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ABSTRACT

Propagation properties of an optical vortex with a helical wavefront in cold uniform magnetized plasma are theoretically investigated in an
electron cyclotron range of frequencies. The effects of the helical wavefront of the optical vortex on the wave fields in magnetized plasma are
described. These effects become significant as the topological charge of the optical vortex increases or the distance from the phase singularity
point becomes small. The different properties of propagation are also confirmed in propagation of Laguerre–Gaussian beams by three-
dimensional simulations with the finite element method.
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I. INTRODUCTION

Radiofrequency (RF) waves are widely employed for heating,
current drive, and diagnostics in magnetic fusion plasma.
Knowledge of the propagation properties of RF waves in magne-
tized plasma is fundamental to designs of RF systems such as
launching antennas. The propagation properties of RF waves con-
ventionally originate from a plane wave. In other words, the
phase of the wave fields is assumed to be k � r � xt,1 where k, r, x,
and t denote a wave vector, a position vector, an angular fre-
quency, and time. This expression is a simple way, adopted in
many textbooks, to introduce this topic, although advanced meth-
ods for the description of wave beams in dispersive media have
progressed.2

Recently, it is theoretically demonstrated that a single free
electron in circular or spiral motion emits twisted photons carry-
ing orbital angular momentum (OAM) along the axis of the elec-
tron circulation, in addition to spin angular momentum.3 It is
found that the radiated wave field has a phase term represented by
luþ kzz � xt, where l is the topological charge and u is the azi-
muthal angle around the propagation axis z. The wave with a heli-
cal wavefront is commonly called an optical vortex. An optical
vortex was originally discussed regarding a special mode of electro-
magnetic waves called the Laguerre–Gaussian (LG) mode4 and was
conventionally considered to be produced artificially with optical
elements.5 However, the twisted photons are naturally emitted by

cyclotron motion of electrons and are more ubiquitous in laborato-
ries and in nature than ever thought.6–8

Naturally, questions arise as to how an optical vortex propa-
gates in magnetized plasma and whether the unique property of
the helical wavefront is beneficial to heating, current drive, or diag-
nostics in magnetic fusion plasma.9–11 In this paper, propagation
properties of an optical vortex are discussed theoretically and
numerically for an electron cyclotron (EC) range of frequencies in
cold uniform magnetized plasma. Section II theoretically describes
propagation properties of EC waves with helical wavefronts in cold
uniform magnetized plasma. Results on three-dimensional (3D)
simulations for propagation of LG beams are presented and dis-
cussed in Sec. III. Section IV summarizes this paper with a future
outlook.

II. PROPAGATION PROPERTIES OF AN EC WAVE WITH
A HELICAL WAVEFRONT IN COLD UNIFORM
MAGNETIZED PLASMA
A. Wave with a helical wavefront

The Maxwell equations in magnetized plasma are given by

r� E ¼ � @B
@t
;

r� B ¼ l0 jþ e0
@E
@t

� �
:

(1)
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Assuming a monochromatic wave in time represented with the term
e7ixt and using the dielectric tensor operator er , which is given later,
in magnetized plasma, Eq. (1) can be rewritten as

r� ðr � EÞ � k20er � E ¼ 0; (2)

where k0 is the wavenumber in the vacuum. In contrast to a plane
wave, one should start with a sufficiently general ansatz for the wave
field of an optical vortex. The electric field of an optical vortex is
assumed to be given by

Eðr;u; zÞ ¼ 1
2

~Eðr;u; zÞarjlj exp iðluþ wðr;u; zÞ � xtÞ½ � þ c:c:
n o

¼ 1
2

n
~Earjlj exp iðluþ w� xtÞ½ �

þ~E
�
a�rjlj exp ið�lu� w� þ xtÞ

� �o
; (3)

where

wðr;u; zÞ ¼
ðz
0
kzðr;u; z0Þdz0

is a complex-valued phase function with kz ¼ @zw the z compo-
nent of the local wave vector. Here, the solution for kz is in the
end a complex-valued function of both r and u. The electric
field amplitude ~E is complex vector-valued, which includes the
polarization. A constant a is to arrange the unit of the electric
field. Then, E becomes a real electric field vector. When ~E and
kz are constant on space, this simple form of the optical vortex
satisfies the Maxwell equations in the vacuum without any
approximation.12 Due to the factor, rjlj, the amplitude at the
phase singularity point, i.e., at r¼ 0, is zero, which is a
requirement of optical vortices. Here, by putting
s ¼ arjlj exp ½iðluþ w� xtÞ�,

erðxÞ � E ¼
1
2

erðxÞ � ~Esþ e�r ð�xÞ � ~E�s�
n o

can be obtained based on the identity erðxÞ ¼ e�r ð�xÞ which is satis-
fied by the cold plasma dielectric tensor. The complex conjugate s�

corresponds to the angular frequency�x.
The standard approach in complex eikonal theory requires that

the amplitude ~E is weakly varying. In ordering assumptions, there is a
characteristic scale length L0 such that

� ¼ k0
L0
� 1 (4)

and

jr~Erj
j~Ej

� 1
L0
;
jr � ðr � ~EÞj

j~Ej
� 1

L20

for all components r ¼ x; y; z. Here, k0 is the wavelength in the vac-
uum. In uniform plasma where both a static magnetic field and elec-
tron density are constant on space, the scale length L0 is defined by the
variations of the amplitude ~E and the short wavelength condition
given by Eq. (4). Then, let us perform

rEr 	
1
2

�
i �i jlj

r
rr þ lruþ kzrz

� �
~Ers

�i i
jlj
r
rr þ lruþ k�zrz

� �
~E
�
rs
�
�

¼ 1
2

�
i �i jlj

r
er þ

l
r
eu þ kzez

� �
~Ers

�i i
jlj
r
er þ

l
r
eu þ k�zez

� �
~E
�
rs
�
�

¼ 1
2

i

�i jlj
reisgnðlÞu

ex

þ l
reisgnðlÞu

ey

þkzez

0
BBBBBB@

1
CCCCCCA

~Ers� i

i
jlj

re�isgnðlÞu
ex

þ l

re�isgnðlÞu
ey

þk�zez

0
BBBBBB@

1
CCCCCCA

~E
�
rs
�

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ðr ¼ x; y; zÞ:

This formula suggests that the “wave vector” of the optical vortex with
a helical wavefront can be expressed as

k ¼ �i jlj
r
rr þ lruþ kzðr;u; zÞrz

¼ �i jlj
r
er þ

l
r
eu þ kzez

¼ �i jlj
reisgnðlÞu

ex þ
l

reisgnðlÞu
ey þ kzez: (5)

Clearly, there is a singularity at r¼ 0 in both the first two terms on the
right-hand side. In the ordering assumptions, the phase singularity is a
delicate point. A simple approach here is to exclude the propagation
axis r¼ 0. The description of the wave field is restricted in the region
r 
 r0 > 0. In the region r 
 r0, a natural approach would be to look
for a solution such that

jkj � jkzj � k0 ¼
2p
k0
; jrkrj �

k0
L0

for all components r ¼ x; y; z. Since it can be written that

jkj2 ¼ 2l2

r2
þ jkzj2 �

2l2

r20
þ jkzj2;

the condition jkj � 2p=k0 leads to

jkzj � k0 ¼
2p
k0

and

l2

r20
� 4p2

k20
;

[ r0 

jlj
2p

k0:

(6)

For the gradients of the complex wave vector, it can be written that
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rk ¼ @kz
@r
rr �rz þ @kz

