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In this paper, a number of new explicit approximations are introduced to estimate the perturbative

diffusivity (v), convectivity (V), and damping (s) in cylindrical geometry. For this purpose, the

harmonic components of heat waves induced by localized deposition of modulated power are used.

The approximations are based on the heat equation in cylindrical geometry using the symmetry

(Neumann) boundary condition at the plasma center. This means that the approximations derived

here should be used only to estimate transport coefficients between the plasma center and the

off-axis perturbative source. If the effect of cylindrical geometry is small, it is also possible to use

semi-infinite domain approximations presented in Part I and Part II of this series. A number of new

approximations are derived in this part, Part III, based upon continued fractions of the modified

Bessel function of the first kind and the confluent hypergeometric function of the first kind. These

approximations together with the approximations based on semi-infinite domains are compared for

heat waves traveling towards the center. The relative error for the different derived approximations

is presented for different values of the frequency, transport coefficients, and dimensionless radius.

Moreover, it is shown how combinations of different explicit formulas can be used to estimate the

transport coefficients over a large parameter range for cases without convection and damping,

cases with damping only, and cases with convection and damping. The relative error between

the approximation and its underlying model is below 2% for the case, where only diffusivity and

damping are considered. If also convectivity is considered, the diffusivity can be estimated well in

a large region, but there is also a large region in which no suitable approximation is found. This

paper is the third part (Part III) of a series of three papers. In Part I, the semi-infinite slab

approximations have been treated. In Part II, cylindrical approximations are treated for heat waves

traveling towards the plasma edge assuming a semi-infinite domain.

[http://dx.doi.org/10.1063/1.4901311]

I. INTRODUCTION

In this paper, Part III of a series of three papers, approxi-

mate solutions are obtained of the heat equation in a cylindri-

cal domain with symmetry (Neumann) boundary condition

and the unknown diffusivity v, convectivity V, and damping

s. These unknown transport coefficients can be estimated

using the experimental data of heat pulse propagation. These

approximations should be used when heat waves travel

towards the center of the plasma, which is the case when the

plasma is perturbated using an off-axis heating source. For a

general introduction of the series of three papers, the reader

is referred to Ref. 1.

This paper is structured as follows. Section II gives an

overview of the relevant assumptions and models used for

perturbative transport analysis. Then, in Sec. III, continued

fractions are used to find approximations for v, V, and s.

Section IV gives an overview and comparison of possible

explicit approximations that can be used to estimate v, V,

and s for heat waves traveling towards the center. In Sec. V,

the main results are summarized and discussed for Part III

and, in Sec. VI, a general conclusion for the set of papers is

given.

II. MODELING OF THERMAL TRANSPORT

This section briefly reviews the relevant Partial

Differential Equation describing transport in fusion reactors

and its solution in the Laplace domain. This solution is nec-

essary to derive explicit approximations for the transport

coefficients, which is the subject of Sec. III. For a more
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extensive discussion on the heat equation, the reader is

referred to Refs. 1 and 2.

A. Perturbative transport analysis

Linearized thermal transport inside a fusion reactor is often

modeled as a one-dimensional radial transport in cylindrical ge-

ometry due to the magnetic confined plasma topology1,3,4

3

2

@

@t
nTð Þ ¼ 1

q
@

@q
nqv qð Þ

@T

@q
þ nqV qð ÞT

� �

� 3

2
nsinv qð ÞT þ Pmod; (1)

where v is the diffusivity, V is the convectivity, sinv is the

damping (sinv¼ 1/s), T is the electron temperature, n is the

density, q is the radius, and Pmod is a perturbative heat

source. Analytical solutions based on (1) can be derived

using a number of standard assumptions. These assumptions

are:2,3,5 constant transport coefficients with respect to time

and q (homogenous or uniform); no transients due to initial

conditions; on the considered domains Pmod¼ 0; and density

n is assumed constant with respect to q and time.

Under these assumptions, the analytical solution of (1)

in the Laplace domain can be expressed in terms of confluent

hypergeometric functions U and W2,6–8

H q; sð Þ ¼ ek1qD1 sð ÞW k2

k2 � k1

; 1; k2 � k1ð Þq
� �

þek1qD2 sð ÞU
k2

k2 � k1

; 1; k2 � k1ð Þq
� �

; (2)

where s is the Laplace variable

k1;2 ¼ �
V

2v
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

2v

� �2

þ 3

2

sþ sinv

v

s
; (3)

and H is the Laplace transformed temperature H ¼ LðTÞ.
The boundary constants are denoted by D1(s) and D2(s). If

V¼ 0, (2) can be simplified in terms of modified Bessel func-

tions I� and K� of order �¼ 0 resulting in Refs. 6 and 9

H q; sð Þ ¼
1ffiffiffi
p
p D1 sð ÞK0 zqð Þ þ D2 sð ÞI0 zqð Þ; (4)

with

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

sþ sinv

v

s
: (5)

The unknown boundary constants D1(s) and D2(s) need to be

determined or partly eliminated such that analytical solutions

can be determined, which are used in Sec. III to calculate v
explicitly.

