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Abstract. Energetic particles are inherent to toroidal fusion systems and can drive instabilities 
in the Alfvén frequency range, leading to decreased heating efficiency, high heat fluxes on 
plasma-facing components, and decreased ignition margin. The applicability of global 
gyrokinetic simulation methods to macroscopic instabilities has now been demonstrated and it 
is natural to extend these methods to 3D configurations such as stellarators, tokamaks with 3D 
coils and reversed field pinch helical states. This has been achieved by coupling the GTC 
global gyrokinetic PIC model to the VMEC equilibrium model, including 3D effects in the 
field solvers and particle push. This paper demonstrates the application of this new capability 
to the linearized analysis of Alfvénic instabilities in the LHD stellarator. For normal shear iota 
profiles, toroidal Alfvén instabilities in the n = 1 and 2 toroidal mode families are unstable 
with frequencies in the 75 to 110 kHz range. Also, an LHD case with non-monotonic shear is 
considered, indicating reductions in growth rate for the same energetic particle drive. Since 
3D magnetic fields will be present to some extent in all fusion devices, the extension of 
gyrokinetic models to 3D configurations is an important step for the simulation of future 
fusion systems. 
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1. Introduction 

Instabilities driven by energetic particle (EP) components are of interest for magnetic fusion 
concepts since they can lead to decreased heating efficiency, high heat fluxes on 
plasma-facing components, and decreased ignition margins for reactor systems. Since 3D 
magnetic field perturbations will be present to some extent in all toroidal configurations, the 
analysis of EP instabilities in 3D systems is an important goal for fusion simulations. To 
address this, the GTC global gyrokinetic particle-in-cell (PIC) model [1] has been adapted to 
the VMEC 3D equilibrium model [2], and 3D effects included in the field solvers and particle 
push. Initial applications of this model have been made [3] to EP instabilities in several 
stellarators (LHD, W7-X) and pedestal turbulence in tokamaks with 3D fields [4]. Other 
gyrokinetic models that have been developed for both stellarators and tokamaks include the 
EUTERPE [5] and GENE [6] models. EUTERPE is a particle-based approach, while GENE 
is a continuum model that solves the 5D kinetic equations of all species. Additionally, the 
MEGA model [7] is a hybrid MHD-kinetic approach that couples a particle description for the 
fast ions with a full MHD model for the thermal plasma component. MEGA is applicable to 
EP instabilities in both tokamaks and stellarators. Another hybrid model is FAR3D [8], which 
couples reduced MHD equations for the thermal plasma with a Landau closure model for the 
fast ions and is designed for 3D systems. These models are all based to varying degrees on the 
gyrokinetic approach, [9,10,11,12] which incorporates both the guiding center dynamics of 
particle trajectories and the effects arising from the finite helical Larmor orbits that center 
upon the guiding center trajectory. GTC solves the gyrokinetic equation using particle-based 
methods; the feasibility of the PIC method for gyrokinetics was initially demonstrated by W. 
E. Lee [13]. The specific gyrokinetic-hybrid approach, as described below, was formulated 
[14] to avoid high frequency modes and the time step limitation related to the electron 
Courant condition. The gyrokinetic orderings (𝑘∥/𝑘$ ∼ 𝜔/Ω( ∼ 𝛿𝐵/𝐵+ ≪ 1) are applicable 
to most plasma components and regimes of interest for magnetic confinement systems. 
Gyrokinetics constitutes the most advanced model that is also feasible to apply to global 
energetic particle instabilities in magnetically confined plasmas. The gyrokinetic PIC method 
used by GTC couples particle stepping in fluctuating fields with self-consistent 
electromagnetic field solutions based on Poisson’s and Ampere’s laws (based on retaining the 
potential, f, and parallel vector potential, A||). For particle based gyrokinetic models, the small 
electron mass presents a numerical difficulty for simultaneously treating the dynamics of ions 
and electrons in simulations. A fluid-kinetic hybrid electron model currently implemented in 
GTC overcomes this difficulty by expanding the electron drift kinetic equation using the 
electron-ion mass ratio as a small parameter. The model accurately recovers low frequency 
plasma dielectric responses and faithfully preserves linear and nonlinear wave-particle 
resonances. Maximum numerical efficiency is achieved by overcoming the electron Courant 
condition and suppressing tearing modes and high frequency modes, thus effectively 
suppressing electron noise. In GTC the parallel vector potential is separated into adiabatic and 
nonadiabatic components, similar to the mixed variables (symplectic/Hamiltonian) pullback 
transformation [15] used in EUTERPE to avoid the so-called “cancellation” problem. GTC 
can address kinetic issues specific to 3D configurations, such as multiple trapping regions, 
particles that transition back and forth between trapped and passing, and orbit trajectories that 
are more non-local than in similar axisymmetric tokamak systems. 
 