@u
ru�rz þ @kz

@z
rz �rz

þ i
jlj
r2
rr �rr þ lrru� i

jlj
r
rrr

and rrr � 1=r; rru � 1=r2. Here, the symbol � denotes the
dyadic operator. In order to enforce jrkrj � k0=L0, it must be
assumed that���� @kz@r

���� � k0
L0
;

���� @kz@u

���� � k0r0
L0

;

���� @kz@z
���� � k0

L0

as well as that

jlj
r20
� k0

L0
:

This gives a second condition on r0, namely,

r20 

jlj
2p

k0L0: (7)

From Eqs. (6) and (7) in the ordering assumptions, one should
choose

r0 ¼ max
jlj
2p

k0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlj
2p

k0L0

r( )
; (8)

which depends on both the topological charge l and the choice of L0.
At last, it can be written

rs ¼ i k þ
ðz
0

@kzðr;u; z0Þ
@r

rr þ @kzðr;u; z
0Þ

@u
ru

� �
dz0


 �
s

and the integrals are estimated by

dk ¼
ðz
0

@kzðr;u; z0Þ
@r

rr þ @kzðr;u; z
0Þ

@u
ru

� �
dz0 � k0

jzj
L0
:

FIG. 1. Schematic diagram of propagation of an optical vortex with a helical wave-
front along with a twisted photon with OAM.

FIG. 2. Coordinate system. The static magnetic field B0 is chosen to be in the z
direction. The optical vortex propagates in the z0 direction, which lies in the x-z
plane.

FIG. 3. The z components of the refractive index for (a) and (b) the R wave and (c)
and (d) the L wave as a function of x2

pe=x
2.
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Hence, dk can be neglected as compared to k only for a small propaga-
tion distance

jzj � L0:

It should be noted that this is an ad hoc assumption introduced here
in order to reduce the problem to an algebraic equation rather than a
partial differential equation.

Now the contributions to the wave equation can be computed
such that

r� E ¼ 1
2
rs� ~E þ sr� ~E þ c:c:½ �

and

r� ðr � EÞ ¼ 1
2



k � k � ðk � kÞI
� 

~Es

þ Oðk20�Þ þ O k20
jzj
L0

� �
þ c:c:

�
; (9)

where I denotes the identity tensor.
The wave vector given by Eq. (5) denotes the local propagation

direction at each position r exp ½isgnðlÞu�. The propagation direction
of the optical vortex “as a beam” is given by the averaged k on u from
0 to 2p, i.e.,

kz ¼ �k  1
2p

ð2p
0
kdu ¼ 1

2p

ð2p
0
kzdu

 !
ez  �kzez:

If the field line of the wave vector k is traced in space, the helical struc-
ture appears. In the eikonal approximation, i.e., Er / exp ½iSðr;u; zÞ�,
where SðrÞ expresses the phase front structure expressed as

SðrÞ ¼ �ijlj log r þ luþ w;

rSðrÞ 	 k ¼ �i jlj
r
rr þ lruþ kzrz;

exp iSðrÞ½ � ¼ rjlj exp iðluþ wÞ½ �:

This approximation can be called “vortex optics” as a reference to
“geometrical optics” in plane waves. The description of vortex optics
can provide a good insight to the propagation properties, but the
description is limited under the ordering assumptions. The wave vec-
tor k of a plane wave should be in one direction in the Cartesian coor-
dinates. However, the direction of k of the wave with a helical
wavefront should be rotated. Ray-tracing can be applied to vortex
optics in the same way as geometrical optics. The picture of ray-
tracing in vortex optics will match that of a photon rotating around
the propagation axis, carrying OAM. Figure 1 shows a schematic

FIG. 4. Electric field strength of each component for (a) and (c) the vortex R waves
and (b) and (d) the vortex L waves averaged along u (see Fig. 5) as a function of
x2

pe=x
2 in the cases of (a) and (b) l¼ 1 and (c) and (d) l¼ –1, respectively, at

r ¼ 5k0, and those for the conventional R and L waves of a plane wave for
comparison.

FIG. 5. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 1 and [(d)–(f)] the vortex R wave for l¼ –1 as a function of x2

pe=x
2 and u at

r ¼ 5k0.
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diagram of propagation of the optical vortex. The depicted equiphase
plane shows a helical wavefront along with a twisted photon with
OAM, in contrast to a flat wavefront of a plane wave without OAM. If
the electric field E does not include the amplitude factor rjlj, the radial
derivative of E is zero under the ordering assumptions. This is not real
in the description of optical vortices around the phase singularity.
Therefore, the local wave vector k in the eikonal approximation should
contain the term in the r direction even if it is imaginary. If the ampli-
tude ~E is assumed to be slowly varying and the paraxial approximation
is applied, the LG beam will be obtained from Eq. (2).

B. Telegraphic equation in cold plasma

The wave field written in Eq. (3) is appropriate to study prop-
agation properties of optical vortices in cold uniform magnetized
plasma. Since the plasma has been presumed to be simply uniform
and homogeneous in both space and time, the wave electric field
is assumed in the Cartesian coordinates system (x, y, z) to be
written as

E ¼ 1
2

~Eaðr0Þjlj exp iðlu0 þ w0 � xtÞ
� �

þ c:c:
n o

; (10)

where

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Þ2 þ ðy0Þ2

q
; u0 ¼ tan�1

y0

x0
;

w0 ¼
ðz0
0
kz0 ðr0;u0; z00Þdz00;

x0

y0

z0

0
BB@

1
CCA ¼

cos h 0 �sin h

0 1 0

sin h 0 cos h

0
BB@

1
CCA

x

y

z

0
BB@

1
CCA:

The coordinate system is defined as shown in Fig. 2. The static
magnetic field B0 is directed in the z direction. The optical vortex
propagates in the z0 direction, which lies in the x-z plane. The propa-
gation angle h is the angle between B0 and the averaged wave vector

FIG. 6. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 1 and (c) and

(d) l¼ –1, respectively, at r ¼ 5k0, and those for the conventional R and L waves
of a plane wave for comparison. The Poynting vector is normalized by the averaged
jSj value along u from 0 to 2p.

FIG. 7. Electric field strength of each component for (a) and (c) the vortex R waves
and (b) and (d) the vortex L waves averaged along u (see Fig. 8) as a function of
x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and (d) l¼ –20, respectively, at

r ¼ 20k0, and those for the conventional R and L waves of a plane wave for
comparison.
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�k ¼ �kz0ez0 , where the wave vector is redefined in the coordinate system
as

k ¼ kr0 þ ku0 þ kz0 ;

kr0 ¼ �i
jlj
r0
ðcosu0 cos h; sinu0;�cosu0 sin hÞ;

ku0 ¼
l
r0
ð�sinu0 cos h; cosu0; sinu0 sin hÞ;
kz0 ¼ ðkz0 sin h; 0; kz0 cos hÞ;

�kz0 ¼
1
2p

ð2p
0
kz0du

0:

The wave field can also have a parallel component to the propaga-
tion direction z0 even in the vacuum although a plane wave is a
transverse wave without a parallel component to the propagation
direction.

