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Abstract

The transport of fast ions in a beam-driven JT-60U tokamak plasma subject to resonant magnetohydrodynamic (MHD)

mode activity is simulated using the so-called multi-phase method, where 4 ms intervals of classical Monte-Carlo sim-

ulations (without MHD) are interlaced with 1 ms intervals of hybrid simulations (with MHD). The multi-phase sim-

ulation results are compared to results obtained with a continuous hybrid simulations, which were recently validated

against experimental data [A. Bierwage et al. Nucl. Fusion 57(1):0160036, 2017]. It is shown that the multi-phase

method, in spite of causing significant overshoots in the MHD fluctuation amplitudes, accurately reproduces the fre-

quencies and positions of the dominant resonant modes, as well as the spatial profile and velocity distribution of the

fast ions, while consuming only a fraction of the computation time required by the continuous hybrid simulation. The

present paper is limited to low-amplitude fluctuations consisting of a few long-wavelength modes that interact only

weakly with each other. The success of this benchmark study paves the way for applying the multi-phase method

to the simulation of Abrupt Large-amplitude Events (ALE), which were seen in the same JT-60U experiments but at

larger time intervals. Possible implications for the construction of reduced models for fast ion transport are discussed.
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1. Introduction

In order to enable simulations to accurately predict

the confinement of fast ions and their effect on the

bulk plasma (e.g., heating, current drive, torque) in

magnetically confined fusion experiments, it is neces-

sary to account for a variety of processes that cover a

wide range of temporal scales. Magnetohydrodynamic

(MHD) waves of the shear Alfvén branch, which can

be excited by resonant interactions with fast ions, have

oscillation periods on the µs time scale. Individual in-

stability pulses, including low-amplitude fluctuations as

well as large relaxation events, grow and decay on the

time scale of 10–100 µs. On intermediate time scales

of 0.1–10 ms, these instabilities may cluster in bursts

and exhibit frequency chirping. During their life time,

these instabilities cause a redistribution (transport) of

fast ions in phase space. This is particularly true for

long-wavelength modes with toroidal mode numbers of
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order n ∼ 1–10, because they tend to saturate primar-

ily as a result of radial fast ion transport, at amplitudes

where MHD nonlinearities are still weak. This trans-

port includes processes such as wave-particle trapping,

phase mixing and orbit stochastization, which cause a

flattening of gradients in the fast ion phase space den-

sity across the widths of the resonances [1, 2, 3].

The gradients flattened by wave-particle interactions

are restored by the effects of collisions and sources, such

as fusion reactions, beam injection and radio frequency

heating. Depending on the injected power and the size

of the phase space volume that is relevant for a certain

process, the effects of collisions and sources can be-

come significant on short (sub-millisecond), long (sec-

onds), or any intermediate time scale.

Owing to the growing performance of supercomput-

ers, it has recently become possible to simulate all the

above processes side-by-side in a self-consistent man-

ner using so-called hybrid simulations, where the bulk

plasma dynamics are described by an MHD model and

the motion of fast ions is described by a gyrokinetic

model using the particle-in-cell (PIC) method [4]. In

that paper, we have simulated the dynamics of chirp-
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ing energetic particle modes (EPM [5]) with dominant

toroidal mode number n = 1, which were routinely ob-

served in JT-60U tokamak experiments driven by a pair

of powerful negative-ion-based neutral beams (N-NB).

Since the full MHD model used in [4] includes fast mag-

netosonic waves, the time step size was ∆tmhd ≈ 0.9 ns.

Thus, more than 107 time steps were needed to simulate

the 35 ms interval studied in [4]. Recently, that simu-

lation has been continued, and results up to 60 ms are

reported in the present paper.

These kinds of simulations are extremely expensive

and even if run for several months, they are only barely

able to cover the 100 ms time scale required to repro-

duce abrupt large-amplitude events (ALE [6]), which

were also seen in the same JT-60U discharges and cause

the fast ion density to fluctuate by as much as 20%

[7, 8]. This raises the question whether it is possible

to speed the simulation up, if one is primarily interested

in the form of the fast ion phase space distribution and

not so much in the detailed dynamics of MHD modes.