In this paper the application of GTC for the linear analysis of energetic particle instabilities 
that have been observed in the LHD stellarator is demonstrated. A parameter survey indicates 
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that Alfvén modes similar to those observed in LHD resonate with injected beam ions and are 
predicted to be unstable. Predicting the onset and effects of these instabilities is of significant 
importance due to their impact on heating efficiency, plasma-facing component heat loads, 
and possible diagnostic use. The importance of non-axisymmetric effects in all toroidal 
devices motivates the development of comprehensive new gyrokinetic simulation methods 
that can apply across the full range of symmetry-breaking perturbation levels. The paper is 
organized as follows. In section 2, we describe the gyrokinetic model, the LHD profiles and 
equilibria that are used, and discuss the resonance conditions that allow the neutral beam ions 
to destabilize the shear Alfvén eigenmodes. Next in section 3, the gyrokinetic results are 
presented for both normal and non-monotonic shear discharges in LHD; these include 
variations of growth rates and real frequencies with beam parameters, the relation of the 
frequencies obtained with the shear Alfvén continuum gap structure, and the Alfvén mode 
structures. Finally, in section 4 the conclusions are presented. 
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2. Gyrokinetic model, LHD equilibria/profiles, and Alfvén resonance conditions 

A. Description of the GTC gyrokinetic model 

GTC is a global gyrokinetic, full torus, electromagnetic particle-in-cell model [16] based on 
Boozer magnetic coordinates [17]. Computational efficiency is gained by modifying these 
coordinates to approximately follow field lines. The applicability of GTC to fast ion 
destabilized global Alfvénic instabilities in tokamaks has been extensively demonstrated 
[18, 19, 20]. The implementation of GTC primarily used in this paper can be classified as a 
gyrokinetic-fluid hybrid model. As will be described below, the energetic particle and thermal 
ion species are treated using gyrokinetics, while an adiabatic fluid description is used for the 
electrons. This includes most of the physics expected to be of importance for Alfvén 
instabilities. Several tests have been made including the non-adiabatic gyrokinetic electron 
terms for cases given in this paper and this leads to about a 10% reduction of growth rate due 
to electron Landau damping effects, but no significant change in real frequency or mode 
structure; however, including such effects increases the computational requirements and will 
be left for future research. The gyrokinetic equation for the thermal and energetic ions (s is 
the species index) is given below: 
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This is supplemented by the equations of motion: 
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where ms , Zs , Ws are the mass, charge number, and cyclotron frequency of species s, µ is the 
magnetic moment, b0 is the unit vector b0 = B0/|B0|, and the E x B and magnetic drift 
velocities are given as: 
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Equation (1) is solved by evolving df weights synchronized with the particle trajectories using 
the following weight equation. 
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In our model we exclude the compressional component of the magnetic field perturbation by 
assuming dB|| = 0 and representing the perturbed magnetic field as: 

 

𝛿𝑩 = 𝛿𝑩$ = 𝛁×𝜆𝑩𝟎		with		λ = 𝐴∥/𝐵+               (8) 
 

The parallel electric field is 
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In the lowest adiabatic order 
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Where y, q, and z are Boozer magnetic coordinates and a = q(y)q - z is a field line label. In 
equation (12) dne is obtained by solving the electron continuity equation 
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Here the diamagnetic velocity and adiabatic perturbed pressures are given by: 

