with two

extreme values: Γ = 1 and 3. The choice Γ = 1 (Nf = ∞) gives the isothermal equation

of state, which is valid for particle species whose thermal velocity vth =
√

2T/M satisfies

|ω| ≪ |k‖vth|, where M is the mass. This is the case for electrons, when one considers

modes in the frequency range given by Eq. (1). The choice Γ = 3 (Nf = 1) gives the

adiabatic equation of state, which is valid for |ω| ≫ |k‖vth|. This is the case for bulk

ions, which satisfy v2th,i/v
2
A ≈ βbulk/2 ≈ 1% in the JT-60U plasmas of interest, where

the total toroidal beta is estimated to be around β = βbulk + βh ≈ 3.6% in the center

of the plasma. It is estimated that about half of the thermal pressure is due to the fast

(“hot”) beam ion component, with βh ∼ 1.7%.

The N-NB ions in JT-60U are born at energies up to E0 = 400 keV with pitch

angles around α/π ≈ 0.25 (where sinα ≡ v‖/v). The high-beta plasmas of interest here

have a relatively weak magnetic field (B0 = 1.2 T on axis), so that the Larmor radius

ρLh of fast ions at their birth velocity v0 =
√

2E0/mi is relatively large, exceeding 10%

of the low-field-side minor radius alfs ≈ 0.66m:

ρLh = v⊥/ωLh =
√

2miE0 cos2 α/(eB0) ≈ 0.076m ≈ 11.5%× alfs. (3)

Thus motivated, we examine in the present paper also the effect of fast ion gyration

by comparing results obtained in the zero-Larmor-radius (ZLR) limit and with FLR.

Recently, we reported first evidence showing that, on the longer time scale of 1–10 ms,

gyroaveraging plays an important role for the intermittency of n = 1 EPM activity in

N-NB-driven JT-60U plasmas [17].

In order to characterize the effect of these simulation parameters on the nonlinear

dynamics of fast-ion-driven modes, we measure the saturation amplitudes and examine

how the value of each parameter affects the transition from low- to large-amplitude

fluctuations. This transition is facilitated by so-called “convective amplification (CA)”

of resonant Alfvén wave packets [25], which has proven to be a very useful paradigm for
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the study of nonlinear fast ion dynamics in N-NB-driven JT-60U plasmas. In simple

terms, one may describe CA as follows: “The mode continues to grow as it follows

the displaced resonant particles radially ourward.” But this should not be taken too

literally. A more precise analysis of the underlying processes can be found in Refs. [8, 9].

This paper is organized as follows. A brief description of the physical model and

numerical methods is given in Section 2. An overview of the nonlinear evolution of

the system in the case with default parameters is given in Section 3. The effects

of the fast ion loss boundary, diffusion coefficients, fast ion FLR and bulk plasma

compressibility are examined in Sections 4–7. In Section 8, we summarize the results and

discuss implications for comprehensive long-time simulations and nonlinear benchmark

studies. The Appendices contain discussions concerning the role of diffusion coefficients

for physical MHD closure, and topics related to numerical stability and convergence.

2. Physical model and numerical methods

The simulation scenario is based on JT-60U shot E039672 at 4 seconds [4]. A stationary

MHD equilibrium with realistic flux surface geometry computed by MEUDAS [26] and

a N-NB ion distribution F0 computed numerically by OFMC [27] are used in order to

closely resemble the experimental conditions. The values of several relevant plasma

parameters are given in Table A1 in Appendix A. Radial profiles of the safety factor

q(r) and plasma beta β(r) were given in Fig. 2 of Ref. [28]. Several projections of the

fast ion distribution F0 were shown in Fig. 4 of Ref. [28].

The “classical” Monte-Carlo simulations performed with OFMC include realistic

sources and collisions but no MHD activity, so they tend to overestimate the fast

ion pressure. In order to reduce the drive to a reasonable level, the guiding center

distribution is initialized with fh,gc(t = 0) = fβ × F0. The scalar factor fβ is called

“drive parameter” and can be defined as (cf. Section 4 in Ref. [9]):

fβ = βh,sim/βh,class. (4)

The quantity βh,class = 4
3

∫
d3v EF0/(miniv

2
A) is the “classical” fast ion beta obtained

with OFMC. For the steady-state distribution that includes the entire energy range from

birth to thermalization, the beta value is βh,class(r = 0) ≈ 3.6% at the plasma center.

Here, we consider only fast ions with energies in the range 160 keV . E . 400 keV, for

which OFMC gives βh,class(r = 0) ≈ 1.8%. Our default choice for the drive parameter

defined in Eq. (4) is fβ = 0.7, which implies that βh,sim(r = 0) ≈ 1.3% at the beginning

of the simulation. In the present study, the drive parameter will be scanned through

the range 0.4 ≤ fβ ≤ 1.5 in order to determine how our simulation parameters affect

the transition from low- to large-amplitude mode activity via the onset of convective

amplification (CA), which we studied previously in Refs. [8, 9]. While βh is varied, the

total plasma beta β = βbulk + βh is assumed to remain fixed for simplicity.

The simulations analyzed in this work were performed using the hybrid code MEGA

[6, 19], where the dynamics of the bulk plasma are described by full MHD equations
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that are coupled to the current density vector δjh,eff of fast ions [29]:

∂ρb
∂t

= −∇ · (ρbu) (5)

ρb
∂u

∂t
= − ρbu ·∇u−∇pb + (j − jh,eff)×B

−
[

∇× (νρb∇× u) +
4

3
∇(νρb∇ · u)

]

(6)

∂B

∂t
= −∇×E (7)

E = − u×B + η(j − jeq) (8)

µ0j = ∇×B (9)

∂pb
∂t

= −∇ · (pbu)− (Γ− 1)pb∇ · u+ χ∇2pb

+ νρb(Γ− 1)

[

(∇× u)2 +
4

3
(∇ · u)2

]

+ η(Γ− 1)(j − jh,eff) · (j − jeq). (10)

Here, ρb and pb are the density and scalar pressure of the bulk plasma, u is the single-

fluid MHD velocity vector, B and E are the magnetic and electric field vectors, and j

is the total current density of the plasma, including the fast ion component. Except for

E = δE and u = δu, all fields consist of a fixed non-zero equilibrium component and a

fluctuating component; for instance, j = jeq(t = 0) + δj(t).

The effective current density of fast ion guiding centers, jh,eff = jd + jmag, consists

of drift and magnetization currents, which are computed from the guiding center

distribution fgc,h as

jd =

∫

d3vfgc,hqh(Ugc − v∗
E), jmag = −∇×

∫

d3vfgc,hµb̂; (11)

where b̂ = B/B, µ = mhv
2
⊥/(2B) is the magnetic moment, and Ugc − v∗

E is the guiding

center velocity without E ×B drift [see Eq. (12) below].

The fast ion phase space is sampled by simulation particles, which trace the orbits

of guiding centers as prescribed by the following equations of motion:

Ṙgc =
(
v∗
‖ + v∗

E + vB

)
≡ Ugc (12)

mhv‖v̇‖ = v∗
‖ · (qhE − µ∇B) (13)

µ̇ = 0, (14)

with

ρ‖ ≡
mhv‖
qhB

, B∗ ≡ B[1 + ρ‖b̂ · (∇× b̂)], v∗
E =

E × b̂

B∗
(15)

v∗
‖ =

v‖
B∗

(

B + ρ‖B∇× b̂
)

, vB = − µ

qhB∗
∇B × b̂. (16)

The evolution of the fast ion guiding center distribution fgc,h(Z, t) is represented with

the full-f method, and the first-order particle-in-cell (PIC) method is used to map field
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GC trajectory

4−point
gyroaverage

Local field
at guiding
center (GC)
position

ZLR FLR

Figure 1. Zero-Larmor-radius (ZLR) limit: Electric and magnetic fields, E and B,

and the fast ion current density jh,eff are evaluated locally at the GC position. Finite

Larmor radii (FLR): Fields E and B are gyroaveraged over Ngyro satellite particles

(here Ngyro = 4). Similarly, jh,eff is mapped onto the grid via the satellite particles.

values to particle positions and particle weights to field grids. Fast ion FLR effects

can be taken into account using the common method of averaging over Ngyro satellite

particles that are placed around the guiding center (GC) positions as illustrated in Fig. 1.

MEGA acquired this feature during an upgrade performed in 2011, and it was used in

benchmark activities of the International Tokamak Physics Activity (ITPA) [30, 31] as

well as in recent comprehensive long-time simulations [16, 17, 18].

The simulation domain is a rectangular torus set around the wall, and it is

discretized in cylindrical coordinates (R,ϕ, Z). The MHD equations are solved inside

this domain, while suppressing fluctuations of the MHD velocity field δu at and beyond

the plasma boundary (see Fig. 2 of Ref. [28]). Simulation particles representing fast ions

are allowed to leave the plasma and follow their drift orbits through the surrounding

vacuum. Particles that collide with the wall are considered lost. At the beginning of a

simulation, the system is effectively self-perturbed by PIC noise, since we are using the

full-f method.

A detailed discussion of resistive dissipation, its relation to continuum damping, and

the choice of a suitable spatial grid (NR, Nϕ, NZ) is given in Appendix A. Numerical

convergence with respect to the number of simulation particles Np and satellite particles

Ngyro is discussed in Appendix B. Boundary smoothing and filtering methods are

described and discussed in Appendix C and Appendix D. The latter also includes a

discussion of the effect of nonlinear MHD mode coupling to harmonics with toroidal

mode numbers up to n = 6, whereas the bulk of this work focuses on n = 1, 2 and 3.

3. Overview of mode evolution and fast ion transport for the default setup

In this section, we provide an overview of simulation results for the default scenario,

around which we will perform parameter scans in the subsequent sections. The default

simulation setup is as follows:

• MHD diffusion coefficients: η̂ = ν̂ = χ̂ = 10−6.

• MHD specific heat ratio: Γ = 5/3.
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• Fast ion drive parameter: fβ = 0.7.

• Fast ion Larmor radius: zero.

• Fast ion loss boundary: JT-60U wall.

The diffusion coefficients are normalized by the Alfvén velocity and major radius at the

magnetic axis as

η̂ =
η

µ0vA0R0

, ν̂ =
ν

vA0R0

, χ̂ =
χ

vA0R0

. (17)

The hats will be omitted in the following. We consider the evolution of resonantly driven

modes with toroidal mode numbers n = 1, 2, 3, and the fast ion transport they cause.