The purpose of this paper is to show that the so-called

multi-phase method [9] can be used to reduce the simu-

lation time to a fraction of that required by the continu-

ous hybrid simulation, while accurately reproducing the

radial profile and velocity distribution of fast ions in an

N-NB-driven JT-60U plasma. In Section 2, we describe

the multi-phase method and evaluate its performance.

Multi-phase and hybrid simulation results are presented

an compared in Section 3, followed by a discussion and

conclusions in Section 4. The word “hybrid” will be

used to refer to the continuous hybrid simulation.

2. Simulation method and performance

We use the MHD-PIC hybrid code MEGA [10, 11,

12], which was recently extended with fast ion Larmor

radius effects (via 4-point gyroaveraging) and realistic

models for beam ion sources and collisions [4, 9, 13,

14]. In order to reduce the computation time needed to

reach a steady state, where all processes — sources, col-

lisions, MHD activity and thermalization losses — are

in balance, the multi-phase method was introduced and

applied to simulate fast ion dynamics in DIII-D toka-

mak experiments [9]. At least for low values n ≪ 10

of the toroidal mode number, where the MHD model

is most reliable, the multi-phase simulations were suc-

cessfully validated against experimental measurements

[13] and are now being applied to explore the physical

mechanisms controlling fast ion confinement [14].

An overview of the multi-phase method applied to

our N-NB-driven JT-60U scenario is shown in Fig. 1.

As in [9, 13], we choose to interlace 4 ms periods

of “classical” simulations (collisions and sources only,

MHD off) with 1 ms periods of hybrid simulations

(MHD, collisions and sources all included). In Fig. 1(a),

one can see a burst of MHD fluctuations during each

1 ms hybrid phase. Figure 1(b) shows that the total

stored fast ion energy increases steadily, so the MHD-

induced global losses are ignorable. Locally, the 1 ms

MHD bursts cause noticeable but small periodic fluc-

tuations in the fast ion pressure profile, as can be seen

in Fig. 1(c), where the time trace of the peak value of

the fast ion beta profile Max{βf(r)} is plotted. Here,

βf = 2µ0Pf/B
2
0

measures the ratio of kinetic pressure,

Pf =
∫

d3υJgcFfE, to magnetic pressure, B2
0
/(2µ0),

where µ0 is the vacuum permittivity, B0 the magnetic

field strength at the plasma center (magnetic axis), Ff

is the fast ion guiding center phase space density, Jgc

is the guiding center Jacobian for the chosen set of co-

ordinates, and E = mDυ
2/2 is the kinetic energy of a

deuteron with mass mD and velocity υ.

The duration of the MHD off/on periods (4 + 1 ms)

was chosen empirically based on the following consid-

erations. The interval of 5 ms corresponds to the lower

bound of the 5–10 ms periods at which fast-ion-driven

instability bursts were typically seen in JT-60U exper-

iments. The 1 ms duration for the hybrid phase (with

MHD) was chosen because this is the typical time scale

for a fast-ion-driven instabilities to grow to a significant

amplitude, saturate and decay. Here, the attribute “sig-

nificant” means that the instability is able to flatten the

fast ion phase space gradients to such a degree that a

mode with similar frequency, mode structure and mag-

nitude is unlikely to occur within the next 4 ms.

For the DIII-D tokamak scenario studied in [9], it has

been shown that increasing the 5 ms intervals (4+ 1 ms)

to 10 ms intervals (9 + 1 ms) had no significant effect

on the simulation results. Both multi-phase simulations

gave very similar steady-state fast ion pressure profiles

and MHD fluctuation levels [9].

Here, we report the first comparison between a “4 +

1 ms” multi-phase simulation and a hybrid simulation

with continuous MHD activity, using the JT-60U sce-

nario in Fig. 1. The simulation parameters are summa-

rized in Table 1. Note that wave-particle interactions

in the hybrid simulation were simulated only for the

n = 1–3 harmonics, because n = 4 was found to play

no role in the present case, except for (weak) nonlinear

MHD damping. See [4] for further details and a list of

physical parameters.