B. Logarithmic temperature derivative and transfer
function

In Refs. 1 and 2, models have been derived to determine v
for heat waves traveling outwards in a cylindrical semi-infinite

domain. The semi-infinite domain is, in principle, unnatural as

there is a true finite boundary (in the form of a plasma end or

wall). However, this assumption is necessary to find approxi-

mations for v, V, and sinv. On the other hand, if heat waves

travel towards the center in a cylindrical geometry, the natural

boundary condition in a cylindrical system is a symmetry

(Neumann) boundary condition at q¼ 0, i.e.,

@H
@q

q ¼ 0ð Þ ¼ 0: (6)

Note that the choice of a symmetry boundary condition

makes the domain finite. This can be unrealistic in the con-

text of drift-wave turbulence as this results in a finite box

size. The drift wave turbulence has an inverse cascade,

which will make wave intensities pile up at the longest

wavelengths possible in the system (determined by the box

size) unless there is an efficient damping of long wave-

lengths. This will be due to zonal flows. This damping of

drift waves by zonal flows can be seen as a predator-prey

system. In steady state, there could be a balance between

zonal flows and drift waves such that drift waves with the

longest wavelengths (box size) are completely damped out.

In this case, absorbing (no reflections) boundary for long

wavelengths can be used as is chosen here. However, it takes

some time for the equilibrium state in the predator-prey

system to develop. This may mean that the equilibrium of

the predator-prey system may not have time to develop in

transient transport and, thus, reflections of waves occur, i.e.,

the absorbing boundary for long wavelengths as chosen here

may not be valid for transients. This could distort the relation

between steady state and transient transport and, in some

cases, make the method of perturbative transport analysis

less useful. This case is not considered here.

An advantage of assuming a (6) is that D1(s)¼ 0. This is

difficult to prove analytically, but in case V¼ 0, for this

boundary condition, D1(s)¼ 0 in (4).10 This indicates that

also D1(s)¼ 0 in (2) when V 6¼ 0. This has been numerically

verified in (2) by comparing it to finite difference simulations

using the boundary condition given in (6). This shows that

the error between the analytic and numerical simulations is

small and that the error is decreasing with increasing density

of the discretization grid. Hence, it is concluded that

D1(s)¼ 0 for a Neumann boundary condition in (2), i.e.,

H q; sð Þ ¼ D2 sð Þek1qU
k2

k2 � k1

; 1; k2 � k1ð Þq
� �

: (7)

Basically, there are two possibilities to handle the unknown

D2(s) when s¼ ix. One possibility is to use the logarithmic

temperature derivative ð@H=@qÞ=H to eliminate D2(s),

where H ¼ A exp ði/Þ resulting in (see Ref. 7 for the defini-

tion of the derivative of U)

H0

H
¼ k1 þ k2

U aþ 1; 2; k2 � k1ð Þqð Þ
U a; 1; k2 � k1ð Þqð Þ ; (8)

with the left hand side

H0

H
¼ A0

A
þ i/0: (9)
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Note that the derivatives are defined in terms of q and not in

terms of distance to the source. Hence, the derivatives are

defined positively for heat waves traveling towards the

center. If V¼ 0, this simplifies to

H0

H
¼ z

I1 zqð Þ
I0 zqð Þ

; (10)

where z is defined according to (5). This last relationship is

well known in the literature.5,10 In the logarithmic tempera-

ture derivative representation, it is necessary to approximate

spatial derivatives A0/A and /0 from the measured A and /.

This can be avoided by using the transfer function represen-

tation, where D2(s) is fixed by assuming a second boundary

condition.

The most logical choice for a second boundary condition

is Hðq; sÞ ¼ Hðq1; sÞ, which is natural as Hðq1; sÞ is meas-

ured. The transfer function using (7), then, becomes

H q2; sð Þ
H q1; sð Þ

¼ ek1Dq U a; 1; k2 � k1ð Þq2

� �
U a; 1; k2 � k1ð Þq1

� � ; (11)

where the solution at a second measurement point q1>q2 is

used as resulting temperature Hðq2Þ. This description is

expressed directly in terms of the measured Fourier coefficients

(H ¼ A exp ði/Þ). However, it is not straightforward to derive

explicit relationships for v, V, and sinv using this relationship.

III. DERIVATION OF EXPLICIT APPROXIMATIONS

In this section, continued fractions are used to find

approximations for the transport coefficients in cylindrical

geometry using (8) and (10). In Sec. II, the logarithmic tem-

perature derivative is introduced, which is described by the

ratio of modified Bessel functions of the first kind or conflu-

ent hypergeometric functions of the first kind. From the liter-

ature, it is well known that these ratios of transcendental

functions can be approximated by truncation of their contin-

ued fraction representation.2,11,12 Based on this concept, a

number of new approximations are derived, which are sum-

marized in three tables in Sec. IV, and their derivations can

be found in Appendix. Here, only the three most important

approximations are introduced.

A. Diffusivity and damping only

The continued fraction for a ratio of Bessel functions of

the first kind is used to find approximations for v under influ-

ence of damping by assuming that V¼ 0. Therefore, the log-

arithmic temperature derivative introduced in (10) is used.