 

	v∗ =
M

\DHiNi
𝒃+×𝛁 𝛿𝑃∥ + 𝛿𝑃$                                           (13) 

 

𝛿𝑃$
(+) = 𝑛+𝑒𝜙h]]

(+) + 8 \Dmi
8n

𝛿𝜓                                           (14)	

 



 6 

𝛿𝑃∥
(+) = 𝑛+𝑒𝜙h]]

(+) + 8 \Dmi
8n

𝛿𝜓                                           (15)	

 

The electron current is calculated from the Amperé’s law 
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and the perturbed electrostatic potential is calculated from the gyrokinetic Poisson’s equation 
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The perturbed magnetic field potential functions are obtained from Faraday’s law 
 
8AZ∥
8/

= 𝑐𝒃+ ∙ 𝛁𝜙x\.                     (18) 

 
8An
8/

= −𝑐 8Sy|}
8~

                      (19) 

 

Where find = feff - df. These equations (1) – (20) form a closed nonlinear system to lowest 
order in the electron-ion mass expansion. The electron non-adiabatic terms and kinetic 
equation have been presented in Ref. [16] and will not be given here since, as mentioned 
above, the calculations of this paper are based on the adiabatic fluid model for the electrons. 
In order to test the use of this model for stellarators, parameters are chosen to approximately 
match an LHD regime where Alfvénic activity was observed [ 21 ], although some 
simplifications have been made in the profiles. Specifically, the thermal ion density, ion 
temperature, and electron temperature profiles are taken as constant in order to null out the 
drives for other instabilities caused by core density and temperature gradients. The electron 
density profile is determined from the quasi-neutrality condition ne = nion + nfast-ion for the 
three species (electrons, ions, fast ions) included in the calculation. The fast ions and thermal 
ions are treated using gyrokinetics, while the electrons are incorporated using an adiabatic 
fluid hybrid model [16]. The LHD major radius is 3.7m; the magnetic field on axis is 0.62T; 
ion and electron temperatures are 1 keV; the central electron density is 0.884 x 1013 cm-3; the 
plasma and beam species were hydrogen. The fast ion component is modelled as a 
Maxwellian distribution with a constant temperature vs. flux surface. GTC also includes 
options for slowing-down models of beam distributions; these will be considered in future 
research on EP instabilities in stellarators. The computational parameters for these 
calculations were: 60 radial grid points, 128 toroidal grid points, 200 poloidal grid points, 40 
particles per cell for ions and fast ions, 20 particles per cell for hybrid electrons, uniform 
marker temperatures, and 4-point gyro-orbit stencils for ions and fast ions. The time step for 
LHD is limited to about 1/10 of that for a similar axisymmetric system. These resolution and 
time step limits for 3D systems lead to significant computational requirements and currently 
limit the extent of parameter/profile surveys. Another modelling issue is that stellarators 
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generally tend to have higher fast ion losses through the last closed flux surface than 
tokamaks; several methods have been tested in the simulations for taking these escaping fast 
ions into account. For the results given in this paper, as ions escape through the last surface, 
their df weights are set to zero. For the LHD cases given in this paper, about 60% of the initial 
markers are lost through either the outer or inner radial boundaries. These leave the 
simulation domain at early times and do not present an obvious limitation to the simulation 
time. They do, however, reduce the marker resolution near the boundary regions, and reduce 
numerical efficiency by the retention of markers that do not contribute. Resolution has been 
tested in a few cases by increasing the initial particles per cell up to 100 without significant 
changes in the results, indicating particle counts are adequate for the linear analysis presented 
in this paper. Techniques that reinsert escaping ions back at another location at the same 
magnetic field value and such that they drift back into the simulation domain are under 
development. The calculations reported here are based on version 0706 of GTC. The primary 
changes from versions used in the earlier applications of this model to stellarators are the use 
of a Gaussian drop-off in the fields for the edge and magnetic axis boundary conditions 
instead of a linear extrapolation, and the zero weight/no-reinsertion method described above 
for treating escaping fast ions. 