The top row of Fig. 2 shows the evolution of the mode amplitude An(t) = W
1/2
n (t)

for each n. This quantity is defined as the square root of the total energy Wn contained

in the fluctuations with toroidal mode number n:

Wn>0 =

∫
d3x

2

[∣
∣
∣[ρ

1/2
b δub]n>0

∣
∣
∣

2

+ |δBn>0|2
]

. (18)

The middle and bottom rows of Fig. 2 show the evolution of the mode frequencies ωn(t)

and radii rn(t). These quantities identify the location of the peak of the fluctuation

spectrum |δφ|n(ω, r) in the frequency-radius plane, which is computed as

|δφ|n(ω, r|ϑ0, t0) =

∣
∣
∣
∣

∫

dt δφn(r, ϑ0, t)H(t− t0)e
iω(t−t0)

∣
∣
∣
∣

peak location−→ ωn(t0), rn(t0). (19)

The toroidal harmonic δφn of the fluctuating electrostatic (ES) potential is computed

from the MHD velocity vector δu as in Eqs. (15)–(17) in Ref. [28]. The fluctuation

spectra |δφ|n(ω, r) are computed with a Hanning time window H(t − t0) of size

∆twin = 50, using the signal at ϑ0 = 0; i.e., on the outer mid-plane of the plasma.

The time is normalized by the Alfvén frequency ωA0 = vA0/R0.

Figure 3 shows how the fast ion beta profile βh(r) is modified by these modes. The

profiles are plotted as functions of the three radial coordinates, r = rloc, rhfs and rlfs,

which were introduced in Fig. 3 of Ref. [9]. The local radius rloc is equivalent to the

poloidal magnetic flux Ψ, so it varies even along an unperturbed particle orbit due to

magnetic drifts. The high-field side (HFS) and low-field side (LFS) radii rhfs and rlfs are

equivalent to the canonical toroidal momentum Pζ , so they are constant in the absence

of fluctuations.

The results in Figs. 2 and 3 are similar to those presented in our previous papers,

where we studied the convective amplification of individual modes and their effect on

the fast ion profiles [8, 9]. Minor differences with the results of Ref. [8] are due to

the use of a different fast ion distribution function. In Ref. [8], the entire steady-state

slowing-down distribution was used. Here and in Ref. [9], only the high-energy tail

(around 160–400 keV) is included. Moreover, at the time of writing Ref. [9], the multi-n

simulation suffered from numerical problems causing the run to terminate prematurely.

Recently, we resolved this problem by applying a smoothing procedure as described in

Appendix C, which prevents the formation of spiky artifacts at the plasma boundary.

The results of this stabilized multi-n simulations are presented here.



Sensitivity study for N-NB-driven modes in JT-60 8

100 200 300 400 500
0

0.5

1

1.5

A
n(t

)

100 200 300 400 500

0.2

0.25

0.3

ω
n / 

ω
A

0

100 200 300 400

0.3

0.4

0.5

0.6

0.7

r n / 
a

100 200 300 400 500

100 200 300 400 500

100 200 300 400

100 200 300 400 500

100 200 300 400 500

100 200 300 400

100 200 300 400 500
0

0.5

1

1.5

 

 
n=1
n=2
n=3

100 200 300 400 500

0.2

0.25

0.3

100 200 300 400

0.3

0.4

0.5

0.6

0.7

CA

n=3
CA

CA

Time t × ω
A0

Time t × ω
A0

Time t × ω
A0

Time t × ω
A0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Single n=1 Single n=2 Single n=3 Multi−n

(h)

(i)

(j)

(l)

(k)

Mode amplitude

Mode frequency

Mode location

CA

ω
n=2

≈0

Figure 2. Overview of the evolution of n = 1, 2 and 3 harmonics. The top row shows

the evolution of mode amplitudes An(t), the middle row the frequencies ωn(t) and the

bottom row the radii rn(t). Results are shown for simulations with single n = 1 (a,b,c),

n = 2 (d,e,f), n = 3 (g,h,i), and with all three harmonics (j,k,l). The shaded regions

indicate intervals where convective amplification (CA) occurs.

3.1. n = 1 mode

This harmonic has the second-largest linear growth rate (γ = 0.031) and highest

saturation amplitude [Fig. 2(a)]. During the convective amplification (CA) phase

(180 . t . 230), its amplitude and radial location increase as An=1 = 0.5 → 1.27

[Fig. 2(a)] and rn=1 = 0.45 → 0.52 [Fig. 2(c)]. In addition, there is a down-chirp of the

mode frequency ωn=1 = 0.24 → 0.215 [Fig. 2(b)] during the CA phase. The n = 1 mode

causes transport in the central core region 0 . rloc . 0.35 [Fig. 3(a)], which corresponds

to LFS radii 0.2 . rlfs . 0.5 [Fig. 3(c)].

The n = 1 mode and its effect on fast ions were first studied in Refs. [6, 7] in

a simplified setting. This was followed by a series of increasingly realistic simulations

[8, 32, 33], where this global mode was found to be very robust and relatively insensitive

with respect to the shaping and beta value of the plasma when the form of the shear

Alfvén continuum near the toroidicity-induced gap was kept approximately the same.

Both experiments [1, 2] and simulations [7] indicate that the n = 1 mode is responsible

for the so-called fast frequency-sweeping (fast FS) modes, which are bursts of Alfvénic

activity with moderate amplitudes that are commonly seen in N-NB-driven JT-60U

plasmas. The n = 1 mode is also thought to play a key role during abrupt large events

(ALE) that are seen in the same experiments. This is because of possible linear and

nonlinear resonance overlaps with other harmonics, such as n = 2 and n = 3, as was

shown and discussed in Refs. [28, 34, 35].
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Figure 3. Comparison between initial and relaxed fast ion beta profiles. The profiles

are plotted as functions of rloc (top), rhfs (middle), and rlfs (bottom). The left column

(a,b,c) shows the single-n simulation results. The middle column (d,e,f) shows the

multi-n simulation results. In the right column (g,h,i), we plot the change in beta,

∆βh = βh(trelaxed) − βh(t = 0), comparing the sum of the single-n simulation results

(∆βn=1
h +∆βn=2

h +∆βn=3
h ) with the result of the multi-n simulation (∆βn=1,2,3

h ).

3.2. n = 2 mode

In the present setup, this harmonic has the lowest linear growth rate (γ = 0.025) and

lowest saturation amplitude [Fig. 2(d)]. This is attributed to the mode being located

in the periphery of the plasma at rn=2 ≈ 0.7 [Fig. 2(f)], where the fast ion pressure

gradient predicted by OFMC is relatively small. During its saturation phase, the mode

undergoes only rudimental CA (230 . t . 260), where its amplitude and radial location

increase as An=2 = 0.2 → 0.25 [Fig. 2(d)] and rn=2 = 0.68 → 0.69 [Fig. 2(f)]. After

saturating around t ≈ 260, the mode continues to propagate as far as rn=2 = 0.7, while

its frequency chirps down as ωn=2 = 0.22 → 0.2 [Fig. 2(d)]. Subsequently (t & 300),

pulsating n = 2 fluctuations with frequencies ωn=2 . 0.2 appear near rn=2 = 0.55, which

propagate to rn=2 ≈ 0.68 and grow to An=2 ≈ 0.35. In the present JT-60U scenario,

such pulsations are often observed in the evolution of weakly driven or decaying modes.

Overall, the fluctuations of the n = 2 harmonic cause a small but noticeable flattening

of the fast ion pressure profile near rlfs ≈ 0.5 [Fig. 3(c)].

The n = 2 mode was first included in nonlinear multi-n simulations of JT-60U
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scenarios in Ref. [9] and its resonance conditions were analyzed in Section IV C of

Ref. [28]. Together with other low-n harmonics, n = 2 is thought to play a key role

during ALEs (see Section VIII of Ref. [28]). Since the n = 2 mode receives relatively

little resonant drive in the present scenario, its dynamics will not be analyzed in detail in

this paper. Its role will be limited to nonlinear MHD couplings in multi-n simulations.

3.3. n = 3 mode

This harmonic has the largest linear growth rate (γ = 0.059) and second-highest

saturation amplitude [Fig. 2(g)]. Before the CA phase, the mode frequency chirps down

as ωn=1 = 0.28 → 0.23 [Fig. 2(h)]. During the CA phase (145 . t . 210), its amplitude

and radial location increase as An=3 = 0.54 → 1.1 [Fig. 2(g)] and rn=3 = 0.5 → 0.59

[Fig. 2(i)]. The n = 3 mode causes transport in an annular (off-axis) region around

0.15 . rloc . 0.6 [Fig. 3(a)], which corresponds to LFS radii 0.35 . rlfs . 0.8 [Fig. 3(c)].

The n = 3 mode and its effect on fast ions were studied in Ref. [9]. Together with

other harmonics, such as n = 1 and n = 2, the n = 3 mode is thought to play a key

role during ALEs. This is because of the possibility of linear and nonlinear resonance

overlaps, as was shown and discussed in Refs. [28, 34, 35].

3.4. Multi-n simulation

Figure 2(j,k,l) shows the results of a simulation that includes all three harmonics, n = 1,

2, 3. Due to its large linear growth rate and large peak amplitude, the n = 3 mode

dominates this multi-n simulation during the interval t . 250. During that interval,

n = 3 evolves almost as if the other harmonics were not present [cf., Fig. 2(g,h,i)]. After

reaching its peak at t ≈ 210, the amplitude An=3 decays more rapidly than the other

harmonics and drops below An=1 and An=2 around t ≈ 280 [Fig. 2(j)].

The growth rate and peak amplitude of the n = 1 mode are somewhat reduced

compared to the single-n simulation [cf., Fig. 2(a,b,c)]. Moreover, the evolution of its

radial location rn=1 in the multi-n simulation is different, while the evolution of its

frequency ωn=1 is similar to the single-n simulation.

The evolution of the n = 2 mode is entirely different from the single-n simulation

[cf., Fig. 2(d,e,f)]. Its amplitude An=2 decays more slowly than An=1 and An=3, so that

it eventually dominates for t & 300 [Fig. 2(j)]. In fact, the evolution of the n = 2 mode

seems to be dominated by MHD nonlinearities rather than direct resonant drive.

Figure 3(d,e,f) shows that the fast ion beta profile undergoes global flattening

during the time interval t . 250, whereas only negligible profile changes occur after that

time. Figure 3(g,h,i) shows that the profile change ∆βh = βh(t = trelaxed) − βh(t = 0)

in the multi-n simulation is nearly equal to the sum of the profile changes caused by

the individual harmonics in the single-n simulations. Only near the magnetic axis

(rloc, rlfs . 0.2), the change ∆βh in the multi-n simulation is significantly larger. There,

however, the change in the absolute number of particles (∼ r × βh(r)) is small due to

the small spatial volume.
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Figure 4. Role of the vacuum region in the multi-n simulation. Without vacuum,

particles crossing the plasma boundary (last closed flux surface) are discarded. With

vacuum, only particles hitting the wall are discarded. (a)–(c): Time traces of the mode

amplitude An(t) for n = 1, 2, 3 without (dash-dotted) and with vacuum region (solid).

(d)–(f): Comparison between initial (shaded) and relaxed fast ion beta profiles βh(r)

plotted as functions of (d) rloc, (e) rhfs, and (f) rlfs.