Since the linear form of the equation of motion is the same as
that in the case of a plane wave,1,13 the cold plasma dielectric tensor is
given by

erðxÞ ¼
SðxÞ �iDðxÞ 0

iDðxÞ SðxÞ 0

0 0 PðxÞ

0
BB@

1
CCA; e�r ð�xÞ ¼ erðxÞ; (11)

where the dielectric tensor elements S, D, and P are the same notation
of Stix.1,13

Then, using Eq. (9), the telegraphic equation (2) can be written in
the Cartesian coordinates as

1
2

Kðx; kÞ � ~Es0 þ K�ð�x; kÞ � ~E�ðs0Þ�
� �

¼ 0; (12)

where

Kðx; kÞ  k � k � ðk � kÞI þ k20erðxÞ;
s0  aðr0Þjlj exp iðlu0 þ w0 � xtÞ

� �
:

The tensor K is the standard cold-plasma tensor evaluated at the com-
plex wave vector k. The first two terms of the tensor K are symmetric
but K is not a Hermitian tensor. This characteristic is caused by the
complex k. Therefore, the helical wavefront structure is expected to
produce different propagation properties in comparison to a plane
wave. It is also important to notice that Eq. (12) does not simply
account for dispersion, but it also includes diffraction effects, as shown
in Appendix A. Since K is not a Hermitian tensor, the eigenvalues are
not always real numbers and the eigenvectors are not always orthogo-
nal to each other. The determinant of each coefficient matrix of Eq.
(12) should be zero in order to have a non-trivial solution. By using
n ¼ ðc=xÞk, where n is the refractive index,

FIG. 8. Electric field strength of each component for [(a)–(c)] the vortex L wave for
l¼ 20 and [(d)–(f)] the vortex R wave for l¼ –20 as a function of x2

pe=x
2 and u at

r ¼ 20k0.

FIG. 9. Poynting vectors for (a) and (c) the vortex R waves and (b) and (d) the vor-
tex L waves as a function of x2

pe=x
2 in the cases of (a) and (b) l¼ 20 and (c) and

(d) l¼ –20, respectively, at r ¼ 20k0, and those for the conventional R and L
waves of a plane wave for comparison. The Poynting vector is normalized by the
averaged jSj value along u from 0 to 2p.
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det n� n� ðn � nÞI þ er½ � ¼ 0 (13)

expresses the solvability condition for Eq. (12). With the complex
wave vector k under the ordering assumptions, Eq. (13) can be treated
simply as an algebraic equation. When the wave is a plane wave, i.e.,
l¼ 0, Eq. (13) is reduced to the dispersion relation with a plane wave.

The Poynting vector of a monochromatic electromagnetic wave
with complex n is written as

S ¼ 1
l0

E � B

	 1
4cl0

j~Ej2ðnþ n�Þ � ð~E� � nÞ~E � ð~E � n�Þ~E�
� 

� jaj2ðr0Þ2jlje�2Imw0 : (14)

Here, E � B means that the second harmonic oscillating terms are
annihilated by the time average. In other words, S is evaluated in the
average over a period in time. The derivation is shown in Appendix B.
Divergence of the Poynting vector gives the source or the sink of the
electromagnetic wave energy, which is written as

r � S 	 �k20
jaj2ðr0Þ2jlje�2Imw0

2l0x
~E
� � ear � ~E ¼ 0;

FIG. 10. The z0 components of the refractive index for (a) and (b) the vortex O
mode and (c) and (d) the vortex X mode averaged along u0 (see Fig. 11) as a func-
tion of x2

pe=x
2 in the case of l¼ 1 at r 0 ¼ 5k0, and those for the conventional O

and X modes of a plane wave for comparison.

FIG. 11. The z0 components of the refractive index for (a) and (b) the vortex O
mode and (c) and (d) the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 1 at r 0 ¼ 5k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.

FIG. 12. The z0 components of the refractive index for (a) and (b) the conventional
O mode and (c) and (d) the conventional X mode of a plane wave as a function of
x2

pe=x
2 and u0 . The refractive index larger/smaller than 2/–2 is colored the same

as 2/–2.
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where the last equality holds for a loss-less medium (ear ¼ 0). The deri-
vation is also shown in Appendix B. This equation shows that the elec-
tromagnetic wave energy is conserved when er is Hermitian. This
energy conservation is satisfied even if n is complex due to the helical
wavefront structure.

C. Parallel propagation

Two special cases are discussed in more detail in the following:
(i) parallel propagation and (ii) perpendicular propagation. First, in
the case of parallel propagation, i.e., h¼ 0, the solvability condition Eq.
(13) becomes

det
S� n2z � n2l �iD� isgnðlÞn2l �inlnz

iD� isgnðlÞn2l S� n2z þ n2l sgnðlÞnlnz
�inlnz sgnðlÞnlnz P

0
@

1
A ¼ 0;

where

FIG. 13. Electric field strength of each component for (a) the vortex O mode and
(b) the vortex X mode averaged along u0 (see Fig. 14) as a function of x2

pe=x
2 in

the case of l¼ 1 at r 0 ¼ 5k0, and those for the conventional O and X modes of a
plane wave for comparison.

FIG. 14. Electric field strength of each component for [(a)–(c)] the vortex O mode
and [(d)–(f)] the vortex X mode as a function of x2

pe=x
2 and u0 in the case of l¼ 1

at r 0 ¼ 5k0.

FIG. 15. Electric field strength of each component for [(a)–(c)] the conventional O
mode and [(d)–(f)] the conventional X mode of a plane wave as a function of
x2

pe=x
2 and u0 .
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nl 
c
x

jlj
r0eisgnðlÞu0

; r0 ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; u0 ¼ u ¼ tan�1

y
x
:

The refractive index nz0 ¼ nz can be obtained as

ðn2z � RÞðn2z � LÞ ¼ 0;

[ n2z ¼ R ð Sþ DÞ; L ð S� DÞ;

which are the eigenmodes for the so-called right-handed or the so-
called left-handed circularly polarized waves (R or L waves) in the
magnetized plasma. Figure 3 shows an example of the z components
of the refractive index for the R wave and the L wave as a function of
x2

pe=x
2 / ne, where xpe and ne denote the angular plasma frequency

for electrons and the electron density. In these calculations, the static
magnetic field strength B0 is set 2T for f¼ 77GHz,14 thus
xce=x ¼ 0:73, where xce denotes the angular EC frequency. The z
components of the refractive index are the same as in the case of a
plane wave.

However, resultant electric field polarizations are different as fol-
lows. In the case of the “vortex” R wave, n2z  n2R ¼ R, the electric field
components are

~ER ¼ 1; i; 0½ �~Ex ðl 
 0Þ;

~ER ¼ 1; i
PDþ n2l ðP � n2RÞ
PD� n2l ðP � n2RÞ

; 2i
nlnRD

PD� n2l ðP � n2RÞ

" #
~Ex ðl < 0Þ

while in the case of the vortex L wave, n2z  n2L ¼ L, the electric field
components are

~EL ¼ 1;�iPD� n2l ðP � n2LÞ
PDþ n2l ðP � n2LÞ

; 2i
nlnLD

PDþ n2l ðP � n2LÞ

" #
~Ex ðl 
 0Þ;

~EL ¼ 1;�i; 0½ �~Ex ðl < 0Þ:

Here, ~Ex is the amplitude but it is not determined only from Eq. (12).
The amplitude can be determined with a boundary condition such as
a launching antenna where the electric field is excited. Both waves
satisfy

r � D 	 1
2

ik � e0erðxÞ � ~Es
� 

� ik� � e0e
�
r ð�xÞ � ~E�s�

n oh i
¼ 0;

although ~ER � ~E
�
L 6¼ 0. For the right-handed optical vortex with l> 0,

the vortex R wave is the pure R wave, but the vortex L wave has a par-
allel component and is not a left-handed circular polarization, which is
different from the pure L wave. For the left-handed optical vortex with
l< 0, the vortex L wave is the pure L wave, but the vortex R wave has a
parallel component and is not a right-handed circular polarization,
which is different from the pure R wave. Thus, the polarization of the
vortex waves should be expressed in 3D.