In order to reduce noise levels and target specific instabilities, a Fourier mode filter is used. 
The filter takes effect between the field solve and particle steps and involves a fast Fourier 
transform of the field data, followed by a nulling out of components not included in the filter, 
and then an inverse fast Fourier transform of the fields before they are passed to the particle 
trajectory step. For simplicity, the calculations given in this paper are based on one toroidal 
mode with 8 poloidal modes for the filter. Specifically, for n = 1, m = 1 to 8 are used; for n = 
2, m = 1 to 8 are used, etc. Previous calculations [3] have also included the toroidal field 
period coupled modes, e.g., n = 1, n = -9, n = 11, but have not indicated for LHD that 
significant changes in stability properties result from including the higher order modes, due to 
its relatively high aspect ratio (<R0>/<a> ~ 6) and number of field periods (Nfp = 10). 

 
B. LHD test case 

Two LHD cases are considered here. The first case is motivated by an LHD discharge [21] 
where Alfvén activity was observed with toroidal modes numbers n = 1 and 2. This case had 
𝛽 	~	3%, magnetic axis at R0 = 3.7 m, and an iota profile with normal shear (increasing with 

radius). The shape of the LHD outer flux surface is shown in Fig. 1(a) with the colors 
indicating the magnetic field strength (red=higher, blue=lower). The second case has a non-
monotonic (reversed) shear region in the iota profile near the center; such profiles have been 
produced in LHD [22] by using neutral beam current drive and appropriate plasma start-up 
programming. The iota profiles for these cases are given in Fig. 1(b), with the reversed shear 
region indicated for the second profile. In FIG. 1(a) and in subsequent figures, the variable 
denoted as <r>/<a> is the flux surface label equal to (y/yedge)1/2, where y is the toroidal 
magnetic flux. The variation in flux surface shape as the toroidal angle is incremented within 
a field period is shown in Fig. 2. Here the direction of increasing toroidal angle is 
counter-clockwise (VMEC convention). 
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(a) 

 
   <r>/<a> 

     (b) 

 
FIGURE 1 – (a) 3D magnetic field variation on outer LHD flux surface, (b) normal and non-

monotonic rotational transform profiles used in the simulations of this paper. 
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    (a) 

 
    (b) 

 
    (c) 

 
    (d) 

FIGURE 2 – Magnetic flux surface shapes for the normal shear LHD equilibrium as the toroidal 
angle is varied within a field period. 

 

As there are no direct measurements of the fast ion density profile, a set of model profiles 
(normalized to the central electron density) as given in FIG. 3 are used. For the normal shear 
case, the fast ion profile model consists of a centrally flattened region with an exponentially 
decaying region on the outside (solid lines). This profile shape has been chosen specifically to 
select out the toroidal Alfvén eigenmodes that reside in the outer gaps, which are expected to 
be the ones that were observed [21]. For the non-monotonic shear case, a centrally peaked 
sequence of profiles have been used (dotted lines) that match onto the profiles used in normal 
shear case on the outside. These are used to provide instability drive in the central reversed 
shear region of the plasma. 
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     <r>/<a> 

FIGURE 3 – Centrally flattened and peaked fast ion profiles used in the stability calculations. 

 

C. Alfvén resonance conditions 
The resonance conditions for wave-particle interactions in stellarators depend on the 
frequency, mode number and rotational transform profiles of the device through the relation 
[23]: 𝜔 − 𝑚 + 𝑗𝜇 𝜔� + 𝑛 + 𝑗𝜈𝑁]� 𝜔S = 0, where m, n are the mode numbers of the 
instability, 𝜇, 𝜈 = equilibrium mode numbers, Nfp = number of field periods (=10 for LHD), 
and j = 0, ±1 is a coupling parameter. 𝜔� and 𝜔S are the poloidal/toroidal drift frequencies, 
which may be calculated by following orbit trajectories in the 3D equilibrium fields.  

 

 
 

      <r>/<a> 
FIGURE 4 – LHD fast ion phase space resonance locations for n = 1, m = 1, 60 kHz Alfvén wave, 

with slices taken at fixed radial flux location <r>/<a> = 0.77 (left) and fixed fast ion energy 
E = 100 keV (right). 