4. Role of the vacuum region and fast ion loss boundary

One can see in Fig. 3 that the fast ion profiles can be flattened all the way into

the vacuum region, but only on the low-field side [Fig. 3(c,f)]. On the high-field

side [Fig. 3(b,e)], there remains a steep gradient inside the plasma, in the region

0.5 . rhfs . 0.7. The location of this steep-gradient region will change if the fast ions are

not allowed to travel through the vacuum region; that is, if one discards particles that

traverse the plasma boundary (last closed flux surfaces), as is done in many codes used to

study fast ion dynamics. The effect of imposing such an unrealistic boundary condition

on the fast ions in the present scenario is shown Fig. 4 for the multi-n simulation. The

left column shows the evolution of the mode amplitude An(t) for each toroidal harmonic

n = 1, 2 and 3. The right column shows the fast ion beta profiles βh(r) as functions of

r = rloc, rhfs and rlfs. Results obtained with and without vacuum region are compared.

One can see in Fig. 4(a)–(c) that the presence of the vacuum region has a negligibly

small effect on the evolution of any of the internal modes that dominate in the present

simulation scenario. This is not surprising, since the initial fast ion beta profile does

not extend into the vacuum, as can be seen from the shaded regions in Fig. 4(d)–(f). In

contrast, the relaxed fast ion beta profiles in Fig. 4(d)–(f), which are found at the end

of the instability pulses, are significantly different in the simulations with and without



Sensitivity study for N-NB-driven modes in JT-60 12

0 50 100 150 200 250
10

−2

10
−1

10
0

 

 

0 50 100 150 200 250
10

−2

10
−1

10
0

 

 

A
m

pl
itu

de
 A

n=
3(t

)

0 50 100 150 200 250
10

−2

10
−1

10
0

 

 

η = 1×10−7, ν = 1×10−7

η = 1×10−6, ν = 1×10−7

η = 3×10−6, ν = 1×10−7

η = 3×10−6, ν = 1×10−7

η = 3×10−6, ν = 3×10−6

0 50 100 150 200 250
10

−2

10
−1

10
0

 

 

η = 1×10−7, ν = 1×10−5

η = 1×10−6, ν = 1×10−5

η = 1×10−5, ν = 1×10−5

η = 1×10−6, ν = 1×10−7

η = 1×10−6, ν = 1×10−6

η = 1×10−6, ν = 1×10−5

(a) (b) (d)

η↑ , ν=lowη=low, ν↑ η=high, ν↑ η↑ , ν=high

(c)CA CA

dotted curve: shifted by dt=+17

Single n=3 (Drive: fβ = 0.7)

A = 0.5

A = 0.4

Time t × ω
A0

Figure 5. Effect of resistivity and viscosity on the growth and saturation level of the

n = 3 mode. The fast ion drive parameter is fixed at fβ = 0.7. The evolution of the

n = 3 mode amplitude An=3(t) is plotted on a logarithmic scale as a function of time

t and compared for four sets of parameters: (a) low resistivity η = 10−6; (b) high

resistivity η = 3 × 10−6; (c) low viscosity ν = 10−7; (d) high viscosity ν = 10−5. The

convective amplification (CA) phase in (a) and (c) is indicated by arrows.

vacuum. For the LFS profile βh(rlfs) in Fig. 4(f), the relative difference is 10-100% in the

region rlfs & 0.5. For the HFS profile βh(rhfs) in Fig. 4(e), this is the case in the region

rhfs & 0.2; i.e., deep inside the plasma. Moreover, note that the relative smoothness

of the radial cut-off in the fast ion beta profiles in Fig. 4(d)–(f) is a consequence of

integration over velocity space. Locally in velocity space, the radial cut-offs are sharp.

These results suggest that the use of a realistic fast ion loss boundary may be

important in long-time simulations with MHD activity, sources and collision. There,

the steady-state fast ion profiles are expected to be broader, so that modes in the outer

region of the plasma may also be destabilized.

5. Role of diffusion coefficients

In this section, we examine the role of resistive and viscous diffusion on the evolution

of fast-ion-driven modes. We focus primarily on the n = 3 mode, which is the highest

mode number we are usually interested in for the present JT-60U scenario, and which

is therefore most strongly affected by diffusion terms. In Section 5.1, the values of η

and ν are varied independently and the effect on the evolution of the mode amplitude is

described. The effect of dissipation on convective amplification is studied in Section 5.2.

Finally, the effect of dissipation on fast ion transport in single n = 3 and multi-n

simulations is examined in Section 5.3.

The effect of thermal diffusivity χ is not examined explicitly here, because χ is a

small parameter that directly affects only the evolution of the plasma beta, which is

already a small quantity. For simplicity, χ will be set equal to either η or ν, whichever

quantity is smaller.
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5.1. Effect of resistivity and viscosity on growth rate and saturation level of n = 3 mode

Figure 5 shows the evolution of the n = 3 mode amplitude An=3(t) for four sets of

parameters. In Figs. 5(a) and 5(b), one can see the effect of varying viscosity ν for

resistivity fixed at a lower and a higher value, respectively. Similarly, in Figs. 5(c) and

5(d), one can see the effect of varying resistivity η for viscosity fixed at a lower and a

higher value, respectively.

The comparisons in Fig. 5 show that the growth rate of the fastest growing

instability is essentially independent of both η and ν when their values are below 10−5.

Only in the last case in Fig. 5(d), where both diffusion coefficients have a relatively large

value of η = ν = 10−5, the growth rate is noticeably reduced by about 40%.

The first saturation occurs at a similar amplitude in all cases, at about An=3 ≈
0.4...0.5 as indicated by the horizontal green lines. The only exception is again the case

η = ν = 10−5 in Fig. 5(d), where the first saturation occurs at a much lower level around

An=3 ≈ 0.15.

The convective amplification (CA) of the n = 3 mode exhibits significant sensitivity

with respect to both η and ν when their values are around 3× 10−6. In Figs. 5(a) and

5(c), where either η or ν is fixed at a relatively low value, one can clearly see how the

CA phase disappears when the variable diffusion parameter is increased to 3× 10−6 or

above. In Figs. 5(b) and 5(d), there is no CA since one of the diffusion parameters is

fixed at a value equal to or larger than 3× 10−6.

After saturation (with or without CA), the n = 3 mode amplitude decays in a

more or less pulsating manner. The only exception is again the η = ν = 10−5 case

in Fig. 5(d), where the mode resumes to grow after t > 200. An explanation for this

behavior is given at the end of the following Section 5.2.

5.2. Convective amplification (CA) and chirping of n = 3 mode

The CA of the n = 3 mode was studied in detail in Ref. [9] for η = ν = χ = 10−6. In

this section, we examine how the CA as well as the frequency chirping change when the

diffusion coefficients are changed, while letting η = ν = χ.

The left-hand side of Fig. 6 shows the evolution of (a) the n = 3 mode amplitude

An=3(t), (b) its frequency ωn=3(t) and (c) its radial location rn=3(t) for two cases: the

original case with η = 10−6 (dashed lines) and a case with diffusivities reduced by one

order of magnitude to η = 10−7 (solid lines). For the case with weaker diffusion, the

right-hand side of Fig. 6 shows snapshots of the fluctuation spectra |δφ|n=3(ω, r) as

defined in Eq. (19). The evolution of the fluctuation spectra in the case with η = 10−6

is qualitatively similar and can be seen in Fig. 7 of Ref. [9] and Fig. 5 of Ref. [35].

The linear growth phase before snapshot (A) in Fig. 6 is similar in both cases.

During the first saturation phase between snapshots (A) and (B), the growth of the n = 3

mode slows down somewhat more rapidly in the η = 10−6 case than for 10−7. Apart from

this, the mode frequency performs a similar downward chirp from ωn=3 ≈ 0.28 to 0.23 in

both cases. As can be seen from snapshots (A)–(C) on the right-hand side of Fig. 6, the
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Figure 6. Effect of varying diffusion coefficients on the convective amplification (CA)

of the n = 3 mode. The fast ion drive parameter is fixed at fβ = 0.7. Panel (a) shows

the evolution of the n = 3 mode amplitude An=3(t), (b) the frequency ωn=3(t) and

(c) the radial location rn=3(t). Two cases are compared: η = ν = χ = 10−6 (dashed

lines) and 10−7 (solid lines). CA phases are highlighted as shaded areas underneath

the respective curves. For the 10−7 case, snapshots of the ES potential fluctuations

|δφ|n=3(ω, r) are shown on the right-hand side. The times of the six snapshots labeled

(A)–(F) are indicated by vertical dotted lines in panels (a)–(c).

downward chirping n = 3 mode splits into two components, one that propagates radially

inward and one that propagates outward. Initially, the inward propagating component

has a slightly larger amplitude, but eventually the outward propagating component

becomes dominant. As a consequence, the time traces in Fig. 6(c) show a reduction of

rn=3(t) from 0.52 to 0.5 around snapshot (B), followed by an abrupt increase to 0.58

during the first half of the CA phase between snapshots (B) and (C).

Between snapshot (C) and (E) in Fig. 6, the n = 3 mode in the η = 10−7 case

goes through the second half of the CA phase, saturates at its maximal amplitude, and

begins to decay. During this interval, the mode frequency in Fig. 6(b) can be seen to

perform a significant up-chirp from ωn=3 ≈ 0.23 to 0.27. This is followed by a rapid

down-chirp around snapshot (F). This chirping appears to be facilitated by lower values

of the diffusion coefficients. It can be seen in a somewhat weaker form in an intermediate

case with η = 3×10−7 (not shown here), and it is almost absent in the η = 10−6 case, as

the dashed line in Fig. 6(b) shows. We believe that the physical reason for the different

chirping dynamics seen during the advanced nonlinear regime (C)–(E) may be clarified

through an orbit-based resonance analysis [35]. However, this goes beyond the scope of

the present sensitivity study.
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Figure 7. Effect of varying diffusion coefficients on the transition from weak to strong

n = 3 mode activity through the onset of convective amplification (CA). Panels (a)–

(c) show the individual time traces of the n = 3 mode amplitude An=3(t) for different

values of the drive parameter fβ and dissipation coefficients η = ν = χ. The saturation

amplitudes An=3(tsat) in each case are plotted in panel (d) as functions of fβ . Shaded

areas indicate cases that lie below or at the threshold for the onset of CA.

In Fig. 6 of Ref. [9], we have demonstrated that the onset of CA causes a relatively

abrupt transition from weak to strong n = 3 mode activity when the drive parameter

fβ defined in Eq. (4) is increased past a certain threshold. For the original case with

η = 10−6, the threshold is about f crit
β ≈ 0.625 and the results showing this are reproduced

once more in Fig. 7(b) and 7(d), although with a larger number of simulation particles

(here Np = 28 × 106 instead of 8 × 106 in Ref. [9]). Figure 7 shows how these results

change when the strength of diffusion is increased to η = 10−5 or reduced to 3 × 10−7.