The following continued S-fraction of the ratio of Bessel

functions can be found in Ref. 12

I1 zqð Þ
I0 zqð Þ

¼ a1

1þ a2

1þ a3

1þ :::

; (12)

where akþ1 ¼ ðzqÞ2=ð4kðk þ 1ÞÞ and a1 ¼ zq=2. If this con-

tinued fraction is truncated taking only the first term a1 into

account, then the logarithmic temperature derivative in (10)

is approximated by

H0

H
¼ z

zq
2
: (13)

This can be solved in terms of v and sinv using (5), resulting in

vIs/ ¼
3

4

x

/0
q and sIs/ ¼

x

/0
A0

A
: (14)

This relationship can also be found based on the asymptotic

expansions given in Ref. 13.

Continued fractions can also be used to find more accu-

rate approximations by using more terms in the continued

fraction before truncation. In this case, the best approxima-

tion is found by truncating at a4 in (12), which can be written

in terms of a second order polynomial in z2

0 ¼ c2z4 þ c1z2 þ c0; (15)

with coefficients

c2 ¼ 12q3 �H0

H
q4; c1 ¼ 192q� 72

H0

H
q2;

and c0 ¼ �384
H0

H
; (16)

where H0=H is given by (9). The second order polynomial

yields two solutions in terms of z2. However, generally only

one solution can be used to determine v, because z2 lies in

the first quadrant of the complex plane (v> 0, sinv> 0, and

s¼ ix with x> 0) and the other two are often outside this

domain. However, using a truncation of (12) at location a5

results in more solutions within this domain. Hence, it is no

longer straightforward to select the correct solution.

Therefore, truncations higher than a4 will not be considered

here. For the truncation using a4 as the last term, it has been

numerically determined that the useful zero is given by

z2 ¼ �c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � 4 c0 c2

p
c2

; (17)

which covers the largest region of interest. The solution for

the diffusivity v and the damping sinv is found by substituting

(17) into

v ¼ 3

2

x

= z2ð Þ (18)

and

sinv ¼ x
< z2ð Þ
= z2ð Þ : (19)

The continued fraction in (12) can also be used to find two

other approximations belonging to a2 and a3, which are

named as vIs2 and vIs3, respectively. These can found in

Table II in Sec. IV. In the Appendix, another continued frac-

tion for the ratio of Bessel functions of the first kind is pre-

sented, which is also used to find explicit approximations for

v and sinv.
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In this subsection, the convectivity is assumed zero such

that the continued fractions for Bessel functions can be

considered. In Subsection III B, non-zero V is considered.

Therefore, the continued fraction for the ratio of confluent

hypergeometric functions of the first kind is used to find

approximations for v.

B. Diffusivity, convectivity, and damping

The logarithmic amplitude derivative A0/A and phase

derivative /0 are given in (8) as a function of v, V, and sinv.

However, only two quantities are known, i.e., A0/A and /0,
whereas on the right hand side, three unknowns are given.

Therefore, a third quantity needs to be introduced to

calculate the transport coefficients, which can be done by

introducing a second harmonic, i.e., A0ðx2Þ=Aðx2Þ or

/0(x2). In addition, the expression in (8) needs to be

approximated using a continued fraction. In this case,

the continued C-fraction of the ratio of confluent

hypergeometric functions of the first kind, given in Ref. 12,

is used

U aþ 1; bþ 1; zð Þ
U a; b; zð Þ ¼ 1

1�

b� a

bþ 0ð Þ bþ 1ð Þ z

1þ

aþ 1

bþ 1ð Þ bþ 2ð Þ z
����
I

1�

b� aþ 1

bþ 2ð Þ bþ 3ð Þ z

1þ

aþ 2

bþ 3ð Þ bþ 4ð Þ z
����
II

1� . .
.

:

(20)

This continued fraction needs to be truncated and substituted

into (8) to find a proper approximation for v. Here, it is cho-

sen to truncate (20) at locations I and II, because, in these

special cases, there are no square roots in the resulting

approximation of the logarithmic temperature derivative in

(8). Hence, it is easier to derive explicit approximations for

v, V, and sinv. In the Appendix, the truncations at locations I

and II are derived for various combinations of amplitude

and phase. In this section, only the truncation at location

II is given using two amplitudes and one phase, i.e.,

A0ðx1Þ=Aðx1Þ, /0ðx1Þ, and A02ðxÞ=Aðx2Þ, because, in a

numerical comparison, this gave the best result. This does

not necessarily mean that, in practice, it also gives the best

result. For instance, calibration errors will influence this

approximation more than the one based on two phases,

because the sensitivity of the amplitude to calibration errors

is larger.