 

This has been evaluated for the normal shear LHD equilibrium and parameters of the 
observed [21] Alfvén instabilities, leading to the results shown in FIG. 4. The resonance lines 
cross over most of the regions of phase space encountered by passing particles, confirming 
that tangentially injected beams should excite such instabilities. 
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3. Gyrokinetic results for Alfvén instabilities in LHD 

A. Normal shear discharge 
The GTC gyrokinetic model starts with an initial field perturbation and integrates particle 
trajectories and electromagnetic fields (f and A||) in time to follow the growth of EP driven 
Alfvén instabilities. The characteristic behaviour of an unstable Alfvén frequency mode is 
shown in Fig. 5, where perturbations oscillating in the Alfvén range frequency grow 
exponentially with all modes growing at close to the same rate. This example is for the 
normal shear case with n = 1, Tfast = 120 keV, nfast(0)/ne(0) = 0.0185. The growth rate can be 
inferred from the slope of the curves in FIG. 5(b) and the frequency from a Fourier transform 
of the data in FIG. 5(a).  

 
  (a) 

 
  (b) 

FIGURE 5 – Typical time evolution of (a) real part of the potential and (b) absolute value of potential 
for an unstable n = 1 TAE instability in LHD. 

 

In some cases, especially for stellarators, several eigenmodes can be present, each with unique 
frequencies and growth rates. This leads initially to a modulational waveform; however, if 
followed long enough, one mode dominates. For simplicity, this paper will restrict its analysis 
to the time intervals where a single mode dominates. 

 

 
    (a) 

 
    (b) 

FIGURE 6 – Evolution of rms averaged potential vs. radial location and time for a TAE instability in 
LHD for toroidal mode numbers (a) n =1 and (b) n = 2. 
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Another useful diagnostic for displaying the instability growth and radial extent is shown in 
FIG. 6; here the RMS averaged evolution of the potential is shown as a function of radius and 
time for the normal shear case with nfast(0)/ne(0) = 0.0185. FIG. 6(a) is for n = 1, Tfast = 120 
keV while FIG. 6(b) is for n = 2, Tfast = 60 keV. As can be seen, the n = 2 has a narrower 
radial extent than the n = 1 case. 
As the fast ion density is increased, the Alfvén instability drive increases, leading to larger 
growth rates. An example of the variation of the growth rate and frequency with fast ion 
density for an n = 1 TAE instability with Tfast = 100 keV is given in FIG. 7. Due to the 
increased simulation time needed to resolve smaller growth rates, it has not been feasible to 
determine the marginal stability threshold (growth rate = 0) with this model. 

 

 
FIGURE 7 – Dependence of growth rate and real frequency on central fast ion density to electron 

density ratio for n = 1 TAE instability in LHD for Tfast = 100 keV. 
 

 
      (a) 

 
      (b) 

FIGURE 8 – Dependence of n = 1 (blue) and n = 2 (red) (a) frequencies and (b) growth rates on fast 
ion energy. 
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In FIG. 8 the effects of varying the fast ion temperature are given for n = 1 and n = 2 at 
nfast(0)/ne(0) = 0.022. In the LHD experiment, beams are injected at 180 keV. The energy 
moment of a slowing-down distribution with 180keV birth energy is equal to that of the 
Maxwellian distribution used here at about 100keV. While fast ion destabilized Alfvén modes 
involve wave-particle resonances, the gyrokinetic results show very broad peaks in the 
variation with beam energy. This is due to the fact that sideband couplings induce secondary 
resonances at other velocities, which can encompass a wider range of energies. 3D stellarator 
equilibria offer significantly more mode coupling combinations (i.e., sideband couplings) than 
tokamaks. Also, since the gyrokinetic model includes all of the various trapped particle 
populations that are present in 3D systems, there are many other resonant frequencies beyond 
the usual passing particle transit resonance that can be involved. The n = 2 results show more 
structure than the n = 1, with several maxima present, possibly due to interactions with 
different particle resonances. Calculations were also carried out for n = 3 and 4, but these 
mode families did not show any secular growth for the time intervals that were simulated. 
Figures 9, 10 and 11 show the typical mode structures for the n = 1 and n = 2 toroidal mode 
numbers. Here results are shown at Tfast = 120 keV for n = 1 and Tfast = 60 keV for n = 2. The 
n = 1 is dominated by m = 1, 2, while the n = 2 is dominated by m = 3, 2, 4. This 
characteristic is also present in the 2D (FIG 8) and 3D (FIG 9) plots. The flux surfaces used 
for the plots of FIG 9 have been chosen near to the location where the dominant mode has its 
maximum. 
 