The left-hand side of Fig. 7 shows the individual time traces of the n = 3 mode amplitude

An=3(t) for each case. The saturation amplitudes, An=3(tsat), which are indicated by

marker symbols, are plotted once more in Fig. 7(d) as functions of fβ .

One can see in Fig. 7(d) that the use of weaker diffusion reduces the threshold for

the onset of CA from f crit
β = 0.625 for η = 10−6 to f crit

β = 0.525 for η = 3 × 10−7. It

also seems that the threshold amplitude is slightly lower (about 10%) and the transition

from weak to strong mode activity is somewhat sharper for η = 3 × 10−7. In contrast,

increasing the diffusion coefficients to η = 10−5 significantly increases the CA threshold

to f crit
β ≈ 1.1 and the transition becomes much more gradual.

Note that for η = 10−5 the n = 3 mode amplitude resumes to grow at the end of

each simulation. This is due to the appearance of a second instability at a larger radius,

r > 0.7. Indeed, soon after its growth resumes, the n = 3 mode is dominated by a

zero-frequency (ω = 0) component. That portion of the time traces is plotted as dotted

lines in Fig. 7(a). Eventually, a weakly growing MHD instability takes over, which is
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Figure 8. Effect of varying diffusion coefficients on (a,b) the decay of the resonant

n = 3 instability and (c) the fast ion transport caused by the mode in single-n

simulations with fβ = 0.7.

interpreted as an n = 3 resistive ballooning mode.

5.3. Decay of instabilities and relaxed fast ion profiles

When the resonant drive is exhausted, the instabilities begin to decay and the fast ion

distribution settles in a relaxed state; at least, on a macroscopic scale. Results for the

n = 3 mode in this regime are shown in Fig. 8 for several values of η = ν = χ in the

range 10−7 ≤ η ≤ 3× 10−6.

The evolution of the n = 3 mode amplitude An=3(t) is shown in Figs. 8(a) and 8(b).

Looking at the cases with η ≤ 10−6, where the instability reaches a large amplitude due

to convective amplification (CA), one can see that reducing the value of the diffusion

coefficients by a factor 10 reduces the overall decay rate noticeably. However, it is

difficult to discuss this effect as a direct consequence of changing the strength of diffusion.

As we have seen in Fig. 6 above, not only the amplitude but also the evolution of the

frequency spectrum and radial mode structure are affected by the strength of diffusion.

This, in turn, alters the evolution of the resonant phase space structures and fast ion

distribution. As soon as the dominant resonant wave packets are located in different

regions of the shear Alfvén continuum and the fast ion distribution differs, the role of

the dissipation coefficients is entirely obscured.

The initial and relaxed fast ion beta profiles βh(r) obtained in the n = 3 simulations

with 10−7 ≤ η ≤ 3×10−6 are compared in Fig. 8(c), where they are plotted as a function

of the LFS minor radius, r = rlfs. One can see that the convectively amplified cases

with η ≤ 10−6 all cause a similar flattening of the beta profile in the region rlfs & 0.35

all the way into the vacuum (rlfs > 1).

An inspection of the relaxed velocity distribution for several radial slices (not

shown) reveals some differences (of order 20%) in the relaxed pitch-angle distribution,

which continues to evolve under the influence of low-amplitude fluctuations even

hundreds of Alfvén times after the overall beta profiles βh(rlfs) have settled.

Note that the trends observed in the single-n simulation discussed above can also
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Figure 9. Effect of finite Larmor radii (FLR) of fast ions on the evolution and mode

structure of the n = 1 mode and fast ion transport. The FLR results obtained with

gyroaveraging are compared with those obtained in the zero-Larmor-radius (ZLR) limit

for fβ = 0.7. (a) and (b): Evolution of the mode amplitude An=1(t). (c)–(e): Linear

mode structure δφn=1(R,Z) in the poloidal plane and radial structure δφn=1(r|m) of

individual poloidal harmonics. (f): Initial and relaxed fast ion guiding center (GC)

beta profiles βh,gc(rlfs).

be seen in the multi-n simulation results (not shown here).

6. Role of fast ion Larmor radii

In this section, we examine the role of the relatively large Larmor radii ρLh/alfs & 10%

of the fast ions. For this purpose, we compare the results obtained in the zero-Larmor-

radius (ZLR) and finite-Larmor-radius (FLR) limits. The diffusion coefficients and

specific heat ratio are fixed at η = ν = χ = 10−6 and Γ = 5/3.

Figures 9 and 10 show the evolution of the amplitudes An(t) of the n = 1 and

n = 3 mode in single-n simulations, as well as their linear mode structures δφn and

their effect on the fast ion beta profile βh,gc(rlfs). Note that βh,gc(rlfs) is the guiding

center (GC) profile; that is, it is computed without gyroaveraging even in the FLR

simulation. Moreover, note that the particle noise levels in the FLR cases are lower

than in the ZLR cases, because the 4 satellite particles used for gyroaveraging increase

the effective number of simulation particles by a factor 4. As a consequence, the mode

amplitude at the beginning of the FLR simulation is reduced by a factor 4−1/3 ≈ 0.6.

One can see in Figs. 9(a) and 9(b) that the evolution of the n = 1 mode is hardly

affected by gyroaveraging. The growth rates in the ZLR and FLR simulations are

essentially identical. The saturation amplitude in the FLR case is only slightly reduced
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Figure 10. Effect of finite Larmor radii (FLR) of fast ions on the evolution and mode

structure of the n = 3 mode and fast ion transport. The FLR results obtained with

gyroaveraging are compared with those obtained in the zero-Larmor-radius (ZLR) limit

with fast ion drive parameter fβ = 0.7. In addition, the FLR case was run once more

with 43% enhanced drive (fβ = 1.0 in bold blue) for the n = 3 mode to reach a similar

amplitude as in the ZLR limit. (a) and (b): Evolution of the mode amplitude An=3(t).

(c)–(e): Linear mode structure δφn=3(R,Z) in the poloidal plane and radial structure

δφn=3(r|m) of individual poloidal harmonics. (f) and (g): Initial and relaxed fast ion

guiding center (GC) beta profiles βh,gc(rlfs) for (f) fβ = 0.7 and (g) fβ = 1.0.

by about 7%. There is also no significant effect on the decay rate of the mode. The

mode structures shown in Figs. 9(c)–(e) are hardly distinguishable, with the mode’s

peak in the FLR case being shifted only slightly outward by less than 1% of the minor

radius. The differences in the relaxed fast ion profiles in Fig. 9(f) are also negligible.

In contrast, gyroaveraging has a substantial effect on the dynamics of the n = 3

mode. Figures 10(a) and 10(b) show that the growth rate in the FLR simulation is

significantly reduced by about 30%. Moreover, with the default value of the drive

parameter fβ = 0.7, the n = 3 mode in the FLR simulation does not undergo convective

amplification (CA), so that it saturates at a 4 times lower amplitude and causes much less

transport as can be seen in Fig. 10(f). Nevertheless, the linear mode structures shown

Fig. 10(c)–(e) remain similar, with the mode’s peak in the FLR case being shifted only

slightly outward by less than 3% of the minor radius.

In order for the n = 3 mode in the FLR simulation to reach a similar amplitude as

in the ZLR case, the drive must be increased by about 40%. To show this, we added in

Fig. 10 another set of FLR simulation results that were obtained with drive parameter

fβ = 1.0. With the enhanced drive, the n = 3 mode undergoes CA, grows to a large

amplitude, and causes a stronger flattening of the fast ion beta profile. A comparison
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Figure 11. Effect of finite Larmor radii (FLR) of fast ions on the transition from

weak to strong n = 3 mode activity through the onset of convective amplification

(CA). Panels (a) and (b) show the individual time traces of the n = 3 mode amplitude

An=3(t) obtained in the zero-Larmor-radius (ZLR) limit and with FLR. The saturation

amplitudes An=3(tsat) in each case are plotted in panel (c) as functions of fβ . Shaded

areas indicate cases that lie below or at the threshold for the onset of CA.

between Figs. 10(f) and 10(g) shows that the relative drop of the fast ion beta value in

the domain of the mode is similar in the ZLR case with fβ = 0.7 and in the FLR case

with enhanced drive fβ = 1.0.

The results in Fig. 10 imply that the threshold for the onset of CA is significantly

increased when gyroaveraging is performed. This is shown more clearly in Fig. 11(c),

where we plot the saturation amplitude An=3(tsat) of the n = 3 mode in the ZLR and

FLR simulations as a function of the drive parameter in the range 0.5 ≤ fβ ≤ 1.0. One

can see that gyroaveraging increases the threshold for the onset of CA by about 35%

from f crit
β ≈ 0.65 in the ZLR limit to f crit

β ≈ 0.875 in the case with FLR.

On the basis of the above results we conclude that it is essential to account for

FLR effects via gyroaveraging in simulations that aim at quantitative predictions or

comparisons with experiments; at least, when fluctuations with toroidal mode numbers

n > 1 play a role. In long-time simulations, even the n = 1 mode may be affected [17].

7. Role of bulk compressibility

In this section, we examine the effect of bulk plasma compressibility, which is controlled

by the specific heat ratio Γ. For this purpose, results obtained with the default value

Γ = 5/3 are compared to those obtained in the extreme limits Γ = 1 and Γ = 3. The

diffusion coefficients are fixed at η = ν = χ = 10−6. First, in Sections 7.1 and 7.2, we

examine the evolution of the n = 3 mode and the fast ion transport it causes in the ZLR

limit. In Section 7.3, we present and discuss results of multi-n simulations for toroidal

harmonics n = 1, 2 and 3 performed with fast ion FLR (gyroavaging).

Note that none of the parameters that we have examined so far — boundary

condition, diffusion and FLR — has had any influence on the macroscopic structure



Sensitivity study for N-NB-driven modes in JT-60 20

100 200 300
10

−2

10
−1

10
0

A
m

pl
itu

de
 A

n=
3(t

)

 

 

100 200 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
m

pl
itu

de
A

n=
3(t

)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

F
as

t i
on

 b
et

a
β h(r

lfs
) 

[%
]

 

 
Initial profile
for fβ=0.7

Γ = 1,    fβ = 0.7

Γ = 5/3, fβ = 0.7

Γ = 3,    fβ = 0.7

Γ = 3,    fβ = 0.85

LFS radius r
lfs

 / a

(c)

Single n=3 mode evolution

Time t × ω
A0

Time t × ω
A0

CA

(b) Lin. scale

(Drive: fβ = 0.7 or 0.85)

(a) Log. scale

Relaxed
profiles

FI transport (LFS beta)

Figure 12. Effect of Γ on the evolution of the resonant n = 3 instability and resulting

fast ion transport in single-n simulations with fβ = 0.7 and 0.85. (a) and (b): Evolution

of the mode amplitude An=3(t). (c): Comparison between initial (shaded) and relaxed

fast ion beta profiles βh(rlfs). Here, the initial beta profile is only shown for fβ = 0.7.

of the MHD wave spectrum of the plasma. Resistivity can be said to cause an effective

granulation or discretization of the shear Alfvén spectrum, but the overall structure

remains unchanged. In contrast, the value of Γ has a significant impact on the structure

of the shear Alfvén continua in a high-beta tokamak plasma as is considered here. In

particular, it has a strong effect on the size of the compressibility-induced low-frequency

gap and also causes noticeable shifts at higher frequencies around the toroidicity-induced

gap as will be shown in Fig. 14 below.