Although it is now possible to calculate explicit solu-

tions for v, V, and sinv, the calculations are too complicated

to do by hand. Therefore, Mathematica# was used to derive

approximations for v, V, and sinv based on the truncation in

(20). Truncating at location II results in a third order polyno-

mial such that there are three solutions. However, only one is

different from v¼ 0, which is given by

vU4a ¼
3

2

6859q3x2
1/
0
1dA

8 o3 þ 27436x3
1dA3 þ 45o3

1

� � ; (21)

where

dA ¼ A01
A1

� A02
A2

;

o1 ¼ x1 dA
A01
A1

q� 4

� �
þ q /01
� �2

� �
� qx2/

0
1/
0
2;

o2 ¼ x2
1 dA2 þ /01

� �2
� 	

� 2x1x2/
0
1/
0
2 þ x2

2 /02
� �2

;

and

o3 ¼ 1311o2
1x1dAþ 10108o1x

2
1dA2:

The corresponding V and sinv are given by

VU4a ¼ �vU4a

30o1

38qx1dA
(22)

and (subscripts U4a have been omitted on the right hand

side)

sU4a ¼
3

2
v
�15q2 x

v
A01
A1

� 6
V

v

� �2

q2/0 � 19q2x
V

v2

15q2/0

þ 3

2
v

48
V

v

� �
q/0 þ 60q

x
v
� 120/0

15q2/0
: (23)

These solutions are complicated, but are the only explicit

approximations found for the combined problem of estimat-

ing v under convectivity and damping. The other approxima-

tions are given in the Appendix. All the approximations are

summarized and compared in Sec. IV.

IV. INWARD SOLUTIONS

In this section, the different approximations to deter-

mine v, V, and, sinv are summarized and compared for heat

waves traveling towards the center. The approximations are

based on the underlying models (8) and (10), which are used

to calculate A0/A and /0 for a large number of combinations

of the transport coefficients. In addition, the semi-infinite

approximations derived in Refs. 1 and 2 can also be used.

The comparison is based on five parameters (q, x, v, V, and

sinv) and is presented in terms of normalized transport coeffi-

cients, i.e., �v ¼ v=x, �V ¼ V=x, and �sinv ¼ sinv=x. In case,

two harmonics are necessary, A0=Aðx1Þ, A0=Aðx2Þ; /0ðx1Þ,
and /0(x2) are calculated using x1¼x and x2¼ 2x. This

corresponds to the first and second harmonics.

A. Overview of possible explicit approximations

In Table I, all derived approximations from Sec. III and

the Appendix to estimate v are summarized. Some infinite

domain solutions from Refs. 1 and 2 are also included in

Table I. The reason is that if cylindrical effects are small, i.e.,

the ratio of xq/v is large; the infinite domain approximations
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give a good approximation again. However, in case, polyno-

mials in z are used based on infinite domains, different solu-

tions need to be selected. The reason is that A0/A and /0 are

negative for heat waves traveling towards the wall and are

positive for heat waves traveling towards the center.

To keep the table compact, Table I only states v explic-

itly. The corresponding equation numbers of V and sinv are

given instead.

In Table II, the polynomials expressed in terms of z using

H0=H ¼ A0=Aþ i/0 and q to directly calculate v and sinv are

given. In Table III, the approximations in terms of polynomials

in z are given for approximations based on infinite domains.

The useful solutions of the polynomials in z are different

from those used for the analysis of heat waves traveling

towards the wall, because the sign of A0/A and /0 is opposite.

Therefore, to distinguish between the solutions for outward

heat waves and inward heat waves, the superscript inw
(inward) is added. The useful solutions have been selected

by comparing the three possibilities numerically. The other

outward solutions given in Ref. 2 can also still be used with

the only exceptions of vAEK and vAEU as they approximate v
in a strong cylindrical geometry for the outward case, which

is very different from the inward case.

The approximations in Tables I–III are compared in the

rest of this section.

B. Selection of interesting approximations

The comparison of the approximations when only the

diffusivity v is present, i.e., V¼ 0 and sinv¼ 0, is made based

on a large number of possibilities of q and the combined pa-

rameter �v ¼ v=x. Therefore, (8) and (10) are used to

TABLE I. Overview of the approximations for v for heat waves traveling towards the center in a cylindrical geometry, where a symmetry boundary condition

is assumed. From left to right, the columns denote: the approximation of v either explicit or in terms of z in which case Table II gives the relationship for z; the

equation numbers for v, V, and sinv refer either to Sec. III or to the Appendix or the reference in which they are derived. The short-hand notations /0ðx1Þ ¼ /01
and

A0 x1ð Þ
A x1ð Þ ¼

A0
1

A1
are used, which also means two harmonics are necessary.

v Equation for v V sinv

vz

3

2

x

= z2ð Þ (see Table II for z) 0 (19)