FIG. 16. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 17) as a
function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison.

FIG. 17. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l¼ 20 at r 0 ¼ 20k0. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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The property of energy flux conservation in cold uniform
magnetized loss-free plasma can be found in plots of S in Eq. (14).
Figure 4 shows the electric field strength of each component for
the vortex R waves and the vortex L waves averaged on u as a func-
tion of x2

pe=x
2 in the cases of l¼ 1 and l¼ –1, respectively, at

r ¼ 5k0. Each electric field component of a plane wave is also
shown for comparison. The dependence of each electric field com-
ponent on u is shown in Fig. 5. The Poynting vectors as a function
of x2

pe=x
2 in these cases are shown in Fig. 6. Here, the scale length

L0 is chosen to be L0 ¼ 100k0, which satisfies the validity condi-
tions given by Eqs. (4) and (8). The chosen scale length is applied
to following results as well. The averaging operation on u for the
electric field strength and the Poynting vector is considered to be
worth performing because a photon rotates around the propaga-
tion axis, carrying OAM, in a classical point of view, as shown in
Fig. 1. In parallel propagation, the Poynting vector is axisymmetric
around the propagation axis, i.e., no dependence on u, although
the electric field is not axisymmetric. The L wave with positive
l and the R wave with negative l are not pure circular polarization
due to finite values of their parallel components. Because of the
dependence of Ez on P, in particular, the parallel components are
prominent at the plasma cutoff where P¼ 0. The calculated

Poynting vector shows the exchange of the energy flux between Sz
and Su according to the proportion of the parallel component
under the energy conservation in the propagation region where
Imnz0 ¼ Imnz ¼ 0. The u component Su means the rotating
energy flux along the helical wavefront. It is noted that Sr¼ 0 is sat-
isfied, so that the energy flux is neither dissipative nor radially dif-
fusive under r � S 	 0. These properties are maintained with
increased l/r.

Interestingly for the vortex L wave in the case of l¼ 20 at
r ¼ 20k0 [which also satisfies the validity condition given by Eq.
(8)], as shown in Figs. 7–9, it is found that a reversal of the Sz
direction occurs at the plasma cutoff, where the absolute value of
the sum of the latter negative two terms of Sz given by Eq. (14)
becomes larger than the positive value of the first term. The wave
with n2z ¼ L > 0 propagates forward but the energy flows back-
ward, similar to a backward wave. The reversal area becomes
wider with increasing l/r.

D. Perpendicular propagation

Second, in the case of perpendicular propagation, i.e., h ¼ p=2,
the solvability condition Eq. (13) becomes

det

S �iDþ sgnðlÞnlnx inlnx

iDþ sgnðlÞnlnx S� n2x þ n2l isgnðlÞn2l
inlnx isgnðlÞn2l P � n2x � n2l

0
BB@

1
CCA ¼ 0;

where

FIG. 18. Electric field strength of each component for (a) the vortex O mode and
(b) the vortex X mode averaged along u0 (see Fig. 19) as a function of x2

pe=x
2 in

the case of l¼ 20 at r 0 ¼ 20k0, and those for the conventional O and X modes of
a plane wave for comparison.

FIG. 19. Electric field strength of each component for [(a)–(c)] the vortex O mode
and [(d)–(f)] the vortex X mode as a function of x2

pe=x
2 and u0 in the case of

l¼ 20 at r 0 ¼ 20k0.
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nl 
c
x

jlj
r0eisgnðlÞu0

; r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
; u0 ¼ tan�1

y
�z :

The refractive index nz0 ¼ nx can be obtained as

n4x þ an2x þ b ¼ 0;

a  � P þ RL
S

� �
� n2l

P
S
� 1

� �
;

b  PRL
S
þ n2l P � RL

S

� �
;

[ n2x ¼
1
2
�a6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p� �
;

(15)

where the terms related to nl are additions to the refractive indices
with a plane wave. The two eigenmodes can be called the vortex ordi-
nary (O) mode and the vortex extraordinary (X) mode. The eigenmo-
des are reduced to the conventional O and X modes when the terms
related to nl vanishes, i.e., l¼ 0 or r0 ! 1, so that these refractive
indices depending on nl are noticeable in the optical vortex with a large
topological charge around the propagation axis. The z components of
the refractive index for parallel propagation do not depend on nl
because the direction of the wave vector k in relation to B0 is axisym-
metric around the propagation axis. On the other hand, the z0

components of the refractive index for perpendicular propagation are
modulated with u0 since the direction of k in relation to B0 changes
with u0 around the propagation axis. That is why the electric field for-
mulation in Eq. (3) is started with kz, assumed to be a function of r
andu. The relations of electric field components to calculate the polar-
ization are given by

~Ex ¼
1
S

iD� sgnðlÞnlnr
� 

~Ey � i
nlnr

S
~Ez;

~Ez ¼
ðD2 þ n2l n

2
rÞ � SðS� n2r þ n2l Þ

nl Dnr � isgnðlÞnln2r þ isgnðlÞnlS
�  ~Ey;

ðr ¼ O;XÞ;
(16)

which satisfyr � D 	 0, although ~EO � ~E
�
X 6¼ 0.

In order to investigate the propagation properties of the vortex O
and X modes, the z0 components of the refractive index for the two
eigenmodes are calculated for the optical vortices with (i) l¼ 1 at r0

¼ 5k0 and (ii) l¼ 20 at r0 ¼ 20k0. Again, the scale length L0 is chosen
to be L0 ¼ 100k0, so that both cases satisfy the validity conditions
given by Eqs. (4) and (8). Figure 10 shows refractive indices for the
vortex O mode, nz0  nO, and the vortex X mode, nz0  nX, as a func-
tion of x2

pe=x
2 in the case of l¼ 1 at r0 ¼ 5k0. nO and nX are averaged

along u0 to be compared with the conventional O and X modes of a
plane wave. Figure 11 shows nO and nX as a function of x2

pe=x
2 and

u0 in the case of l¼ 1 at r0 ¼ 5k0. Figure 12 shows nO and nX of a
plane wave (l¼ 0) as a function of x2

pe=x
2 and u0 as a reference

although they do not depend on u0. Here, for l 6¼ 0, since there are

FIG. 20. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode averaged along u0 (see Fig. 21) as a
function of x2

pe=x
2 in the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional

O and X modes of a plane wave for comparison.

FIG. 21. The z0 components of the refractive index for [(a) and (b)] the vortex O
mode and [(c) and (d)] the vortex X mode as a function of x2

pe=x
2 and u0 in the

case of l=ðr 0=k0Þ ¼ 2p. The refractive index larger/smaller than 2/–2 is colored
the same as 2/–2.
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two complex conjugate roots of the squared refractive index for each
mode ðr ¼ O;XÞ, the sign is chosen in the following ways: (i) The
positive imaginary part is chosen for Ren2r � 0 so that the imaginary
part averaged on u0 with the small real part becomes almost the con-
ventional imaginary part with zero real part in the evanescent region.
(ii) The positive real part is chosen for Ren2r > 0 so that the forward
propagation can be treated with zero or the small imaginary part. As a
result, nO and nX in the case of l¼ 1 at r0 ¼ 5k0 are almost identical to
the conventional nO and nX. Figure 13 shows electric field strength of
each component for the vortex O mode and the vortex X mode aver-
aged on u0 as a function of x2

pe=x
2 in the case of l¼ 1 at r0 ¼ 5k0.