7.1. Evolution of n = 3 mode and fast ion transport

Figure 12 shows the evolution of the amplitude An=3(t) of the n = 3 mode in single-

n simulations, as well as its effect on the fast ion beta profile βh(rlfs). One can see

in Figs. 12(a) and 12(b) that, for fixed drive parameter fβ = 0.7, the growth rate is

effectively insensitive to Γ; it changes by no more than 1%. With the default value

of the drive parameter fβ = 0.7, the n = 3 mode in the “most compressible” Γ = 3

case does not undergo convective amplification (CA) and saturates at a 2–3 times lower

amplitude than for Γ = 5/3 and Γ = 1. Consequently, the n = 3 mode in the Γ = 3

case causes significantly less fast ion transport than for the other Γ values, as is evident

in Fig. 12(c).

However, with a relatively modest increase of the drive to fβ = 0.85 (dash-dotted

curves in Fig. 12), CA occurs also in the Γ = 3 case. Figures 12(a) and 12(b) show

that, with the enhanced drive, the peak amplitude of the n = 3 mode in the Γ = 3

case becomes similar to what is found in the other two cases, Γ = 1 and Γ = 5/3, with

default drive fβ = 0.7. Figure 12(c) shows that the relaxed βh(rlfs) profile in the Γ = 3

case with fβ = 0.85 has a 20% larger value, but it also started from a 20% higher value

than for fβ = 0.7, so the relative flattening of the fast ion beta profile is comparable.
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Figure 13. Effect of the specific heat ratio Γ on the transition from weak to strong

n = 3 mode activity through the onset of convective amplification (CA). Panels (a)–(c)

show the individual time traces of the n = 3 mode amplitude An=3(t) for the three

values Γ = 1, 5/3 and 3. The saturation amplitudes An=3(tsat) in each case are plotted

in panel (d) as functions of fβ . Shaded areas indicate cases that lie below or at the

threshold for the onset of CA.

7.2. Convective amplification and chirping of n = 3 mode

The results in Fig. 12 imply that the threshold for the onset of CA increases when the

value of Γ is increased. This is shown more clearly in Fig. 13(d), where we plot the

saturation amplitude An=3(tsat) of the n = 3 mode in the simulations with Γ = 1, 5/3

and 3 as a function of the drive parameter in the range 0.5 ≤ fβ ≤ 1.0. One can see

that, the threshold f crit
β ≈ 0.6 for the onset of CA in the Γ = 1 case is very close to the

value f crit
β = 0.625 found for Γ = 5/3. For Γ = 3, the threshold is near f crit

β ≈ 0.725,

which is about 15% larger than in the default case Γ = 5/3.

Let us examine in more detail the three cases of Fig. 12 that undergo CA and

saturate at similar amplitudes; namely, cases Γ = 1 and Γ = 5/3 with fβ = 0.7, and case

Γ = 3 with fβ = 0.85. Figure 14 shows that the frequency chirping, radial propagation,

and amplification of the n = 3 mode proceeds in a similar manner in all three cases. In

particular, the evolution of the mode location rn=3(t) shown in Fig. 14(c) is essentially

identical in all three cases, both qualitatively and quantitatively. The evolution of the

mode frequency ωn=3(t) shown in Fig. 14(b) is qualitatively similar in all three cases,

but there are notable quantitative differences of the order 10–20% in the value of ωn=3.

During the linear growth phase, where snapshot (A) was taken, the mode frequencies are

ωn=3 ≈ 0.27, 0.28, 0.30 for Γ = 1, 5/3, 3, respectively. At the end of the downward chirp

and during the CA phase, where snapshot (B) was taken, the respective frequencies are

ωn=3 ≈ 0.22, 0.23, 0.25.
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Figure 14. Effect of the specific heat ratio Γ on the convective amplification (CA)

and chirping of the n = 3 mode. The fast ion drive parameter is fβ = 0.7 for Γ = 1

and Γ = 5/3, and somewhat increased to fβ = 0.85 for Γ = 3 (cf. Fig. 12). Panel

(a) shows the evolution of the mode amplitude An=3(t), (b) the frequency ωn=3(t)

and (c) the radial location rn=3(t). The CA phase of the default case with Γ = 5/3

is highlighted by shaded areas. For each case, two snapshots of the ES potential

fluctuations |δφ|n=3(ω, r) are shown on the right-hand side. Snapshot (A) was taken

during the exponential growth phase, and snapshot (B) during the CA phase, after the

downward chirp. In each snapshot, a horizontal dashed line indicates the instantaneous

mode frequency ωn=3, and white curves represent the shear Alfvén continua ωA(r).

Clearly, the mode frequency tends to be larger for larger values of Γ. This trend

can be attributed to the increasing effect that compressibility has on the bulk plasma

response when Γ is increased, because it is clearly correlated with the increasing up-

shift of the shear Alfvén continua ωA, which are plotted as white curves in each of the

snapshots on the right-hand side of Fig. 14.

7.3. Multi-n simulations with FLR and different values of Γ

Finally, let us consider multi-n simulations performed with fast ion FLR (gyroaveraging)

for three values of the specific heat ratio, Γ = 1, 5/3 and 3. Figure 15 shows the

evolution of the amplitudes An(t) of the n = 1–4 modes, as well as their effect on the

fast ion beta profile βh,gc(rlfs). Note that βh,gc(rlfs) plotted in Fig. 15(d) is the guiding

center (GC) profile; i.e., it is computed without gyroaveraging. The n = 2 and n = 4

harmonics are strongly affected by MHD nonlinearities associated with the n = 1 and

n = 3 harmonics. In the following, we discuss only the n = 1 and n = 3 modes, whose

evolution is dominated by resonant drive from fast ions.
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Figure 15. Effect of the specific heat ratio Γ on the evolution of resonant instabilities

and resulting fast ion transport in multi-n simulations with fβ = 0.7 and fast ion FLR

(gyroaveraging). (a)–(c): Evolution of the amplitudes An(t) for n = 1, 2, 3 and 4

for three values of Γ = 1, 5/3 and 3. (d): Comparison between initial (shaded) and

relaxed fast ion guiding center (GC) beta profiles βh,gc(rlfs) in each case.

In all three cases, Γ = 1, 5/3 and 3, the n = 1 mode reaches the largest

amplitude because it is least affected by gyroaveraging (as discussed in Section 6 above).

Interestingly, the growth rate γn=1 of the n = 1 mode decreases with increasing Γ,

while the saturation amplitude An=1(tsat) increases: γn=1 = 0.035, 0.031, 0.028, and

An=1(tsat) = 0.87, 0.91, 1.05 for Γ = 1, 5/3, 3, respectively. This is different from the

n = 3 mode, whose linear growth rate is insensitive to Γ in the present case, while its

saturation amplitude decreases with increasing Γ (see Section 7.1 and Fig. 12 above).

Indeed, for Γ = 5/3 and Γ = 3 in Figs. 15(b) and 15(c), the n = 3 mode grows grows

faster than n = 1. However, n = 3 saturates at a relatively low amplitude and is

eventually overtaken by n = 1.

Clearly, the variation of Γ can have different and even opposite effects on modes

with different toroidal mode numbers n. It is reasonable to assume that the trends

seen in Fig. 12 are not generic but case-dependent. In particular, we conjecture that

the differences observed can be attributed to Γ shifting the continuous spectra with

respect to the resonant frequencies. If so, different behavior can be expected in different

MHD equilibria (safety factor, pressure and density profiles) and for different fast ion

distributions (radial profile, pitch angle distribution, birth energy).

Evidence that supports this conjecture can be found in Fig. 14 above, where we

have seen that the n = 3 mode frequency ωn=3 increases with increasing Γ, as the

mode effectively follows the lower accumulation point of the toroidicity-induced gap (as

discussed in Section 7.2 above). This means that the n = 3 mode is driven by different

groups of resonant particles for different values of Γ.

Details of the evolution of the dominant n = 1 mode in multi-n simulations with

fast ion FLR are summarized in Fig. 16. In snapshot (A), which was taken at t = 130

during the exponential growth phase, one can see in Fig. 16(b) that the frequency of

the linear n = 1 mode increases with increasing Γ; namely, ωn=1 = 0.236, 0.243, 0.258.

However, this increase in ωn=1 is smaller than the Γ-induced up-shift of the continuum.
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Figure 16. Effect of the specific heat ratio Γ on the convective amplification (CA)

and chirping of the n = 1 mode in multi-n simulations that include fast ion FLR and

are performed with fβ = 0.7. (cf. Fig. 15). Arranged as Fig. 14. Here, snapshot (A)

was taken during the exponential growth phase, and snapshot (B) at the time where

the mode frequency reaches its lowest value.

For instance, the accumulation point of the compressibility induced gap just next to

the n = 1 mode is located at ωBAE = 0.10, 0.13, 0.17 for Γ = 1, 5/3, 3, respectively.

Consequently, the fluctuation spectrum of the n = 1 mode in snapshot (A-3) is closer

to the accumulation point of the compressibility-induced gap than in snapshot (A-1).

Nevertheless, the linear n = 1 mode manages to remain on the shear Alfvén continuum

by shifting radially outward with increasing Γ, as can be seen from the values of rn=1

at snapshot (A) in Fig. 16(c); namely, rn=1 = 0.43, 0.44, 0.47.

The different structure of the continua around the linear n = 1 eigenmode for

different values of Γ suggests that, in order to propagate radially outward during the

convective amplification (CA) phase, the mode frequency requires much less adjustment

in the Γ = 3 case than for Γ = 1. Indeed, Fig. 16(b) shows that, between snapshots (A)

and (B), the down-chirp in the Γ = 3 case, where ωn=1(A) = 0.26 → ωn=1(B) = 0.23, is

significantly smaller than in the Γ = 1 case, where ωn=1(A) = 0.24 → ωn=1(B) = 0.17.

It seems that a reduction of chirping is beneficial for CA in the present scenario, which

explains that, in Fig. 16(a), the peak amplitude of the n = 1 mode increases with

increasing Γ. The interconnection between chirping and CA remains to be understood.