Approximations based on symmetry boundary condition

vIs/
3

4

x

/0
q 0 (14)

vIs2/
3

2
xq

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� q2 /0

� �2
q

8/0
0 0

vIs2A x
3q3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� A0=Aq

p
16q2

ffiffiffiffiffiffiffiffiffiffi
A0=A

p 0 0

vU2V

9qx

4/0
A0

A
qþ 3

� � (B6) 0

vU4V

3

2

6859q3x/0

l2 þ 6
A0

A
q 15

A0

A
qþ 32

� �
þ 680

� �
� 2

A0

A
q� l1 þ 30

� � ; (B14) 0

with l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

A0

A
qþ 15

� �2

� 285q2 /0
� �2

s
and l2 ¼ 114q2 /0

� �2
32

A0

A
qþ l1 þ 62

� �

vU4a

3

2

6859q3x2
1/
0
1dA o2

8 o3 þ 27436x3
1dA3 þ 45o3

1

� � ; (22) (23)

with o1¼x1 dA
A01
A1

q�4

� �
þq /01
� �2

� �
�qx2/

0
1/
0
2, o2¼ðx2

1ðdA2þð/01Þ
2Þ�2x1x2/

0
1/
0
2þx2

2ð/02Þ
2Þ, o3 ¼ 1311o2

1x1dAþ 10108o1x2
1dA2

vU4b

3

2

6859dxq3x1/
0
1 x2

2 ðdAÞ2 þ /01
� �2

� 	
þ x1/

0
2ðdx�x2/

0
1Þ

� 	
8ð19dxþ oÞ 1444dx2 þ 456dxoþ 45o2ð Þ (B18) (B19)

with dx ¼ x1/
0
2 � x2/

0
1 ; dA ¼ A01

A1

� A02
A2

; and o ¼ A01
A1

qx1/
0
2 �

A02
A2

qx2/
0
1 � 4dx

Approximations based on semi-infinite domain

vc

3

4

x

/0 A0

A þ 1
2q

� 	 from Ref. 5 0 see Ref. 2

v/
3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1/

0
x2

� 	2

� x2/
0
x1

� 	2

/02x1
/02x2

/02x1
� /02x2

� 	
vuuuut from Ref. 1 see Ref. 1 see Ref. 1
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generate A0/A and /0. The most interesting and best approxi-

mations are shown in Fig. 1 in terms of the relative error

with respect to the true diffusivity v.

The use of infinite domain approximations for heat

waves traveling towards the center gives a good approxima-

tion, if the ratio qx/v is large. In that case, vc has the largest

region with a good accuracy, but the highest accuracy is gen-

erally given by vKj3. In that case, the approximations based

on cylindrical geometry for heat waves traveling towards the

center give good approximations for v. Hence, vIt3 almost

approximates the entire presented region well, albeit with a

slightly less accuracy than vIs4. Also, vU4V performs well,

although it was mainly derived to perform well under con-

vectivity. vIs/ is also shown as it is the most simple cylindri-

cal approximation found. Unfortunately, its region of

applicability is much smaller than the other approximations.

In summary, vIt3 has the largest region of applicability.

Its relative error is only in a small region larger (maximally

erel � 30%). In this region, different approximations are nec-

essary, for instance vKj3 or vc and vIs4.

C. Diffusivity and damping only

It is not possible to use one approximation to approxi-

mate v well for all combinations of v, x, q, and sinv.

However, it turns out that by combining two approximations

to estimate v almost the entire presented region of interest

for heat waves traveling inwards can be covered. This is

shown in Fig. 2, where the maximum relative error over the

entire presented region is below 2%. Hence, it is always pos-

sible to get an accurate result for the presented combination

of v, x, sinv, and q.

TABLE II. Overview of approximations for v in terms of z for heat waves traveling towards the center in a cylindrical geometry, where a symmetry boundary

condition is assumed. This table denotes the coefficients to calculate z using H0=H ¼ A0=Aþ i/0 and q, which is used to calculate v ¼ 3
2
x== z2ð Þ and

sinv ¼ x<ðz2Þ==ðz2Þ; the equation numbers refer either to Sec. III or to the Appendix.

v Equation for z Equation

Quadratic polynominal in z z ¼ ð�b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � 4 b0 b2

p
Þ=b2

vIt1 b2 ¼ q; b1 ¼ �
H0

H
q; b0 ¼ �2

H0

H
(A2)

Cubic polynominal in z z ¼ 1

a3

�
� a2

3
�

ffiffiffi
23
p

p0

3p1

þ p1

3
ffiffiffi
23
p
�
; p2 ¼ �27a0a2

3 þ 9a1a2a3 � 2a3
2; p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p3

0 þ p2
2

q
3

r
; p0 ¼ 3a1a3 � a2

2

vIt3 a3 ¼ 2q2; a2 ¼ 3q� 2q2 H0

H

� �
, a1 ¼ �4q

H0

H
; a0 ¼ �6

H0

H
(A3)

Quadratic polynominals in z2 z2 ¼ ð�c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � 4 c0 c2

p
Þ=c2

vIs2 c2 ¼
H0

H
q2 � 4q; c1 ¼ 0; c0 ¼ 8

H0

H
(12) at a2

vIs3 c2 ¼ q3; c1 ¼ 24q� 8q2 H0

H
; c0 ¼ �48

H0

H
(12) at a3

vIs4 c2 ¼ 12q3 �H0

H
q4; c1 ¼ 192q� 72

H0

H
q2; c0 ¼ �384

H0

H
(16)

TABLE III. Overview of approximations for v in terms of z for heat waves traveling towards the edge in a cylindrical geometry, where an infinite domain is

assumed. This table denotes the coefficients to calculate z using H0=H ¼ A0=Aþ i/0 and q, which is used to calculate v ¼ 3
2
x== z2ð Þ and

sinv ¼ x<ðz2Þ==ðz2Þ; The coefficients are taken from Ref. 2.