Each electric field component of a plane wave is also shown for com-
parison. The dependence of each electric field component on u0 in the
case of l¼ 1 at r0 ¼ 5k0 is shown in Fig. 14. For a reference, the depen-
dence of each electric field component on u0 for a plane wave is also
shown in Fig. 15 although the electric field does not depend on u0.
The result indicates that the electric field pattern in the case of l¼ 1 at
r0 ¼ 5k0 is almost identical to that in the case of a plane wave.

Figures 16 and 17 show nO and nX in the case of l¼ 20 at
r0 ¼ 20k0. Those refractive indices nO and nX are modulated with
u0, but those averaged along u0 are almost identical to the conven-
tional nO and nX. Figures 18 and 19 show the electric field strength
of each component for the vortex O mode and the vortex X mode
in the case of l¼ 20 at r0 ¼ 20k0. The z component of the electric
field, Ez, parallel to B0 is dominant for the vortex O mode as in the
conventional O mode with a plane wave, but the finite strength of
the other two components, Ex and Ey, exist in a wide range of ne.
The vortex O mode is not the pure linear polarization directed in
B0 and has a component parallel to the propagation direction.
Although the conventional O mode is not affected by B0, the vor-
tex O mode is affected by B0 due to the new terms on nl in Eq. (15)
which include S with B0. It is noted that P � RL=S ¼ P=S� 1, thus
the terms on nl are not affected by R and L. This refractive index
with the wave with a helical wavefront suggests that the vortex O
mode can experience the effect of the upper hybrid resonance
(UHR) at S¼ 0 when nl / jlj=r0 becomes large. The vortex X mode
shows a similar trend to the conventional X mode with a plane
wave but has a component parallel to B0. The electric fields for
both modes are modulated with u0, but the contribution of the nl
terms to the z0 components of the refractive index is too small to
change the refractive indices of the vortex O and X modes com-
pared to the conventional modes with a plane wave.

The theory discussed here is valid for r0 limited by Eq. (8). Under
reasonable choices of l and L0, the element of the first condition
jljk0=ð2pÞ is normally shorter than that of the second condition

FIG. 22. Electric field strength of each component for (a) the vortex O mode and
(b) the vortex X mode averaged along u0 (see Fig. 23) as a function of x2

pe=x
2 in

the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional O and X modes of a
plane wave for comparison.

FIG. 23. Electric field strength of each component for [(a)–(c)] the vortex O mode
and [(d)–(f)] the vortex X mode as a function of x2

pe=x
2 and u0 in the case of

l=ðr 0=k0Þ ¼ 2p.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlj=ð2pÞ

p ffiffiffiffiffiffiffiffiffi
k0L0
p

. Thus, in the two cases of l¼ 1 and l¼ 20 dis-
cussed above, r0 is chosen by the limit of the second element. Aside
from how an optical vortex with huge l and a huge beam radius
can be generated practically, it is theoretically valuable to investi-
gate the region where the first element is greater than the second
element; thus, r0 is chosen by the limit of the first element. Because
nl is proportional to jlj=r0, the effect of the new nl terms on the
refractive indices is most significant when l=ðr0=k0Þ ¼ 2p. The
results of this case are shown in Figs. 20 and 21. The refractive
indices nO and nX deviate from the conventional indices of a plane
wave, strongly modulated with u0. As suggested by the new terms
on nl, the vortex O mode is influenced by the UHR from the lower
ne side and then seems to become evanescent in the higher ne side.
As in the conventional X mode, the UHR also occurs for the vortex
X mode from the higher ne side and the vortex X mode can propa-
gate in the higher ne region with the zero imaginary part although
the vortex X mode seems to become evanescent between the modi-
fied right-hand (R) cutoff and the UHR with the positive imagi-
nary part. Figures 22 and 23 show electric field strength of each

component for the vortex O mode and the vortex X mode in the
case of l=ðr0=k0Þ ¼ 2p. The electric field components entirely devi-
ate from the conventional electric field components in a plane
wave. Due to the effect of S in the nl term, not only the electric field
of the vortex X mode but also the electric field of the vortex O
mode is affected by the UHR, specifically at u0 ¼ 0 and p where
n2l ¼ 1. The parallel component Ex is comparable to the other two
components even in the vortex O mode. One may expect that the
electric fields of both modes become similar to each other around
the UHR where nO also diverges when jlj=r0 can be much larger.
However, the region where jlj=ðr0=k0Þ > 2p is not accessible
because the theory discussed here is not valid there. The region
may be accessible when the ordering assumptions can be relaxed to
treat smaller r0 and a partial differential equation for a complex-
valued phase function wðr0;u0; z0Þ can be solved instead of the alge-
braic equation (12), which is left for a future article. If the expecta-
tion is valid in the more-advanced theory, Ex, parallel to the
propagation direction, would become the largest component for
both modes with a high wavenumber around the UHR. This
unique property of propagation implies that the vortex O mode
injected from the lower ne side can be converted into the vortex X
mode at the UHR. In addition, it would be anticipated that the
direct conversion from the vortex O mode into the electron
Bernstein wave (EBW) partly occurs at the UHR when a finite elec-
tron temperature is taken into account. This method is relatively
similar to the mode conversion method in which the EBW is
excited from the X mode injected perpendicularly from the low

FIG. 24. Poynting vectors for (a) the vortex O mode and (b) the vortex X mode as
a function of x2

pe=x
2 in the case of l¼ 1 at r 0 ¼ 5k0, and those for the conven-

tional O and X modes of a plane wave for comparison. The Poynting vectors are
normalized by the averaged jSj value along u0 from 0 to 2p (see Fig. 25).

FIG. 25. Poynting vectors for [(a)–(c)] the vortex O mode and [(d)–(f)] the vortex X
mode as a function of x2

pe=x
2 and u0 in the case of l¼ 1 at r 0 ¼ 5k0. The

Poynting vectors are normalized by the averaged jSj value along u0 from 0 to 2p.
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field side, whose disadvantage is that the X mode should penetrate
through the evanescent region. This paper focuses only on the
propagation properties in cold plasma under the strong limitation
in the ordering assumptions. This new suggestion for the mode
conversion should be verified also in a future article.

Contrary to parallel propagation, the refractive index, the electric
field, and the Poynting vector in perpendicular propagation are not
axisymmetric. However, the property of constant energy flux averaged
along u0 can be maintained. Figures 24–29 show the Poynting vectors
in the cases of l¼ 1 at r0 ¼ 5k0, l¼ 20 at r0 ¼ 20k0, and ideal
l=ðr0=k0Þ ¼ 2p. For a reference, the dependence of the Poynting vec-
tor for a plane wave is also shown in Fig. 30. It is noted thatr � S 	 0
is satisfied locally in all three cases. Although the calculated Poynting
vector shows the exchange of the energy flux among all three compo-
nents including Sr0 under the energy conservation in the propagation
region where Imnz0 ¼ Imnx ¼ 0, the averaged Sr0 along u0 over a
period from 0 to 2p becomes zero. Therefore, the property of constant
non-dissipative radially-non-diffusive energy flux is maintained under
the energy conservation even if n is complex due to the helical wave-
front structure. It is anticipated that in increased jlj=r0 the energy

averagely flows forward along with the rotating energy flux in the
plasma beyond the plasma cutoff for the vortex O mode and the left-
hand cutoff for the vortex X mode.