Finally, let us emphasize once more that the trends described in this section are

most likely case-specific. As mentioned at the beginning of Section 7, the Γ-dependence

of the mode dynamics must be expected to vary from case to case, depending on the

equilibrium profiles and fast ion distribution.
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8. Summary and conclusion

In this paper, we have studied the sensitivity of the growth and nonlinear evolution of

fast-ion-driven modes with respect to several simulation parameters; namely, the choice

of particle boundary conditions for fast ions, the values of diffusion coefficients, the use

of gyroaveraging over fast ion Larmor radii, and the degree of compressibility of the

bulk plasma. In order to characterize the effect on the nonlinear dynamics, we have

paid particular attention to frequency chirping (which may be quasi-linear or nonlinear

[34, 35]), convective amplification (CA) [25], and fast ion transport. In particular, we

examined the threshold for the transition from low- to large-amplitude mode activity

(and, thus, weak to strong transport) through the onset of CA by varying the strength

of the resonant drive via the parameter fβ defined in Eq. (4).

The scope of this work is limited to long-wavelength modes (n & 1) with frequencies

in the toroidicity-induced Alfvén gap or in the surrounding shear Alfvén continua. The

conclusions that can be drawn on the basis of the results presented here are strictly

valid only for the short-time response of the plasma, in the presence of relatively strong

resonant drive from fast ions; namely, near the threshold for the onset of CA. Hence, it is

possible that the long-time behavior of the system in the presence of weakly driven modes

will exhibit a different degree of sensitivity with respect to the parameters examined

here. However, the sensitivity of long-time simulations will be harder to assess due to the

larger computational expenses. We anticipate that the results of the present sensitivity

study give us a reasonable starting point for the choice of parameters to be used in self-

consistent long-time simulations of fast ion dynamics in beam-driven tokamak plasmas,

including wave-particle interactions, sources, sinks and collisions.

Below is a summary of the main results obtained in each section and the conclusions

that we have drawn. Implications for nonlinear benchmark studies and the relevance of

advances made with respect to numerical stability are also discussed.

8.1. Summary of results from parameter scans and implications for long-time

simulations

(i) Section 4: Loss boundary for fast ions. Simulations were performed with

(a) artificial fast ion losses at the plasma boundary (last closed flux surface), and

(b) a realistic fast ion loss boundary at the wall.

Due to large magnetic drifts, the choice of boundary condition was found to have a

significant effect on the form of the fast ion distribution. The effect on the growth

and nonlinear dynamics of the core-localized fast-ion-driven modes studied here

was small in the present short-time simulations (< 1 ms). However, we anticipate

that there may be a significant cumulative effect in long-time simulations with

continuous low-amplitude fluctuations; in particular, when there are modes that

are driven by gradients in the outer part of the plasma, where the loss boundary

effect is strong. Therefore, the use of a realistic loss boundary is preferred. It is
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easy to implement a realistically-shaped wall in a full-f PIC code, where its only

disadvantage is an increased computational expense due to the larger size of the

spatial simulation domain needed to include the vacuum region.

(ii) Section 5: Diffusion coefficients. We examined how the normalized resistivity η and

viscosity ν affect the dynamics of fast-ion-driven modes with n = 3. The thermal

diffusivity was set to χ = min{η, ν}. The following summary is for η = ν = χ:

(a) Exponential growth and CA threshold: When the drive is sufficiently

strong, so that the mode is near or above the threshold for CA (where

γ/ω & 0.05), diffusion is found to have a negligible effect on the linear growth

rate γ when η . 3 × 10−6. A detailed explanation is given in Appendix

A. Essentially, these results mean that, below the threshold for CA, the

modes are dominated by the competition between resonant drive and damping

mechanisms; whereas, near and above the threshold for CA, the resonant drive

dominates until the mode saturates. These simulation results are consistent

with the theory for CA developed by Zonca et al. [25], which predicts that the

transition from low- to high-amplitude Alfvénic fluctuations occurs close to

the threshold where resonant drive begins to dominate over damping effects.

Below that threshold, the modes can still be unstable, but they saturate at low

amplitudes and cause only negligible amounts of transport.

(b) CA phase and nonlinear saturation: As the resonant drive is depleted,

resistive and viscous damping effects can become more important. For

resistivities between η = 10−6 and 3 × 10−7, these effects become noticeable

already during the CA phase; namely, the thresholds for the onset of CA and

the saturation amplitudes were seen to differ by 10–20%. These quantitative

differences become smaller when dissipation is further reduced to η = 10−7.

One may speculate that the threshold for CA becomes effectively independent

of resistivity when η . 10−7.

(c) Decay phase: The n = 3 mode tends to decay more slowly for smaller values

of η. However, it is difficult to explain the changes in the decay rate of the mode

as a direct consequence of varying η, because the mode radius and frequency

also evolve differently for different values of η, and so do the resonant structures

in phase space.

Based on the above results together with the discussion of thermal ion FLR effects

given at the end of Appendix A, our default choice η = ν = χ = 10−6 appears to

be a reasonable compromise to simulate the dynamics of modes with toroidal mode

numbers n = 1–3 in the practically important parameter regime near the threshold

for CA. The amount of diffusion is small enough to allow resonant wave-particle

interactions to dominate at the scale of the global modes, while properly closing the

MHD model through strong dissipation on spatial scales comparable to the thermal

ion Larmor radius ρLi. The choice η = 10−6 is also reasonable from the point of

view of computational expenses. Simulations with η ∼ 10−7 require twice as many
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grid points in both R and Z, and twice as many time steps, which is still prohibitive

for the kind of self-consistent long-time simulations that we are preparing for here.

(iii) Section 6: Finite Larmor radii (FLR) of fast ions. While linear growth rates and

mode structures varied relatively little for the modes studied, the threshold f crit
β

for the onset of CA of the n = 3 mode varied significantly (by 40%) between the

simulations performed with FLR and in the zero-Larmor-radius (ZLR) limit. As

expected, the effect of fast ion FLR is weaker for modes with longer wavelength;

in particular, the evolution of the n = 1 mode was similar in the FLR and ZLR

simulations. However, the present study was limited to the short-time response,

so we cannot exclude the possibility that even the n = 1 mode becomes sensitive

to FLR effects when one considers meso-time-scale phenomena (1–10 ms), such as

intermittent bursts [17]. Thus, we consider fast ion gyroaveraging to be a crucial

ingredient in self-consistent long-time simulations, even for n = 1 modes.

(iv) Section 7: Ratio of specific heats and bulk compressibility. The specific heat ratio

Γ controls the effect of compressibility on the bulk plasma response. Between

the the extreme limits Γ = 1 (weak compressibility effect) and Γ = 3 (strong

compressibility effect), the threshold f crit
β for CA of the n = 3 mode varied by

30%. The effect on the growth, chirping and saturation amplitude varied between

modes. However, instead of being a direct consequence of the varying effect of

compressibility, we attribute these changes in the mode dynamics to the fact that

Γ alters the structure of the shear Alfvén continua in a high-beta tokamak plasma

as that considered here. It must be expected that the effect of Γ varies case-by-

case, depending on the equilibrium profiles and fast ion distribution. In long-time

simulations, one may take advantage of this fact and vary the specific heat ratio

between the extreme limits Γ = 1 and Γ = 3 in order to asses the robustness of the

results (e.g., dominant up- or downward chirping) with respect to changes in the

equilibrium profiles and fast ion distribution, without actually having to modify

them. Meanwhile, the usual value Γ = 5/3 seems to be a reasonable starting point.

(v) Fast ion transport. The effect of diffusion coefficients, fast ion FLR, and bulk

compressibility on the steady state distribution of fast ions will have to be evaluated

using long-time simulations as in Refs. [16, 17, 18]. Meanwhile, the results of the

present work give us useful insights relevant to avalanche-like transport that occurs

on short time scales. We have shown that our parameters have an influence on

the threshold for CA of the n = 3 mode (Figs. 7, 11 and 13). Since the onset of

CA also marks the transition from weak to strong fast ion transport, the choice

of simulation parameters may have an influence on the occurrence of abrupt large

relaxation events (ALE) in JT-60U and the associated fast ion avalanches, which

we are hoping to reproduce with self-consistent long time simulations. Based on

the results reported here, we anticipate that the threshold at which an ALE occurs

may vary by 10–20% depending on the values of η, ν (. 10−6) and Γ used. Note,

however, that this estimate refers to the amount of drive that is present near the



Sensitivity study for N-NB-driven modes in JT-60 28

0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
n=

3(t
sa

t)

1.21.4

 
Default

Diffusion

Fast ion FLR

Compresibility

Single n=3, saturation amp.

 A
n=3
crit (fβ

crit) 

Drive parameter f
β

Convectively
amplified (CA)

Not amplified

Figure 17. Evidence for a robust linear dependence of the critical amplitude Acrit
n=3

on the critical value of the drive parameter f crit
β for the transition from weak to strong

n = 3 mode activity. This diagram summarizes the results of fβ-scans from Figs. 7(d),

11(c) and 13(d). The function Acrit
n=3(f

crit
β ) given by Eq. (20) is shown as a dashed line.

resonances of the relevant modes. The sensitivity of the velocity-integrated fast ion

beta profile βh(r) can be expected to be lower than 10%.

(vi) Critical amplitude for CA. Concerning the conditions for the onset of CA, an

interesting observation can be made when the results of all fβ-scans are combined

in one diagram as shown in Fig. 17. The n = 3 mode in the scenario studied is

subject to CA when the drive parameter fβ defined in Eq. (4) exceeds a critical value

f crit
β = f crit

β (η, ρLh,Γ). This critical value of the drive parameter depends on the

individual values of all the parameters that we have varied: resistivity η (Fig. 7),

fast ion Larmor radius ρLh (Fig. 11), and specific heat ratio Γ (Fig. 13). The

remarkable feature to be seen in the combined Fig. 17 is that the critical saturation

amplitude Acrit
n=3 at which the transition occurs is simply a linear function of f crit

β ,

Acrit
n=3 ≈ c1 + c2f

crit
β , for 0.4 . f crit

β (η, ρLh,Γ) . 1. (20)

This function is plotted as a dashed line in Fig. 17. The coefficients c1 = 0.3 and

c2 = (0.8 − 0.3)/(1.55 − 0.35), and thus the critical amplitude Acrit
n=3 appear to be

independent of the individual values of η, ρLh and Γ. There is evidence that CA

plays an important role in the triggering of ALEs [8, 9], so it may be useful to study

the generality of Eq. (20). This may reveal interesting nonlinear physics that are

relevant to such relaxation phenomena, and it may be useful for the construction

of reduced models for fast ion confinement in the presence of strong MHD activity.