We focus on the first 60 ms after the start of beam

injection. On the Helios supercomputer at IFERC in

Rokkasho/Japan, which was in operation until the end
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Figure 1: Overview of a multi-phase simulation for the beam-driven JT-60U plasma previously studied in [4]. Starting at t = 0, a pair of tangential

N-NBs continuously injects ions with a kinetic energy of 400 keV. Collisions with the thermal bulk plasma are also simulated continuously as

described in [4]. At the end of each 5 ms interval, MHD fluctuations and their interactions with the fast ions are simulated for 1 ms (yellow shaded

stripes). Time traces are shown for (a) the fluctuation amplitude of the poloidal magnetic field δBθ(t) measured in the region where the n = 1 mode

peaks, (b) the global stored energy defined as the radial integral of the fast ion beta profile Qf =
∫

dr r βf(r), and (c) the peak value of the fast

ion beta Max{βf(r)}. The box on the right-hand side shows enlarged a time window of 8 ms. Snapshots of the volume-integrated fast ion velocity

distribution Ff (E, αLFS) are shown in (d) using the pitch angle α = arcsin(υ‖/υ) evaluated on the low-field side (“LFS”) of the midplane [15].

Hybrid Multi-phase

Spatial grid (NR,Nϕ,NZ) = (384, 96, 352)

MPI domains (MR,Mϕ,MZ) = (16, 16, 16)

MHD harmonics nmhd = 0–4

Driven harmonics ndrv = 1–3 ndrv = 1–4

Table 1: Numerical parameters. The values for the spatial grid and

MPI domains refer to right-handed cylinder coordinates (R, ϕ, Z).

Toroidal harmonics other than the nmhd values listed in the table are

filtered out after each MHD time step ∆tmhd. The values for ndrv are

the toroidal harmonics that were retained in the effective fast ion cur-

rent density jf,eff , which is responsible for wave-particle interactions

in the MHD momentum balance equation (Eq. (3) in [4]). Information

about time steps and particle injection rates is given in the text.

of 2016 [16], the continuous hybrid simulation of this

60 ms interval took 3 full months, with the performance

decreasing over time as the number of simulation parti-

cles increased. The ratio of injection time step to parti-

cle pushing time step was ∆tinj/∆tpush = 1, and we per-

formed MHD subcycling with ∆tpush/∆tmhd = 4. As a

result, 17.6 M simulation particles were injected during

the course of the continuous hybrid simulation. About

17.0 M were still confined at t = 60 ms, which means

that only 3.5% of the injected particles hit the wall or are

lost by thermalization1 some time during the simulated

60 ms period.

The multi-phase simulation in Fig. 1 was performed

with a larger ratio ∆tinj/∆tpush = 4, so that only 4.4 M

particles were injected during the simulated 60 ms. As

can be seen in Fig. 2(a), the number of confined parti-

cles at that time is 4.2 M, so the loss fraction (4.5%)

is still negligible, although somewhat larger than in the

continuous hybrid simulation, presumably because the

fluctuation amplitudes tend to overshoot each time the

MHD solver is turned on (cf. Fig. 3 below).

Our choice to perform the continuous hybrid simula-

tion with a 4 times larger number of simulation particles

was motivated by the speculation that it could be more

sensitive to PIC noise than a comparable multi-phase

1Thermalization loss means that a simulation particle is discarded

when its energy falls below a certain threshold. Here, this threshold is

chosen to be 80 keV, which corresponds to the energy of positive-ion-

based neutral beams (P-NB) in JT-60U, which are not included in the

present simulation. The first thermalization losses occur after about

43.6 ms, mainly in the cooler and more collisional peripheral plasma.

However, even at t = 60 ms, the number of particles lost in this way is

still negligibly small.
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Figure 2: Performance of a “4 + 1 ms” multi-phase simulation for a

beam-driven JT-60U plasma performed on the Helios supercomputer.