III. PROPAGATION OF AN EC WAVE WITH A HELICAL
WAVEFRONT WITH 3D SIMULATIONS

Propagation properties of an EC wave with a helical wavefront
are discussed in Sec. II by using Eq. (10), which is suitable for investi-
gating analytically as has been done with a plane wave. In real situa-
tions for practical use, however, the wave amplitude is restricted to a
finite beam size. In this section, propagation of LG beams is numeri-
cally investigated with 3D simulations by the commercial FEM (finite
element method) software, COMSOL Multiphysics with its RF
solver.15–18 The simulation box is limited to a cube with a side length
of 20mm due to computational resources. The size of tetrahedral
meshes is 0.3mm at a maximum and 0.03mm at a minimum. The
wave frequency f is set at 77GHz. The static magnetic field B0 is set at
2T in the z direction. In order to excite the O mode, Ez in a form of
the LG beam is excited at the plane of x¼ 0, given by

Ezðx; y; zÞ ¼ E0
r2

w2ðxÞ

 !jlj
w0

wðxÞ

� exp � r2

wðxÞ2
þ i �k0

r2

2RðxÞ � luþ ðjlj þ 1ÞfðxÞ
( )" #

at x ¼ 0; ð17Þ

FIG. 26. Poynting vectors for (a) the vortex O mode and (b) the vortex X mode as
a function of x2

pe=x
2 in the case of l¼ 20 at r 0 ¼ 20k0, and those for the conven-

tional O and X modes of a plane wave for comparison. The Poynting vectors are
normalized by the averaged jSj value along u0 from 0 to 2p (see Fig. 27).

FIG. 27. Poynting vectors for [(a)–(c)] the vortex O mode and [(d)–(f)] the vortex X
mode as a function of x2

pe=x
2 and u0 in the case of l¼ 20 at r 0 ¼ 20k0. The

Poynting vectors are normalized by the averaged jSj value along u0 from 0 to 2p.
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where

r2 ¼ y2 þ z2; u ¼ tan�1
y
�z ;

wðxÞ ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x � xR

xR

� �2
s

; xR ¼
pw2

0

k0
;

RðxÞ ¼ ðx � xRÞ 1þ xR
x � xR

� �2
( )

; fðxÞ ¼ tan�1
x � xR
xR

:

The focal point xR is set at 10mm and the beam waist w0 becomes
3.5mm in the vacuum. Propagation of the excited wave in the x
direction is calculated by solving the telegraphic equation given by
Eq. (2). Here, the cold plasma dielectric tensor er given in Eq. (11)
includes the effect of collisions1 with the artificial collision fre-
quency of �0 ¼ 0:01x. The specific number of 0.01 is simply an ad
hoc number in order to prevent numerical divergence at the UHR
where resonant waves with high wavenumbers should be collision-
ally damped. The scattering boundary condition (SBC) is applied
to the boundaries of the cube so that waves can pass through the

domain boundaries without reflection. The SBC is one of the
ready-made functions of the COMSOL RF solver. A numerical test
of LG beam propagation is performed in the vacuum condition to
be compared with theoretical LG beam propagation. The result
shows good agreement with each other.

In order to confirm whether the COMSOL model is correctly
constructed, the refractive indices are calculated with COMSOL under
constant ne in the modeling domain. Figure 31 shows the comparison
of the theoretical refractive indices calculated from Eq. (15) and those
calculated with the COMSOL model in the case of l¼ 1. The refractive
index for each COMSOL simulation is obtained by fitting the electric
field profile to the LG beam given by Eq. (17). The results indicate that
the COMSOL simulations reproduce the theoretical refractive indices
in the case of l¼ 1.

Then, propagation of LG beams is calculated under a varied ne
profile. The ne profile is set to change in the x direction, given by
neðxÞ ¼ ne;maxx=Ln, where ne;max ¼ 5� 1019 m�3 and Ln¼ 20mm.
Thus, the R cutoff layer and the UHR layer exist in the simulation box.
The magnetized plasma is uniform in the y and z directions. Figure 32
shows the amplitude distributions of Ez and Ex on the x-y plane at
z¼ 0mm in the case of l¼ 0. The topological charge of l¼ 0 means
the conventional Gaussian beam without OAM, which is commonly
used for EC heating and current drive in magnetic fusion plasma. The
excited linearly polarized Ez parallel to B0 is observed to propagate in
the x direction, under the O-mode polarization maintained. The
amplitude of Ex is negligible in comparison to that of Ez. Although a

FIG. 28. Poynting vectors for (a) the vortex O mode and (b) the vortex X mode as
a function of x2

pe=x
2 in the case of l=ðr 0=k0Þ ¼ 2p, and those for the conventional

O and X modes of a plane wave for comparison. The Poynting vectors are normal-
ized by the averaged jSj value along u0 from 0 to 2p (see Fig. 29).

FIG. 29. Poynting vectors for [(a)–(c)] the vortex O mode and [(d)–(f)] the vortex X
mode as a function of x2

pe=x
2 and u0 in the case of l=ðr 0=k0Þ ¼ 2p. The

Poynting vectors are normalized by the averaged jSj value along u0 from 0 to 2p.
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Gaussian beam is excited, a more complicated wave pattern of Ez such
as higher-order modes is observed. This pattern is not observed in
lower ne plasma. This cause is not clear yet but the scattered waves by
relatively high ne plasma may be partially reflected at the boundaries.
Larger simulation boxes may improve purity of the mode pattern.
Figure 33 shows the phase distributions of Ez and Ex on the y-z planes
at x¼ 0mm and x¼ 20mm. The phase is calculated by
Er ¼ tan�1ðImEr=ReErÞ for r ¼ z; x. The phase distribution of Ez at
x¼ 0mm follows the contours of the function lu mod 2p. Due to zero
OAM, the phase of Ez is almost axisymmetric around the propagation
axis of y ¼ z ¼ 0 mm. The phase distribution of Ex shows discontinu-
ities, e.g., at z¼ 0mm. Although the amplitude of Ex is negligible com-
pared to that of Ez, finite Ex exists and it seems that the polarity of Ex
changes at z¼ 0mm. However, this phase pattern is not characterized
with lu of an optical vortex.

A remarkable phenomenon is observed in the propagation of an
EC wave with a helical wavefront in the case of l¼ 1, as shown in Figs.
34 and 35. The excited LG beam Ez with l¼ 1 propagates to the UHR
layer with S¼ 0. Then, the beam is observed to diffuse outward over
the UHR layer, while Ex parallel to the propagation direction with the
wavenumber much higher than that of Ez is observed to be excited
and to propagate to the higher ne region. The amplitude of Ex seems
to be larger around the propagation axis, while that of Ez is smaller
due to the outward diffusion. This result suggests that a portion of Ez
with the O-mode polarization is converted into Ex with the X-mode
polarization. The phase distribution of Ex around the propagation axis

with a smaller radius shows the property of l¼ 0, while that of Ez
shows the property of l¼ 1, probably because the relation of Ex and Ez
shown in Eq. (16) indicates that the topological charge of Ex is one
smaller than that of Ez due to the factor of 1=eiu. The property of l¼ 0
in Ex is recognized in Fig. 34(b), where the amplitude of Ex is similar
to a plane wave with high wavenumbers. It is noted that when the LG
beam with the X-mode polarization is excited, the X mode is reflected

FIG. 30. Poynting vectors for [(a)–(c)] the conventional O mode and [(d)–(f)] the
conventional X mode of a plane wave as a function of x2

pe=x
2 and u0 under

r 0 ¼ k0. The Poynting vectors are normalized by the averaged jSj value along u0

from 0 to 2p.