8.2. Implications for nonlinear benchmark studies

For the present sensitivity study, we have made extensive use of the transition from

weak to strong mode activity via the onset of convective amplification (CA). This may

also be a useful strategy for cross-code benchmark activities concerned with nonlinear
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dynamics. The reason is that different codes use different models, so it is not necessarily

meaningful to use precisely the same parameter values in all codes that participate in a

nonlinear benchmark study. Instead, it may be more meaningful to allow for a certain

leeway in the choice of parameter values and to use this freedom to make sure that all

codes are simulating the same dynamic regime. For instance, one may compare results

obtained in the regime just below and just above the threshold for CA, while allowing

that the critical value of the fast ion pressure gradient — here, measured by the drive

parameter fβ defined in Eq. (4) — may be somewhat different for different codes. After

one has shown that the codes are all in the same dynamic regime (e.g., below or above

the CA threshold), one may begin with more detailed comparisons; e.g., by examining

nonlinear phase space structures using Hamiltonian mapping techniques [36].

8.3. Advances made in numerical stability

In addition to the CA of individual toroidal harmonics (here n = 3), nonlinear

interactions between modes with different values of n are also likely to play an important

role for the occurrence of intermittent relaxations, such as ALEs. These interactions may

include both MHD nonlinearities (forward and inverse cascade of fluctuation energy)

and wave-particle nonlinearities (linear and nonlinear resonance overlaps). In order

to simulate these processes, we had to overcome problems of numerical stability. As

reported in Figs. 14 and 16 of Ref. [9], our previous attempts to perform multi-n

simulations of strongly driven Alfvén modes (i.e., above the threshold for CA) in the

present high-beta JT-60U scenario were only partially successful. Due to nonlinear

instabilities, these simulations terminated soon after nonlinear saturation; i.e., long

before a fully relaxed state was reached. Recently, we have resolved these problems

as described in Appendix C by (I) enhancing the digital filtering of bulk pressure and

density, and (II) smoothing the plasma boundary. With this, the multi-n simulations

reported in this work (Figs. 2, 4, 15 and 16) ran smoothly without obvious problems.

Together with the results of the sensitivity study reported in this paper, these

numerical advances prepare MEGA for comprehensive long-time simulations of N-NB-

driven high-beta JT-60U and JT-60SA scenarios, which include self-consistent wave-

particle interactions, sources and collisions, and can cover a wide range of time scales,

from Alfvénic oscillations and fast ion motion (. 10 µs), via intermittent bursts of

Alfvén mode activity and avalanches (∼ 0.1–10 ms), to collisional slow-down (& 100 ms).
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Appendix A. Resistive diffusion and spatial grid

An important decay mechanism for Alfvénic modes in the resistive MHD model used in

MEGA is continuum damping. Continuum damping begins with phase mixing, which

transfers energy from longer to shorter radial scale lengths at a rate γmix, and ends with

the dissipation of the energy contained in the small-scale structures. Without resistivity

(and viscosity), the small-scale structures would be dissipated numerically due to the

finite grid size. They may also cause numerical instabilities. With sufficiently large

resistivity and a sufficiently fine grid, these structures can be dissipated in a more

physical manner and converted to heat in the equation of state for the thermal bulk

pressure pb [Eq. (10)]. In this appendix section, we discuss the resistive diffusion process

and numerical requirements that must be satisfied to simulate it. This discussion also

applies to the effect of viscosity and thermal diffusivity when η = ν = χ, since the

respective diffusion equations have the same form.

Combining Eqs. (7), (8) and (9), the evolution of the magnetic field is given by

∂B

∂t
︸︷︷︸

(i)

= ∇× (δu×B)
︸ ︷︷ ︸

(ii)

+
η

µ0
∇× (∇×B)

︸ ︷︷ ︸

(iii)

. (A.1)

Together with the momentum equation for δu [Eq. (6)], the balance between terms

(i) and (ii) in Eq. (A.1) yields an Alfvén wave equation, which determines the real

component of the frequency, Re{i∂/∂t} ↔ ω. Meanwhile, the balance between terms

(i) and (iii) in Eq. (A.1) yields a magnetic diffusion equation, which contributes to the

imaginary component of the frequency, Im{i∂/∂t} ↔ γ, where γ > 0 represents growth

and γ < 0 represents decay. The magnitude of the resistive decay rate for structures

with wavelength λ is then given by

|γη| ∼
η

µ0

(
2π

λ

)2

→
∣
∣
∣
∣

γη
ωA0

∣
∣
∣
∣
∼

(
2πR0

λ

)2

η̂ ≈ 40× η̂

(λ/R0)2
; (A.2)

where the normalized resistivity η̂ in Eq. (A.2) is defined as

η̂ ≡ η

µ0vA0R0

=
a

R0

1

Sp

(A.3)

The quantity Sp = τη/τpA0 is the “poloidal Lundquist number” that is widely used in

resistive reduced MHD studies and measures the ratio between the resistive diffusion

time τη = µ0a
2/η and the shear Alfvén wave propagation time τpA0 = a/vA0 =

a/(R0ωA0) on the length scale a. Thus, η̂ in Eq. (A.3) may be interpreted as the

ratio of Alfvén time to resistive time on the length scale of the major radius R0.

Using the plasma parameter values summarized in Table A1, we can estimate the

value of the normalized resistivity η̂ in the core of the beam-driven JT-60U plasma

studied in this work to be around η̂ ≈ (1...5) × 10−9. The corresponding poloidal
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R0 a alfs B0 Te0 ne0 ni0 Zeff

[m] [m] [m] [T] [keV] [1020m−3] [1020m−3]

3.395 0.953 0.66 1.2 2.1 0.22 0.17 1.3...2.6

Table A1. Plasma parameters for the JT-60U scenario studied in this paper, which is

based on shot E039672 at 4 seconds. Here, R0 is the major radius of the magnetic axis,

a ≡
√

Va/(2π2R0) is the characteristic minor radius of the plasma defined in terms

of its volume Va, and alfs is the minor radius on the low-field side (outer mid-plane).

The magnetic field strength B0, electron temperature Te0 and densities ne0 and ni0

are given at the magnetic axis. For this shot, the reference value for the effective

charge number is Zeff = 2.1. However, this estimate has some degree of uncertainty.

Moreover, there is presumably also a strong radial dependence. Since the resistivity

scales as η ∝ Z2
eff (cf. Eq. (A.6)), it is rather sensitive to the value of Zeff . Thus, we

compute η in Eq. (A.7) for the range Zeff = 1.3...2.6 ≈ (1...2)× ne/ni.

Lundquist number is Sp ≈ (2...1)× 108. The details of this calculation are as follows:

vA0 =
B0√
µ0mini

= 4.5× 106m/s, (A.4)

ln Λe = ln

[

2πne

(
ǫ0Te

nee2

)3/2
]

= ln

[
2π

1010

(ǫ0
e

)3/2 (Te[eV])3/2

(ne[1020m−3])1/2

]

= ln

[

256× 21003/2

0.221/2

]

= 17.8, (A.5)

νei‖ =
Z2

effe
4ni ln Λe

4πǫ20
√
meT

3/2
e

=
e5/21020

4πǫ20
√
me

Z2
eff ln Λeni[10

20m−3]

(Te[eV])3/2

= 1.1× 109 × (1.3...2.6)2 × 17.8× 0.17

21003/2
= (0.6...2.3)× 105 s−1, (A.6)

η =
1

4

me

nee2
νei‖ = νei‖ =

me

4e21015
νei‖[10

5s−1]

ne[1020m−3]

= 8.9× 10−9 × (0.6...2.3)

0.22
= (2.4...9.3)× 10−8Ωm, (A.7)

η̂ =
η

µ0vA0R0
=

η[Ωm]

19.2
= (1.3...4.8)× 10−9; (A.8)

where mi is the mass of a deuteron.

The global structure of the long-wavelength modes studied in this paper is

characterized by λ/R0 & 0.03 in the minor radial direction (and much larger along

ϑ and ζ). Consequently, Eq. (A.2) implies that resistivity has a significant effect on the

evolution of these modes only when their growth rates γ satisfy
∣
∣
∣
∣

γ

ωA0

∣
∣
∣
∣
.

∣
∣
∣
∣

γη
ωA0

∣
∣
∣
∣
. 4× 104 × η̂, (A.9)

For the relatively large resistivities around η̂ ∼ 10−6 used in typical MHD and hybrid

simulations of Alfvén modes, the resulting value γη/ωA0 ≈ 0.04 is comparable to

the linear growth rates γlin/ωA0 that are achieved below the threshold for convective
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amplification (CA). Thus, for convectively amplified modes simulated with η̂ . 10−6,

resistivity can be expected to play a role mainly in the nonlinear phase. This is consistent

with the results in Figs. 5–8, where we saw that the linear growth rates were independent

of resistivity as long as η̂ . 3× 10−6.

After the resonant drive is exhausted, it can no longer compensate the effect of radial

phase mixing that occurs in those regions where the fluctuation spectrum |δφ|n(ω, r) of
the mode intersects some part of the continuous spectrum. Note that phase mixing only

changes the mode structure and does not directly contribute to the decay of the mode

energy that can be seen in the time traces of the amplitude An(t) = W
1/2
n (t), which we

computed using Eq. (18). The decay of An(t) is caused by resistivity and viscosity terms

that diffuse the gradients of the mode structure and eventually transfer that energy to

the background profiles (n = 0). Phase mixing tends to steepen those gradients and

this, in turn, enhances the effect of diffusion. In this way, phase mixing contributes to

the decay of the mode, and this contribution is known as “continuum damping”.

The strength of diffusion in the simulations must be kept sufficiently strong to

prevent phase mixing from generating structures with radial scale lengths that are not

adequately resolved by the spatial grid used. In our simulations, the spatial size L of

the simulated domain and the number N of grid points along each dimension of the

right-handed cylindrical coordinate system (R,ϕ, Z) are





LR

Lϕ

LZ




 ≈






2.26m

2π/nmin

3.16m




 ,






NR

Nϕ

NZ




 ≈






384

32× nmax

352




 . (A.10)

Thus, the size of the spatial cells in the poloidal plane (R,Z) is

∆R/R0 ≈ 1.7× 10−3, ∆Z/R0 ≈ 2.6× 10−3, (A.11)

which allows to resolve structures with wavelengths λ satisfying λ/R0 & 8∆Z/R0 ≈
3 × 10−3. For the default value of η̂ = 10−6, structures of that size are suppressed by

resistive dissipation if
∣
∣
∣
∣

γmix

ωA0

∣
∣
∣
∣
≪

∣
∣
∣
∣

γη
ωA0

∣
∣
∣
∣
∼ 40× η̂

(8∆Z/R0)2
≈ 0.1 for η̂ = 10−6. (A.12)

Equation (A.12) means that resistive dissipation is effective only if the phase mixing rate

|γmix/ωA0| is significantly slower than the resistive decay rate |γη/ωA0| ∼ 10−1 on the

scale of the grid (∆R,∆Z). We have seen in Fig. 8 that, after nonlinear saturation, it

takes about 100 Alfvén times for the amplitudes of the modes in our simulations to decay

by a factor exp(1) ≈ 3, so the overall damping rate is of the order |γ/ωA0| ∼ O(10−2).