 
     <r>/<a> 

     (a) 

 
    <r>/<a> 

   (b) 

FIGURE 9 – Radial potential mode structures for different poloidal mode numbers for (a) n = 1 and 
(b) n = 2. 

 
   (a) 

 
    (b) 

FIGURE 10 – Two-dimensional mode structures for the potential for (a) n = 1 and (b) n = 2. 
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(a) 

 
  (b) 

FIGURE 11 – Three-dimensional mode structures for the potential on inner surfaces for (a) n = 1 at   
<r>/<a> = 0.6 and (b) n = 2 at <r>/<a> = 0.72. 

 

 
The frequency ranges shown in FIG. 8(b) can be related to shear Alfvén continua obtained 
from the STELLGAP code [24] with acoustic coupling effects [25] included. Continuum plots 
for n = 1 and n = 2 are shown in FIG. 12. Here the slow-sound approximation [26] has been 
used to simplify the plots. The dashed black lines indicate the frequency ranges of the data in 
FIG. 8(b) and indicate that the unstable modes reside in the upper part of the m = 1,2 gap for 
n = 1 and the upper part of the m = 2,3 gap for n = 2. The frequencies obtained from these 
gyrokinetic calculations (f ~ 75 to 82 kHz for n = 1) are somewhat higher than seen 
experimentally (f ~ 60 to 70 kHz for n = 1). This is likely due to the use of a flat ion density 
profile in the gyrokinetic model calculations. Recently reported [7] reconstructions of the 
experimental profiles have indicated a hollow ion density profile with higher ion densities 
near the edge (leading to a lower Alfvén velocity) than assumed here. 

 
                <r>/<a>                                 <r>/<a> 
FIGURE 12 – Alfvén gap structure for (a) n = 1 and (b) n = 2 with range of frequencies found in the 

stability calculations indicated by black dashed horizontal lines. 
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B. Non-monotonic shear discharge 

Non-monotonic (reversed) shear rotational transform profiles have been of significant interest 
in tokamaks. Such profiles lead to new branches of Alfvén modes (the RSAE or Reversed 
Shear Alfvén Eigenmode) that are typically dominated by a single poloidal mode number. 
The frequencies of the RSAE modes are more sensitive to the rotational transform profile and 
show more dynamic behaviour (upward/downward frequency sweeps) in experiments than the 
TAE modes [27]. RSAEs have also been associated with higher levels of fast ion transport. 
Non-monotonic shear profiles were formed in LHD [22] using strong neutral beam current 
drive at low plasma densities. In this case the non-monotonic region refers to a region with 
negative shear in rotational transform, since the typical stellarator transform profile increases 
toward the plasma edge (positive shear). The tokamak non-monotonic shear profile has the 
opposite direction of shear; i.e., a positive shear region superimposed on a dominantly 
negative shear iota profile. When LHD was operated in this mode, n = 1 and n = 0 GAM 
(geodesic acoustic mode) activity was observed. The n = 1 signal was characterized by 
frequency sweeping both upward and downward in frequency, followed by more steady-state 
frequency lines covering a range from 50 kHz up to 150 kHz. These modes have been 
analysed using the STELLGAP and AE3D models [28], resulting in stable eigen-frequencies 
in the ranges seen experimentally. 
The GTC model has been applied to an LHD reversed shear profile case similar to those 
realized experimentally. In order to compare with the earlier normal shear results, the plasma 
profiles and parameters have been kept the same, except for the fast ion density profile.  
Both a peaked profile case (shown in FIG. 3) and an equivalent flat profile case have been 
used. The peaked profile was tested to determine if placing instability drive in the reversed 
shear region would produce an RSAE mode; the flat profile was used to allow direct 
comparison with the normal shear result. For the equivalent flattened profile, the n = 1 growth 
rate is reduced from that of the normal shear case by about 28% (from 24.9 to 17.9 x 103/sec) 
and the frequency is increased from 79.7 kHz to 115 kHz. The difference in the mode 
amplitude growth between the normal and reversed shear cases is shown in FIG. 13(a). In the 
case of the peaked fast ion profile, the dominant mode remains radially located outside the 
reversed shear region, as shown in the rms amplitude growth vs. time and radius in FIG. 
13(b).  