(a): Number of confined simulation particles (= number of injected

minus number of lost particles) as a function of simulated physical

time, and the number of days the simulation has been running. (b):

Progress rate (ms/day) at which the simulation advanced. The up-

per and lower bounds of the shaded area indicate the instantaneous

progress rate measured just before (upper) and just after (lower) the

MHD module is turned on. The daily average progress rate is shown

as a stepped curve. Note that, from about t = 60 ms onward, the simu-

lation of an 1 ms hybrid phase (with MHD) takes more than 24 hours.

On those days, the daily average of the progress rate drops near the

lower bound of the shaded area.

simulation. Conversely speaking, we are assuming that

the multi-phase simulation may be less sensitive to PIC

noise because of two reasons: the overshooting MHD

fluctuation amplitudes yield a larger signal-to-noise ra-

tio, and there is a smaller risk of accumulating effects

of spurious signals, since the fluctuating fields are reset

periodically. In the future, it may be worth to investigate

this idea further. If multi-phase simulations can indeed

be shown to be less sensitive to PIC noise, the reduction

of the number of simulation particles could be used to

further enhance the performance of the method.

In Fig. 2(a) one can see that, with the present setup,

the multi-phase simulation needed only 25 days to sim-

ulate the 60 ms that took 93 days with the hybrid simula-

tion. Of course, the reduced number of simulation par-

ticles contributed to this speed-up. However, by com-

paring the upper and lower limits of the shaded area in

Fig. 2(b), one can see that until about 25 ms, most of

the computation time is consumed by the MHD solver,

whose time step size is 1/4 of that of the particle pusher.

At t = 25 ms (1.7 M particles) about 50% of the time

is spent with MHD calculations, and at t = 80 ms (5.3

M particles) it is about 30%. Clearly, the merit of using

the multi-phase method becomes smaller as time goes

by and the number of particles increases, until the ther-

malization and wall losses balance the particle injection

rate.

Note that one reason for the rapid drop of the multi-

phase simulation performance is the gyroaveraging,

which is physically essential in the present case [17] but

makes the PIC calculation nonlocal. The Larmor ra-

dius of the 400 keV ions in the present low-field JT-60U

plasma with B0 = 1.2 T is about 7.6 cm, while the spa-

tial extent of an MPI domain is about 14–20 cm. Thus,

there is a substantial number of guiding centers that

require communication between neighboring MPI do-

mains to perform the gyroaverage. Roughly speaking,

when the number of simulation particles contained in

an MPI domain exceeds the number of grid cells in the

poloidal (R, Z) plane (here 384/16× 96/16 × 352/16 =

3168), it may become worth to communicate the field

data from entire neighboring MPI domains (not done

here) instead of communicating individual satellite par-

ticle coordinates (as is done here). However, since the

particle distribution is highly nonuniform in space, it

is not straightforward to determine the threshold in the

particle number beyond which the communication of

fields becomes more efficient than communicating satel-

lite particles. Moreover, there are constraints imposed

by the amount of memory available on each CPU, and it

is likely that the threshold also depends on the machine

architecture, so needs to be measured case-by-case.

3. Results

The increased performance of the multi-phase sim-

ulation compared to the continuous hybrid simulation

comes at the expense of generating a different history

of dynamics. Simply speaking, during 1 ms of the

“4+1 ms” multi-phase simulation the MHD fluctuations

must, at least on average, cause the same amount of fast

ion transport as the continuous MHD fluctuations in the

continuous hybrid simulation do in 5 ms.

Clearly, this is possible only if the fluctuation am-

plitudes are larger in the multi-phase simulation, which

can indeed be observed in Fig. 3. Note in Fig. 3(b)

that the fluctuation amplitudes in the multi-phase sim-

ulation tend to become large only every 10 ms. This

suggests that similar results may be obtained if the clas-

sical phase is extended to 9 ms as in [9].