This can be interpreted as an estimate for the upper limit of the phase mixing rate

γmix because we do not observe the formation of any “singular” radial structures when

the modes decay in our simulations. This upper limit of 10−1 for γmix is one order of

magnitude smaller than γη in Eq. (A.12) for η̂ = 10−6, so that we may assume that radial

phase mixing in our simulations terminates in resistive heating, and that no significant

amount of energy is dissipated by the spatial grid.‡
‡ In MHD stable low-beta equilibria, this can be verified by measuring the quality of energy
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Figure A1. Simulation results illustrating how the numerical stability of MEGA

depends on the proper choice for the spatial grid and resistive diffusion. A single-

n simulation for the fast-ion-driven n = 3 mode is performed with drive parameter

fβ = 0.7 and weak diffusion, η̂ = ν̂ = χ̂ = 10−7. The evolution of the mode amplitude

An=3(t) is shown on a logarithmic (a) and linear scale (b).

To test this assumption, we demonstrate in Fig. A1 that our default spatial grid

specified in Eq. (A.10) does not suffice any more when the diffusion coefficients are

reduced by one order of magnitude to η̂ = ν̂ = χ̂ = 10−7. Figure A1 shows the evolution

of the n = 3 mode amplitude for two cases: once we used the default number of grid

points NR ×NZ = 384× 352 (dashed) and another time the number of grid points was

doubled to NR×NZ = 768×704 (solid), with a corresponding reduction of the time step

by a factor 2. One can see that the results of the two simulations agree well as long as

the resonant drive is dominant and strong; namely, during the exponential growth and

convective amplification (CA) phases, until the mode saturates at t = tsat.S However,

shortly after saturation, the simulation with the default grid terminates prematurely due

to a numerical instability. This indicates that the decaying mode transfers a significant

amount of energy to structures with wavelength that cannot be resolved with the default

grid. Such numerical instabilities serve as a safety mechanism that tells us to either

increase the spatial resolution or to raise the values of the diffusion coefficients.

Our goal is to carry out self-consistent long-time simulations (up to ∼ 100 ms),

which is presently feasible only with a few 100 grid points in each direction. With the

choice η̂ = 10−6 for the resistivity as well as for the other diffusion coefficients, ν̂ and χ̂,

we can ensure that this spatial resolution is sufficient.

In addition to this practical constraint, there is also a physical justification for

using a resistivity that is much larger than the value η̂ ∼ 10−9 that we have estimated

above for JT-60U on the basis of collisions only. Namely, η̂ = 10−6 can be interpreted

conservation in MEGA. However, in the present high-beta scenario, toroidal Fourier filters are required

in order to suppress resistive MHD ballooning instabilities with n & 4, so that energy conservation is

broken by default. Thus, not all energy is converted to heat; some of it is lost through the filters.
S The only notable difference lies in the noise level, whose effect can be seen at the beginning of the

simulations, around (t− tpeak)/ωA0 . −100 in Fig. A1(a). Because the number of simulation particles

is kept constant (Np = 28×106), the number of particles per cell is reduced by a factor 4 when NR and

NZ are doubled. This causes roughly a doubling of the noise level in the fluctuation amplitude An=3.
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Figure A2. Numerical convergence with respect to the number of simulation particles

Np in a single-n simulation for n = 3 in the ZLR limit. Results obtained with

Np = 8×106 (dashed) and Np = 28×106 (solid) are compared. (a) and (b): Evolution

of the mode amplitude An=3(t) on a logarithmic and linear scale for the default value

of the drive parameter, fβ = 0.7. (c): Saturation amplitudes An=3(tsat) plotted as

a function of the drive parameter varied around the threshold for CA, in the range

0.5 ≤ fβ < 1.0.

as an “anomalously increased effective resistivity” that mimics kinetic damping effects

of the bulk plasma, such as Landau damping and radiative damping, which are not

otherwise captured by the MHD model. By letting η̂ = ν̂ = 10−6, we effectively suppress

components of the wave packet that oscillate at frequencies ω/ωA0 ∼ 0.25 (as in Fig. 2)

and have wavelengths comparable to the thermal ion Larmor radii ρLi. This can be seen

by letting λ = ρLi ∼
√

Te/mi/ωLi ≈ 6× 10−3 m in Eq. (A.2), which gives
∣
∣
∣
γη
ω

∣
∣
∣ ∼ 40× η̂

(ρLi/R0)2
ωA0

ω
∼ 4 on length scales λ ∼ ρLi. (A.13)

Clearly, it is not physically meaningful to reduce the resistivity η̂ below 10−7. The

same counts for the viscosity ν̂ and thermal diffusivity χ̂. The anomalously increased

effective diffusion coefficients are important for the practical realization of MHD closure

in a physically meaningful way.

This also means that extended hybrid simulations that account for kinetic thermal

ion (KTI) effects would have to be run with η̂ ∼ ν̂ < 10−7 in order to ensure that resistive

dissipation does not dominate over thermal ion FLR effects such as radiative damping.

This would require N & 103 grid points in each dimension (at least in the poloidal plane)

and correspondingly small time steps. With presently available computational resources,

this may be feasible for short-time simulations (< 1 ms). However, for the long-time

simulations that we have in mind here, thermal ion FLR effects are still beyond reach.
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Figure B1. Numerical convergence with respect to the number of satellite particles

Ngyro used for gyroaveraging. The evolution of the amplitude An=3(t) of the n = 3

mode is shown on a logarithmic (a) and linear scale (b) for fβ = 0.7. Results obtained

with the default value Ngyro = 4 (dashed) and the increased value Ngyro = 8 (solid)

are compared.

At best, kinetic compression of drift-kinetic thermal ions may be captured, as proposed

in Ref. [21].

Appendix B. Numerical convergence with the number of particles

The simulation results presented in this paper were obtained with a relatively large

number of simulation particles, Np = 28× 106, because the same simulations were also

used to study resonance conditions and phase space structures [28, 34, 35]. However,

as far as the evolution of the fast-ion-driven modes is concerned, very similar results

can be obtained with a significantly lower particle number of Np = 8× 106, as we have

used in Ref. [9]. This is demonstrated in Fig. A2 for the n = 3 mode. One can see

in panels (a) and (b) that the time traces of the mode amplitude An=3(t) during its

growth, convective amplification (CA), saturation and decay phase are very similar in

both cases. In addition, Fig. A2(c) shows that the difference between the absolute values

of the peak amplitudes An=3(tpeak) obtained with Np = 8×106 and 28×106 is less than

7%. Most remarkably, the sensitive threshold for the onset of CA, here at f crit
β = 0.625,

is exactly reproduced.

In simulations that include the effect of fast ion FLR, the number of simulation

particles was effectively increased by a factor 4 due to the use of Ngyro = 4 satellite

particles as was illustrated in Fig. 1. In Fig. B1, we demonstrate that the results

obtained with Ngyro = 4 are similar to those obtained in a simulation using Ngyro = 8.

The noise level in the latter case was reduced, but at the expense of nearly doubling

the computation time. We conclude that Ngyro = 4 is sufficient to simulate the effect of

gyroaveraging associated with fast ion FLR in the present scenario with low-n modes.

Appendix C. Digital filter and boundary smoothing

MEGA offers the possibility to apply a digital filter (smoother+compensator, see p. 438

of Ref. [37]) throughout the simulation domain; here, at intervals of ∆tfilt = 0.23 Alfvén



Sensitivity study for N-NB-driven modes in JT-60 36

times (200 MHD time steps). The primary purpose is to reduce the effects of noise

introduced by the PIC method used to compute the fast ion current density δjh,eff that

is substituted into the momentum balance equation, Eq. (6). Of course, this digital filter

also contributes to the damping of small-scale structures produced by phase mixing

(cf. Appendix A). In order to minimize such numerical damping, the digital filter is

usually applied only to the difference between the current signal and the filtered signal

from the previous filtering step; e.g., B(t)−B(t−∆tfilt).

The only exceptions are the bulk density and pressure fields, ρb and pb, where the

digital filter is applied to the difference between the current signal and the equilibrium

field; e.g., ρb(t)−ρb(t = 0). While retaining the instantaneous compressible response of

the plasma, this method reduces the accumulation of unphysical artifacts that tend to

build up in these advected scalar fields during the course of long-time simulations. In the

core of the plasma, such artifacts may be caused by the lack of realistic parallel dynamics

in the MHD model. In the periphery, artifacts may arise from the zig-zag-shaped plasma

boundary in the discretized (R,Z) plane.

It seems that the build-up of such artifacts into singular spikes near the plasma

boundary was responsible for the premature termination of multi-n simulations as

reported in Figs. 14 and 16 of Ref. [9]. The problem was resolved by enhancing the

effect of the digital filter on the scalar fields ρb and pb as described in the previous

paragraph, and by smoothing the plasma boundary as follows.

Originally, the MHD boundary condition applied by multiplying the fluctuating

fields with a binary mask that has the value 1 inside the plasma and the value 0

outside. Now, this mask can be smoothened by averaging Nsmooth times over neighboring

grid points. For single-n simulations and in multi-n simulations with moderate drive,

Nsmooth = 2 appears to be sufficient. In multi-n simulations with strong drive,

Nsmooth = 8 is sometimes required.

Note that these numerical techniques are all optional. They are described here

because we apply them in the simulations of high-beta JT-60U scenarios with strong

N-NB drive as studied in the present work. Other MEGA simulations may not employ

these techniques and may be using other methods that are not mentioned here.

Appendix D. Effect of the toroidal Fourier filter

The filtering of toroidal mode numbers is important for simulating nonlinear dynamics.

As was discussed in Section 2 of Ref. [9], the Nϕ = 96 grid points used here in the

toroidal direction are sufficient for resolving the dynamics of mode numbers up to n = 4.

If underresolved harmonics with higher toroidal mode numbers are retained in the MHD

fields, they can alter the nonlinear evolution substantially, but in an unphysical way.

Our choice to cut the toroidal mode spectrum off at n = 4 is due to the fact that,

in the high-beta plasma considered here, resistive MHD ballooning modes with n ≥ 4

are unstable for η̂ = ν̂ = χ̂ = 10−6 (cf. Fig. 2 in Ref. [9]). As discussed in Appendix A,

a lower value of η is not feasible for the long-time simulations that we are preparing for,
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so a compromise had to be made.

Our tests (not shown here) indicate that higher toroidal harmonics n ≥ 4 can

play an important role as energy sinks when the resonantly driven n = 1 and n = 3

modes reach high amplitudes. One likely consequence is that the threshold for convective

amplification is underestimated in our simulations. However, due to constraints imposed

by the physical model (resistive MHD ballooning instabilities) and by the available

computational resources (limiting the feasible resolution), these effects cannot yet be

fully taken into account in the self-consistent long-time simulations for which we are

preparing ourselves here.
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