vinw
z Equation for z

Quadratic polynominal in z z ¼ ð�b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � 4 b0 b2

p
Þ=b2

vinw
Kc2 b2 ¼ 4q; b1 ¼ 3þ 4

H0

H
q; b0 ¼

H0

H

vinw
Kj2 b2 ¼ 8q2; b1 ¼ 8q2 H0

H
þ 4q; b0 ¼ 8

H0

H
q� 3

Cubic polynominal in z z ¼ 1

a3

� a2

3
þ 1� i

ffiffiffi
3
p

3 �
ffiffiffi
43
p p0

p1

� 1þ i
ffiffiffi
3
p

6 �
ffiffiffi
23
p p1

 !
; p2 ¼ �27a0a2

3 þ 9a1a2a3 � 2a3
2; p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p3

0 þ p2
2

q
3

r
; p0 ¼ 3a1a3 � a2

2

vinw
Kj3 a3 ¼ 16q3; a2 ¼ 16

H0

H
q3 þ 56q2; a1 ¼ 48

H0

H
q2 þ 45q; a0 ¼ 23

H0

H
qþ 7:5

vinw
Kc5 a3 ¼ 16q2; a2 ¼ 36qþ 16q2 H0

H

� �
; a1 ¼ 15þ 28q

H0

H

� �
; a0 ¼ 3

H0

H
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Both vinw
Kj3 and vIs4 have been chosen because they give

the most accurate approximations in their regions of applic-

ability and they are complementary. The white line shows

the approximate boundary of the regions of applicability of

vinw
Kj3 and vIs4. At this boundary, the error is largest.

D. Diffusivity and convectivity with sinv 5 0 and sinv 5 2

For the inward case, multiple approximations are avail-

able to estimate V. It is not easy to choose a suitable approxi-

mation before the measurements have been analyzed,

because the approximations all depend on different harmonic

informations. For instance, v/ uses only the phases of two

harmonics, but vU4a uses two phases and one amplitude. On

the other hand, when sinv¼ 0, then, vU4V can be used, which

uses only one harmonic. Therefore, it is not possible to point

out the best approximation. However, the regions of applic-

ability of the approximation are again clearly defined. v/,

which originates from slab-geometry, is best at approximat-

ing v for large xq/v. On the other hand, the approximations

based on the symmetry boundary conditions estimate v as

well for small xq/v.

From a numerical point of view, vU4Va performed best,

but it is comparable to the other cylindrical approximations.

Therefore, it is chosen to combine vU4Va and v/ separated by

the white line, which is shown in Figs. 3 and 4 for sinv¼ 0

and sinv¼ 2.

Both figures show similar regions, where v can be esti-

mated well and where not. The large error close to the

boundary is caused by the limited region of approximation,

FIG. 1. Comparison between the different relative errors of the v estimates for a large range of �v ¼ v=x and q. The relative error is defined as

erel ¼ 100� jv�vest j
v %½ �, where vest is v/ from Table I, vc from Table I, vinw

Kj3 from Table III using (18), and vinw
Kc5 from Table III using (18). These approximations

are based on infinite domains (first row). The true cylindrical models (second row) are estimated by vIs/ from (14), vIs4 from (16), vIt3 from (A3), and vU4V

from (B10). This comparison is based on a cylindrical geometry using a symmetry boundary condition with v and V¼ sinv¼ 0, where the heat waves travel

inwards. The darkest blue represents erel < 1% and the darkest red represents all erel > 150%.

FIG. 2. The relative error of the v esti-

mates for the combination of vIs4 and

vinw
Kj3 is presented for different �v ¼ v=x

and �s inv ¼ sinv=x at a number of spa-

tial locations q. The relative error is

defined as erel ¼ 100� jv�vest j
v %½ �.

This figure combines the approxima-

tions vIs4 and vinw
Kj3, which are separated

by the boundary represented by the

white line. This figure is based on a cy-

lindrical geometry using a symmetry

boundary condition with V¼ 0, where

the heat waves travel inwards.
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which is similar to the previous figures. There is no suitable

approximation, which handles the regions with large errors.

V. SUMMARY AND DISCUSSION

In this paper, the problem of determining the thermal dif-

fusion coefficient from electron temperature measurements

during power modulation experiments has been revisited. A

large number of new approximations have been introduced to

estimate v directly from A0/A and /0 for different combina-

tions of v, V, and sinv for heat waves traveling towards the

center. This corresponds to the case of off-axis heating. The

approximations are based on a symmetry boundary condition

and are derived on the basis of cylindrical geometry using

standard assumptions.

The quality of the approximations is presented in several

figures. In case, only v and sinv are considered (V¼ 0), the

relative error of the v estimate for the region of interest is

smaller than 2%. These errors are achievable by combining

vinw
Kj3 and vIs4. In case also V is considered, the new

approximations show a significant region in which v can be

estimated well, but also regions in which no suitable approx-

imation exists. Combining vU4Va and v/ cover a large region,

where v can be well estimated.