 

 
   (a) 

 
    (b) 

FIGURE 13 – (a) Amplitude evolution for dominant two modes compared between normal and non-
monotonic shear cases, (b) evolution of rms averaged potential for non-monotonic shear peaked nfast 

profile case. 
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A clearly defined RSAE localized around the minimum in the iota profile did not emerge in 
the simulation. However, there is a secondary component present around <r>/<a> ~ 0.5, that 
can be seen in FIG. 13(b) and FIG. 14(a) and (b) and may be related to the reversed shear 
region. In the reversed shear case the primary mode is dominated by m = 2, 3, 4 components 
for both the peaked and flattened profile cases. 

 

 
     <r>/<a> 

   (a) 

 
     (b) 

FIGURE 14 – (a) Radial eigenmode structrure, and (b) 2D eigenmode structure structure for non-
monotonic shear peaked nfast profile case. 

 
The Alfvén continuum gap for this case is displayed in FIG. 15 with the frequency and 
approximate radial extent of the mode indicated by the dashed black line. The mode is 
predominantly related to the m = 2, 3 gap near <r>/<a> = 0.7. There should also be reversed 
shear Alfvén modes present near <r>/<a> ~ 0.4 above the m = 3 and under the m = 4 
continuum lines. Finding appropriate fast ion profiles and conditions to excite these modes 
will be the topic of future research. 

 
       <r>/<a> 
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FIGURE 15 – Shear Alfvén continuum gap structure for non-monotonic case with eigenmode 
frequency and radial extent indicated by dashed line. 

 
 

4. Summary 

The gyrokinetic GTC model has been adapted to general 3D configurations that can include 
stellarators, tokamaks with 3D effects, and reversed field pinch helical states. To demonstrate 
this capability, it is applied here to the LHD stellarator, looking specifically at a low-field, 
low density regime where Alfvénic activity was observed [21]. Unstable modes that reside 
near the upper frequencies of the Alfvén gaps are found for n = 1 and 2, but not for n = 3 or 
4. Phase space resonance analysis also indicates that tangentially injected beam ions should 
readily couple to Alfvén modes in the observed frequency ranges. The n = 1 and 2 mode 
structures have a global characteristic and may be expected to impact fast ion confinement 
and heating efficiency. The evolution of these modes in some cases shows modulational 
effects related to multiple competing Alfvén instabilities at separate frequencies. A second 
LHD application described here is to regimes with non-monotonic shear rotational transform 
profiles. When compared for similar parameters and plasma profiles, the non-monotonic 
profile results in about a 28% reduction in the n = 1 growth rate. The dominant mode remains 
a TAE, but a subdominant coupling to the reversed shear region is apparent in the 
eigenfunctions. The GTC model is a comprehensive electromagnetic gyrokinetic-hybrid PIC 
method, and can include most of the relevant growth and damping effects expected to be of 
importance for these instabilities. This model can also provide a calibration reference for 
reduced models of these instabilities. The calculations presented here demonstrate its 
increasing usefulness for the analysis of Alfvénic instabilities in 3D systems. Future work 
with this model will add more realism and investigate the nonlinear consequences of these 
instabilities. For example, experimentally measured profiles for the thermal ion/electron 
temperature and density will be included; slowing-down beam ions distributions can be used 
instead of Maxwellian; fast ion density profiles derived from beam deposition models can be 
factored in; the next order (non-adiabatic) electron kinetic terms will be included; larger mode 
filter sets can be used (must be accompanied with a higher poloidal grid resolution); and 
particle reinsertion methods will be developed for 3D systems. 
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