Figure 3 also shows that the fluctuations with toroidal

mode number n = 1 dominate at all times, both in the

multi-phase and in the hybrid simulation. However,

from t & 35 ms onward, the amplitude of the n = 2

harmonic often comes close to that of n = 1. This is due
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Figure 3: Comparison of the traces An(t) = W
1/2
n (t) of the fluc-

tuation amplitudes for toroidial mode numbers n = 1–4 in (a) the

continuous hybrid and (b) the multi-phase simulation. Here Wn =
1
2

∫

d3 x
(

|ρ
1/2

b
δu|2n + |δB|

2
n

)

is the volume-integrated MHD fluctuation

energy for |n| > 1, computed from the bulk ion mass density ρb, and

the fluctuating components δu and δB of the single-fluid MHD veloc-

ity and magnetic field vectors.

to the fact that the radial transport caused by n = 1 to-

gether with collisional slowdown fill up the phase space

domain on which the n = 2 resonances feed [15]. Mean-

while, the amplitudes of the n = 3 and n = 4 harmonics

are still negligibly small, in part owing to the inclusion

of gyroaveraging effects, which effectively reduce the

drive on higher-n modes and prevents these harmonics

from growing to unrealistically large amplitudes [17].

As was shown in detail in [4] and in preceding stud-

ies, the dominant n = 1 harmonic exhibits up- and

downward chirping in the 30–70 kHz range, both in ex-

periments and simulations. In Fig. 4(a), one can see that

the n = 1 signal in the multi-phase simulation performs

similar chirps in precisely the same frequency band (40–

60 kHz) as in the hybrid simulation. Moreover, Fig. 4(b)

shows that the peak locations of the dominant n = 1

wave packets in the multi-phase and hybrid simulations

also agree and exhibit similar in- and outward propaga-

tion in the radial interval 0.4 . r/a . 0.48.

Figure 5 shows that similarly good agreement is ob-

tained for the n = 2 harmonic. Although not visi-

ble here, the n = 2 fluctuations during the first half

of the simulation (t . 35ms) are actually dominated

by nonlinear MHD distortions of the dominant n = 1

harmonic, so they oscillate at about twice the n = 1

frequency of about 50 kHz; i.e., around 100 kHz (be-

yond the range shown in Fig. 5(a)). During the second
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Figure 4: Comparison of the frequency and radial location of the dom-

inant n = 1 harmonic in the continuous hybrid and multi-phase sim-

ulations. For the hybrid simulation, panel (a) shows the spectrogram

of the electrostatic potential fluctuations |δφ|n=1(ν, t) as a colored con-

tour plot, where the frequency ν is not to be confused with the velocity

υ. The frequency νpeak(t) at which the spectrogram peaks at a given

time is indicated by dots (hybrid) and circles (multi-phase). The cor-

responding radial locations rpeak(t) at which the spectrograms peak at

each time are plotted in (b). The size of the time window used for the

Fourier analysis is ∆twin = 0.5 ms. See [4] for further details about

the spectral analysis method used.

half of the simulation (t & 35 ms), the n = 2 fluctu-

ations are dominated by independent resonantly-driven

modes, whose total fluctuation energy is comparable to

that of n = 1, as we have seen in Fig. 3 above. How-

ever, Fig. 5 shows that these resonant n = 2 modes have

lower frequencies and are located at different radii than

the n = 1 fluctuations. Although a detailed analysis of

phase space islands remains to be carried out, it seems

that the n = 1 and n = 2 modes interact only weakly or

not at all via their respective resonant particles, so we

believe that resonance overlaps do not play a significant

role during the 60 ms time interval simulated here.

These resonantly excited shear Alfvén waves cause a

redistribution of fast ions; especially in the radial direc-

tion. As was already mentioned in Section 2 above, only

a very small fraction of the particles travels far enough

for their orbits to intercept the wall. A global measure

of the confined fast ion population is the stored energy,

which we denote as Qf and compute by spatially inte-

grating the fast ion beta profile as Qf =
∫

dr r βf(r). Its

absolute value in the multi-phase simulation was shown

in Fig. 1(b) above. In Fig. 6(a), one can see that Qf value

in the multi-phase simulation deviates from that in the

continuous hybrid simulation by only 0.2% or less.
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ond dominant n = 2 harmonic in the continuous hybrid and multi-

phase simulations. Arranged as Fig. 4.