VI. GENERAL CONCLUSION

In this set of papers (Parts I, II, and III), the problem of

determining the thermal diffusion coefficient from electron

temperature measurements during power modulation experi-

ments has been revisited. A large number of new approxima-

tions have been introduced to estimate v directly from A0/A
to /0 for different combinations of v, V, and sinv. The approx-

imations are based on infinite domains and Neumann bound-

ary conditions and are derived on the basis of slab or

cylindrical geometry using common assumptions. These

approximations, including the well known approximations

from the literature, have been compared in Part III for heat

waves traveling towards the center (inward) and in Part I and

FIG. 4. The relative error of the v esti-

mates for the combination of vU4Va and

v/ is presented for different �v ¼ v=x
and �V ¼ V=x at a number of spatial

locations q. The relative error is

defined as erel ¼ 100� jv�vest j
v %½ �.

This figure combines the approxima-

tions vU4Va and v/, which are separated

by the boundary represented by the

white line. This figure is based on a cy-

lindrical geometry using a symmetry

boundary condition with �s inv ¼ 2,

where the heat waves travel inwards.

The darkest blue represents erel < 1%

and the darkest red represents all

erel > 150%.

FIG. 3. The relative error of the v esti-

mates for the combination of vU4Va and

v/ is presented for different �v ¼ v=x
and �V ¼ V=x at a number of spatial

locations q. The relative error is

defined as erel ¼ 100� jv�vest j
v %½ �.

This figure combines the approxima-

tions vU4Va and v/, which are separated

by the boundary represented by the

white line. This figure is based on a cy-

lindrical geometry using a symmetry

boundary condition with sinv¼ 0,

where the heat waves travel inwards.

The darkest blue represents erel < 1%

and the darkest red represents all

erel > 150%.
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Part II towards the edge (outwards). The approximations are

derived based on A0/A and /0. The quality of the approxima-

tions is presented in several figures. In case, only v and sinv

are considered (V¼ 0), the relative error of the v estimate for

the region of interest is, in general, erel < 1%. However, in a

small region, the errors are larger with a maximum relative

error for heat waves traveling towards the edge erel < 20%

and for heat waves traveling towards the center erel < 2%.

These errors are achievable by combining vKj3 and vAEW in

the outward case vinw
Kj3 and vIs4 in the inward case, respec-

tively. In case also V is considered, the new approximations

show a significant region in which v can be estimated well,

but also regions in which no suitable approximation exists.

Combining vU4Va and v/ for the inward case and vAEW and

v/ for the outward case cover a large region, where v can be

well estimated.

However, there are also a number of important issues

when using the approximations presented in these parts and

the literature. The combination of assuming the transport

coefficients independent of q and the use of infinite domains

or symmetry boundary conditions necessary to arrive at

explicit approximations will result in errors, if the profile is

not constant, which is shown in Part I Sec. VII B. However,

as is discussed in the same section, the variation of the pro-

files in space is small; it is still possible to determine the spa-

tial varying transport coefficients. However, with increasing,

variation of the transport coefficients, different boundary

conditions, and decreasing modulation frequency, the esti-

mate will become more erroneous. In Part I, it has been

shown that these errors influence the estimation of the con-

vectivity and the damping more significantly, making the

estimated V and sinv often erroneous. On the other hand, as

has been shown in Part II, it is important to still estimate V
and sinv as they are necessary to select the proper approxima-

tion and to select the correct estimates of v in the presence of

V and sinv. A second important issue is the determination of

A0/A and /0 from / to A. To investigate this relationship, the

notion of transfer functions has been introduced, which

makes the relationship between A0/A and A, and, /0 and /
explicit. It showed that the relationship in slab-geometry is

straightforward (Part I), but in cylindrical geometry is more

complicated (Part II). It also shows that the dependency of

the transport coefficients on q is contained in A0 and /0 and

as such the transport coefficients differ depending on how A0

and /0 are calculated. Therefore, it is always important to

clearly state how A0 and /0 are calculated from / to A to

arrive at comparable results. However, for cylindrical

domains, there is not a clear recipe to calculate A0 and /0

from / to A. Hence, in this paper, we do not wish to com-

ment on this issue, and instead for the analysis, the true A0/A
and /0 are used. A third problem, only touched upon briefly,

is the effect of noise, which is not taken into account by the

methods proposed in this set of papers. However, if two har-

monics are used (in the presence of V), it is important that

both harmonics do not contain too much noise, which can be

achieved by using a non-symmetric duty cycle.

The above discussed issues are partly related to the use

of explicit approximations. These problems can, in principle,

be avoided by using implicit methods, as these implicit

methods allow the use of more realistic boundary conditions,

the direct estimation of v from A and / using the transfer

function representation, and the inclusion of noise in the esti-

mation process. However, such implicit methods will come

at the price of more complex optimization problems and

require a number of different concepts as presented in this

set of papers. Nevertheless, in the case implicit methods are

used finding good starting values are also important, for

which the approximations presented in this set of papers can

be used.
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APPENDIX

The Appendix consists of three sections in which

approximations are derived based on the continued T-frac-

tion of modified Bessel functions of the first kind. They

lead to approximations for v and sinv in terms of z. In addi-

tion, the other approximations for v, V, and sinv based on

the continued fraction given in (20) are presented. Finally,

also an approximation is given for a case, where only v is

present.