FIG. 31. Refractive indices of (a) the O mode and (b) the X mode calculated from
Eq. (15) averaged along u0 in the case of l¼ 1 and r 0 ¼ 5k0, and those calculated
with COMSOL simulations in the case of w0 ¼ 3:5 mm under constant ne.

FIG. 32. Amplitude distributions of (a) Ez and (b) Ex on the x-y plane at z¼ 0mm
in the case of l¼ 0.
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at the R cutoff layer and cannot propagate through the evanescent
region between the R cutoff layer and the UHR layer, so that the signif-
icant proportion of Ex shown in Fig. 34(b) is considered to be the X
mode converted from the O mode. Figures 36 and 37 show the case of
the LG beam excited with l¼ 2. In a manner similar to the case of
l¼ 1, Ex with the high wavenumber is excited at the UHR layer. The
topological charge of Ex is l¼ 1 around the propagation axis. Neither
larger simulation boxes nor larger l can be processed at the moment
due to limited computational resources.

IV. SUMMARY AND OUTLOOK

Propagation properties of EC waves with helical wavefronts are
investigated theoretically in cold uniform magnetized plasma. The
effects of the helical wavefront on the wave fields are described. These
effects become significant as the topological charge of the vortex EC
wave increases or the distance from the propagation axis becomes

small. The different properties of propagation are also confirmed in
COMSOL simulations with LG beams. It is found that a part of the O-
mode LG beam with the topological charge l excited at the lower ne
region is converted into the high-wavenumber X-mode LG beam with
l–1 at the UHR.

In order to demonstrate the new propagation properties of vortex
EC waves in heating and current-drive experiments, an optical vortex
with desired l must be generated in the millimeter-wave transmission
system and launched into magnetic fusion plasma. A spiral-shaped
mirror has been developed to generate an optical vortex with designed
l in a frequency range of millimeter waves.19 Thus, an optical vortex
can be generated by installing the spiral-shaped mirror between a
gyrotron and launching antenna mirrors in the existing transmission
line. This enables verification of whether an optical vortex can be a
tool to heat high-ne plasma.

FIG. 33. Phase distributions of (a) and (c) Ez and (b) and (d) Ex on the y-z planes
at (a) and (b) x¼ 0mm and (c) and (d) x¼ 20mm in the case of l¼ 0. Note that
the phase distribution of Ez at x¼ 0 follows the contours of the function lu mod 2p.

FIG. 34. Amplitude distributions of (a) Ez and (b) Ex on the x-y plane at z¼ 0 mm
in the case of l¼ 1.

FIG. 35. Phase distributions of (a) and (c) Ez and (b) and (d) Ex on the y-z planes
at (a) and (b) x¼ 0 mm and (c) and (d) x¼ 20 mm in the case of l¼ 1. Note that
the phase distribution of Ez at x¼ 0 follows the contours of the function lu mod 2p.

FIG. 36. Amplitude distributions of (a) Ez and (b) Ex on the x-y plane at z¼ 0mm
in the case of l¼ 2.
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APPENDIX A: DIFFRACTION EFFECT IN EQ. (12)

In order to see the effect of diffraction, one can observe that,
with kR ¼ Rek and kI ¼ Imk, the components of K are

Kmnðx; kÞ¼ K0;mnðx; kRÞ�
1
2
ðkI � kIÞ :

@2K0;mnðx; kRÞ
@kR@kR

þ ikI �
@K0;mnðx; kRÞ

@kR
þ ik20e

a
r;mn; (A1)

where

K0ðx; kRÞ  kR � kR � ðkR � kRÞI þ k20e
h
r

is the dispersion tensor including only real wave vector kR and the
Hermitian part ehr of the dielectric tensor. Here, the symbol : in Eq.
(A1) denotes the double dot product for two dyadics. Since K0 and
its derivatives are Hermitian tensors, two anti-Hermitian contribu-
tions are identified. One is due to kI and has to do with the ampli-
tude factor rjlj. The other one is the standard anti-Hermitian part of
er , which accounts for dissipation, and is neglected in cold plasma

away from EC resonances in the present analysis. The imaginary
part kI contributes to the Hermitian part as well. Such contributions
are known in complex eikonal theory to deform the dispersion
manifold in order to account for diffraction of the inhomogeneous
wave. The present analysis is only limited under the ordering
assumptions, where the effect of diffraction for long distance propa-
gation is out of scope in z beyond z � L.

APPENDIX B: POYNTING VECTOR AND ENERGY
CONSERVATION

From the wave electric field in Eq. (3), one finds

r� E ¼ 1
2
ðik � ~E þr� ~EÞsþ c:c:
� 

;

where k ¼ �iðjlj=rÞrr þ lruþ kzrz and s ¼ arjlj exp ½iðlu
þw� xtÞ�. Faraday’s law with x 6¼ 0 yields the magnetic field
amplitude

~B ¼ x�1ðk � ~E � ir� ~EÞ:

The average in time over a wave period of E � B is

E � B ¼ 1
4

~E � ~B
� þ ~E

� � ~B
� �

jaj2r2jlje�2Imw

	 1
4x

~E � ðk � ~E
�Þ þ ~E

� � ðk � ~E
�Þ

� 
jaj2r2jlje�2Imw

	 1
4x
j~Ej2ðk þ k�Þ � ð~E� � kÞ~E � ð~E � k�Þ~E�
� 

� jaj2r2jlje�2Imw;

where r� ~E has been neglected in the expression for the magnetic
field amplitude. Then, in SI units,

S ¼ 1
l0

E � B

	 1
4cl0

j~Ej2ðnþ n�Þ � ð~E� � nÞ~E � ð~E � n�Þ~E�
� 

� jaj2r2jlje�2Imw;

where n ¼ ck=x.
Energy conservation follows by computing directly the diver-

gence of this Poynting vector. Upon neglecting derivatives of k as
well as those of ~E under the ordering assumptions, one computes

r � S 	 jaj
2

4l0x
r r2jlje�2Imwð Þ

� 2j~Ej2kR � ð~E
� � kÞ~E � ð~E � k�Þ~E�

� 
	� jaj

2

2l0x
kI � 2j~Ej2kR � ð~E

� � kÞ~E � ð~E � k�Þ~E�
� 

� r2jlje�2Imw;

where the following identity is used:

r r2jlje�2Imwð Þ ¼ 2
jlj
r
rr � ImðkzrzÞ

� �
r2jlje�2Imw

¼ �2kIr2jlje�2Imw:

FIG. 37. Phase distributions of (a) and (c) Ez and (b) and (d) Ex on the y-z planes
at (a) and (b) x¼ 0mm and (c) and (d) x¼ 20mm in the case of l¼ 2. Note that
the phase distribution of Ez at x¼ 0 follows the contours of the function lu mod 2p.
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One can also observe that

kI � ð~E
� � kÞ~E þ ð~E � k�Þ~E�

� 
¼ ~E

� � kI � kR þ kR � kIð Þ � ~E

along with the identity

kI �
@K0ðx; kRÞ

@kR
¼ kI � kR þ kR � kI � 2ðkI � kRÞI:

With some abuse of notation, on the left-hand side and in the fol-
lowing similar expressions the dot-product denotes contraction of
the k indices, that is

kI �
@K0ðx; kRÞ

@kR

� �
mn
¼ kI �

@K0;mnðx; kRÞ
@kR

:

The combination of the foregoing identities gives

r � S 	 jaj
2r2jlje�2Imw

2l0x
~E
� � kI �

@K0ðx; kRÞ
@kR

� �
� ~E:

In general, the right-hand side is neither zero nor related to the dis-
sipation of the wave. However, if it is assumed that k and ~E are cho-
sen so that Kðx; kÞ � ~E ¼ 0 is satisfied. Then, multiplication on the
left by ~E

�
and the identity in Eq. (A1) give

~E
� � Kðx; kÞ � ~E ¼ ~E

� � K0ðx; kRÞ � ~E � ~E
�

� 1
2
ðkI � kIÞ :

@2K0ðx; kRÞ
@kR@kR

� �
� ~E

þ i~E
� � kI �

@K0ðx; kRÞ
@kR

� �
� ~E þ ik20~E

� � ear � ~E

¼ 0:

The real and imaginary parts of this expression can be separated.
The imaginary part, in particular, gives

~E
� � kI �

@K0ðx; kRÞ
@kR

� �
� ~E þ k20~E

� � ear � ~E ¼ 0:

Therefore, for solutions of Eq. (3), the energy balance becomes

r � S 	 �k20
jaj2r2jlje�2Imw

2l0x
~E
� � ear � ~E:

DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES
1D. G. Swanson, Plasma Waves, 2nd ed. (Institute of Physics Publishing, Bristol
and Philadelphia, 2003).

2I. Y. Dodin, D. E. Ruiz, K. Yanagihara, Y. Zhou, and S. Kubo, Phys. Plasmas
26, 072110 (2019).

3M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K. Ohmi, T. Kaneyasu, Y.
Taira, M. Hosaka, A. Mochihashi, and Y. Takashima, Phys. Rev. Lett. 118,
094801 (2017).

4L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys.
Rev. A 45, 8185 (1992).

5M. Padgett, J. Courtial, and L. Allen, Phys. Today 57(5), 35 (2004).
6M. Katoh, M. Fujimoto, N. S. Mirian, T. Konomi, Y. Taira, T. Kaneyasu, M.
Hosaka, N. Yamamoto, A. Mochihashi, Y. Takashima, K. Kuroda, A.
Miyamoto, K. Miyamoto, and S. Sasaki, Sci. Rep. 7, 6130 (2017).

7S. Matsuba, K. Kawase, A. Miyamoto, S. Sasaki, M. Fujimoto, T. Konomi, N.
Yamamoto, M. Hosaka, and M. Katoh, Appl. Phys. Lett. 113, 021106 (2018).

8T. Kaneyasu, Y. Hikosaka, M. Fujimoto, H. Iwayama, M. Hosaka, E.
Shigemasa, and M. Katoh, J. Synchrotron Radiat. 24, 934 (2017).

9T. Ii Tsujimura, S. Kubo, H. Takahashi, R. Makino, R. Seki, Y. Yoshimura, H.
Igami, T. Shimozuma, K. Ida, C. Suzuki, M. Emoto, M. Yokoyama, T. Kobayashi,
C. Moon, K. Nagaoka, M. Osakabe, S. Kobayashi, S. Ito, Y. Mizuno, K. Okada, A.
Ejiri, T. Mutoh, and LHD Experiment Group, Nucl. Fusion 55, 123019 (2015).

10N. B. Marushchenko, Y. Turkin, and H. Maassberg, Comput. Phys. Commun.
185, 165 (2014).

11Y. Goto, S. Kubo, and T. I. Tsujimura, J. Adv. Simul. Sci. Eng. 7, 34 (2020).
12T. Takahashi, Kogaku (Jpn. J. Opt.) 47, 30 (2018) (in Japanese), http://myosj.
or.jp/wp-content/themes/osj/download/kogaku/47-1/07.pdf.

13T. H. Stix, Waves in Plasmas (American Institute of Physics, New York, 1992).
14H. Takahashi, T. Shimozuma, S. Kubo, Y. Yoshimura, H. Igami, S. Ito, S.
Kobayashi, Y. Mizuno, K. Okada, T. Mutoh, K. Nagaoka, S. Murakami, M.
Osakabe, I. Yamada, H. Nakano, M. Yokoyama, T. Ido, A. Shimizu, R. Seki, K.
Ida, M. Yoshinuma, T. Kariya, R. Minami, T. Imai, N. B. Marushchenko, Y.
Turkin, and LHD Experiment Group, Phys. Plasmas 21, 061506 (2014).

15See https://www.comsol.com for Simulate real-world designs, devices, and pro-
cesses with multiphysics software from COMSOL.

16T. Mori, M. Nishiura, Z. Yoshida, N. Kenmochi, S. Katsura, K. Nakamura, Y.
Yokota, T. I. Tsujimura, and S. Kubo, Plasma Fusion Res. 14, 3401134 (2019).

17S. Shiraiwa, O. Meneghini, R. Parker, P. Bonoli, M. Garrett, M. C. Kaufman, J.
C. Wright, and S. Wukitch, Phys. Plasmas 17, 056119 (2010).

18C. Lau, L. A. Berry, E. F. Jaeger, and N. Bertelli, Plasma Phys. Controlled
Fusion 61, 045008 (2019).

19Y. Goto, T. I. Tsujimura, and S. Kubo, J. Infrared Millimeter Terahertz Waves
40, 943 (2019).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 012502 (2021); doi: 10.1063/5.0015109 28, 012502-19

Published under license by AIP Publishing

https://doi.org/10.1063/1.5095076
https://doi.org/10.1103/PhysRevLett.118.094801
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1063/1.1768672
https://doi.org/10.1038/s41598-017-06442-2
https://doi.org/10.1063/1.5037621
https://doi.org/10.1107/S1600577517009626
https://doi.org/10.1088/0029-5515/55/12/123019
https://doi.org/10.1016/j.cpc.2013.09.002
https://doi.org/10.15748/jasse.7.34
http://myosj.or.jp/wp-content/themes/osj/download/kogaku/47-1/07.pdf
http://myosj.or.jp/wp-content/themes/osj/download/kogaku/47-1/07.pdf
https://doi.org/10.1063/1.4884365
https://www.comsol.com
https://doi.org/10.1585/pfr.14.3401134
https://doi.org/10.1063/1.3396371
https://doi.org/10.1088/1361-6587/aafd04
https://doi.org/10.1088/1361-6587/aafd04
https://doi.org/10.1007/s10762-019-00614-z
https://scitation.org/journal/php

	s1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	d6
	s2A
	d7
	d8
	s2A
	f1
	f2
	f3
	d9
	s2A
	f4
	f5
	d10
	s2B
	f6
	f7
	d11
	d12
	s2B
	d13
	f8
	f9
	d14
	s2B
	f10
	f11
	f12
	s2C
	f13
	f14
	f15
	s2C
	f16
	f17
	s2D
	f18
	f19
	d15
	s2D
	d16
	f20
	f21
	f22
	f23
	f24
	f25
	s3
	d17
	f26
	f27
	s3
	f28
	f29
	f30
	f31
	f32
	s4
	f33
	f34
	f35
	f36
	dA1
	app1
	app2
	f37
	app2
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19