The small fluctuations of Qf(t) that can be seen in

Fig. 6(a) are correlated with the onset of MHD bursts

in the multi-phase simulation and, to a lesser degree,

also in the continuous hybrid simulation. Abrupt fluctu-

ations on the 0.1 ms time scale are thought to be caused

by prompt losses that occur when fast ions hit the wall.

In addition, Qf fluctuations on the time scale of a few ms

or longer may be attributed to variations in the velocity

distribution. This is because βf used to calculate Qf is

a moment of the fast ion phase space density weighted

by their kinetic energy E. Due to the fact that the colli-

sional drag increases with the radially decreasing elec-

tron temperature Te(r) (cf. Fig. 3 in [4]), the differences

in the timing and amount of radial fast ion transport in

the hybrid and multi-phase simulation ultimately leads

to differences in the velocity distribution and, thus, in

the evolution of Qf .

As a more local measure of the confined fast ion pop-

ulation, Fig. 6(b) shows the evolution of the peak value

Max{βf(r)} of the fast ion beta profile. One can see ex-

cellent agreement between the hybrid and multi-phase

simulation results, which both lie below the value ob-

tained with a purely “classical” Monte-Carlo simula-

tion, which includes only sources, collisions and losses

in a static axisymmetric magnetic field, without any

MHD activity.

Finally, Fig. 7 shows the detailed form of the instan-

taneous fast ion phase space distribution at t = 60 ms,

using three different projections. One can see that the

radial profiles as well as the velocity distribution agree
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Figure 6: Comparison of temporal evolution of the fast ion population

in hybrid, multi-phase and “classical” (no MHD) simulations. (a):

Relative difference [Qf(Multi-phase)−Qf (Hybrid)]/Qf (Hybrid) of the

stored fast ion energy Qf(t) in the multi-phase and continuous hybrid

simulations. (b): Peak value Max{βf(r)} of the fast ion beta profile.

very well. Since the snapshot was taken at the end of

the interval 59 ms ≤ t ≤ 60 ms where MHD activity

was simulated in the multi-phase simulation, the fast

ion beta in the inner core region 0 . r/a . 0.3 is

slightly lower than in the continuous hybrid simulation.

At t = 59 ms, just before the MHD phase, it was slightly

higher by about the same amount (not shown here).

4. Discussion and conclusion

In this paper, we have demonstrated that the so-called

multi-phase method [9] accurately predicts the redis-

tribution of fast ions in the presence of MHD fluctua-

tions (here, shear Alfvén waves), which are resonantly

excited by the fast ions themselves. In contrast to an

earlier study [9], where the results of two multi-phase

simulations were compared, the results of a continuous

hybrid simulation served as a benchmark here.

As a working example, we considered a beam-

driven JT-60U plasma and constrained our analysis to

a time window where only low-amplitude activity of

long-wavelength energetic particle modes (EPM) was

present. The multi-phase simulation accurately repro-

duced the frequency and radial location of the dominant

modes, which have toroidal mode numbers n = 1 and

n = 2. The main difference between the hybrid and

multi-phase simulation is that the MHD fluctuations in

the latter case tend to overshoot, reaching more than 2

times higher amplitudes.
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Figure 7: Comparison of the fast ion distributions at t = 60 ms in

the hybrid, multi-phase and “classical” (no MHD) simulations. (a):

Cross-section of the fast ion beta field βf(R,Z) evaluated at Z ≈ 0.2 m;

i.e., near the midplane of the plasma whose magnetic axis is located

at (R0, Z0) = (3.395 m, 0.204 m). The high-field side (HFS) and low-

field side (LFS) are indicated. (b) Flux-surface-averaged minor radial

profiles βf(r) of the fast ion beta. Note that, although the simulations

were performed with gyroaveraging, the profiles in (a) and (b) were

computed from the guiding center positions. (c) and (d): Color con-

tour plots of the volume-integrated velocity distributions Ff (E, αlfs)

in the hybrid and multi-phase simulations. Note that the diagnostic

mesh used for the velocity space in the hybrid simulation (c) has a

2 times higher resolution in each coordinate than in the multi-phase

simulation (d).

The fast ion distributions were shown to agree well,

in spite of the large difference in the mode amplitudes.

This fact may have important implications for ongoing

efforts to construct reduced models for fast ion trans-

port. Namely, it is possible that the overall fast ion

transport is insensitive to the detailed time history of

the MHD fluctuations, which may occur in short pulses

with large amplitudes (as in our multi-phase simulation)

or in the form of longer burst with lower amplitudes (as

in our hybrid simulation). It must be emphasized how-

ever, that this situation may change significantly when

multiple modes grow to large amplitudes and nonlinear

resonance overlaps occur, which did not seem to happen

during the 60 ms time interval studied here.

The cumulative fast ion losses constituted a small

fraction (3.5%) of the total number of particles injected

over the simulated 60 ms. In the multi-phase simulation,

the loss was larger (4.5%), presumably due to the above-

mentioned overshoots of the MHD fluctuation ampli-

tude. This 30% increase in the number of lost parti-

cles suggests that multi-phase simulations may not be

suitable for accurate predictions of wall heat loads. Of

course, the accuracy of the losses predicted by the con-

tinuous hybrid simulation also remains to be checked.

The flux-surface-averaged fast ion beta profiles βf(r)

in Fig. 7(b) as well as the time traces of Max{βf(r)} in

Fig. 6(b) give the impression that MHD activity causes

a significant reduction of the fast ion beta value by up

to 20% in the central core region 0 . r/a . 0.3. How-

ever, it turns out that this is somewhat misleading. The

midplane cross-section βf(R) of the fast ion beta field

in Fig. 7(a) shows that the difference between the beta

profiles obtained without (classical) and with MHD (hy-

brid and multi-phase) is mostly due to narrow peaked

structures near the plasma center. These spikes origi-

nate from the nonuniformity of the fast ion deposition

(see also Fig. 4 in [4]) and are smoothed out by the

MHD fluctuations. Except for these spikes, the profiles

are actually rather similar to the classical prediction.

Therefore, instead of carrying out relatively expen-

sive multi-phase or even more expensive continuous hy-

brid simulations, one may try to simply post-process the

classical result with an empirical spatial smoothing al-

gorithm. In this way, one may be able obtain a fairly

accurate prediction for the fast ion beta field βf(R, Z)

at a small fraction of the computational cost,2 at least

for periods where only low-amplitude chirping single-

n mode activity is observed, as during the 60 ms time

window analyzed here.

Of course, from the original JT-60U experiments,

we know that the present scenario is subject relaxation

events known as abrupt large-amplitude events (ALE)

[6], which cause significant abrupt drops in the fast ion

density at intervals of about 40–60 ms [7, 8]. Reduced

modeling of the impact of ALEs on the fast ion pro-

files and (subsequently) on their velocity distribution

will probably require a more sophisticated technique

than the simple profile smoothing procedure suggested

above. Before that, we need to develop a better physical

understanding of ALEs.

The success of the present benchmark study paves the

way for applying the multi-phase method to the simu-

lation of ALEs and the study of the underlying trigger

mechanisms. Since ALEs last less than 1 ms, the multi-

phase method employed here should be able to capture

them, provided that the hybrid model contains all es-

sential physics ingredients. Indeed, significant progress

2On the Helios supercomputer, the classical simulation using 256

cores took only 1–2 days for 60 ms. In order to reduce communi-

cation overhead, that simulation was parallelized only over particles.

In contrast, the multi-phase and hybrid simulations discussed above

were parallelized on 4096 cores using spatial domain decomposition

(cf. Table 1).
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has recently been made with the simulation of ALEs in

JT-60U plasmas using both multi-phase and hybrid sim-

ulations [18] and the results will be published elsewhere

in the near future.
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