APPENDIX A: CONTINUED T-FRACTION OF THE
RATIO OF BESSEL FUNCTIONS OF THE FIRST KIND

The following continued T-fraction of I1(zq)/I0(zq) is

based on Ref. 12 and is useful for approximating (10). The

continued T-fraction is given by

I1 zqð Þ
I0 zqð Þ

¼ zq

2þ zqjIII þ
�3zq

3þ 2zqjIV þ
�5zq

4þ 2zqþ � � �

; (A1)

which needs to be substituted into (10) to find explicit

solutions. This continued fraction is truncated at locations III

and IV.

(a) Truncating (A1) at location III results in the

polynomial

0 ¼ qz2 �H0

H
qz� 2

H0

H
: (A2)

(b) Truncating (A1) at location IV results in the following

third order polynomial

0 ¼ 2q2z3 þ 3q� 2q2 H0

H

� �
z2 � 4q

H0

H
z� 6

H0

H
: (A3)

Again, continued fractions with more terms result in fourth

order or higher order polynomials.
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APPENDIX B: CONTINUED C-FRACTION OF
CONFLUENT HYPERGEOMETRIC FUNCTION OF THE
FIRST KIND

The continued C-fraction for Uðaþ 1; bþ 1; zÞ=
Uða; b; zÞ given in (20) is used to derive several

approximations.

(a) Truncating (20) at location I and substituting it into (8)

results in the following logarithmic temperature derivative

H0

H
¼ k1 þ k2

1

1�
k2 � k1 � k2

2
q

1þ k2 þ k2 � k1ð Þ
6

q

: (B1)

This can be further simplified by partly substituting k1 and k2

H0

H
¼

2k2
1qþ k1k2qþ 2k2

2q� 6
V

v

6� 2
V

v
q

; (B2)

where 2k2
1 þ k1k2 þ 2k2

2 ¼ 2 V
v

� 	2
þ 9

2
sinvþxi

v such that

6� 2
V

v
q

� �
A0

A
þ 6� 2

V

v
q

� �
i/0

¼ 2
V

v

� �2

þ 9

2

sinv þ xi

v

 !
q� 6

V

v
: (B3)

By splitting (B3) in its real and imaginary parts, i.e.,

6� 2
V

v
q

� �
/0 ¼ 9

2

x
v

q (B4)

and

6� 2
V

v
q

� �
A0

A
¼ 2

V

v

� �2

qþ 9

2

sinv

v
q� 6

V

v
; (B5)

v can be calculated. The imaginary part for V¼ 0 yields an

approximation for v, i.e.,

vIs/ ¼
3

4

x

/0
q and sIs/ ¼

x

/0
A0

A
; (B6)

which is also found using asymptotic expansions and in (14)

using a continued fraction based on Bessel functions. If sinv

is assumed to be zero, then solving (B4) and (B5) together

gives

vU2V ¼
9qx

4/0
A0

A
qþ 3

� � ; (B7)

and

VU2V ¼ �
9

A0

A
qx

4/0
A0

A
qþ 3

� � : (B8)

The mixed case of v, V, and sinv cannot be solved, due to the

system of equations even if one harmonic is added.

(b) Truncating (20) at location II and substituting it into

(8) results in following logarithmic temperature deriva-

tive by substituting k1 and k2

H0

H
¼ 4q 4V2 þ 5v sinv þ ixð Þ

� �
q2 2V2 þ 5v sinv þ ixð Þ
� �

� 16qVvþ 40v2
� �
� q2V 6V2 þ 19v sinv þ ixð Þ

� �
þ 120Vv2

3v q2 2V2 þ 5v sinv þ ixð Þ
� �

� 16qVvþ 40v2
� � : (B9)

The complexity of (B9) makes it difficult to calculate

approximations by hand. Therefore, Mathematica# has been

used to calculate the approximations for v, V, and sinv.

(b1) If sinv¼ 0, (B9) results in

vU4V ¼
3

2

6859q3x/0

l2 � l3 �2
A0

A
q6l1 þ 30

� � ; (B10)

with

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

A0

A
qþ 15

� �2

� 285q2 /0
� �2

s
; (B11)

l2 ¼ 114q2 /0
� �2

32
A0

A
q6l1 þ 62

� �
; (B12)

and

l3 ¼ 6
A0

A
q 15

A0

A
qþ 32

� �
þ 680: (B13)

There are two solutions possible, the second option

(�in 6) gives a solution in a region with poor approx-

imations and is disregarded. Hence, þ solution is

used. The convectivity V is given by

VU4V ¼ vU4V

�l1 � 17
A0

A
qþ 30

19q
: (B14)

(b2) If A01=A1; /01, and /02 are used, only one solution is

found

vU4b ¼
3

2

6859dxq3x1/
0
1

8 19dxþ o2ð Þ ;

x2
2 dAð Þ2 þ /01

� �2
� 	

þ x1/
0
2 dx� x2/

0
1

� �
1444dx2 þ 456dxo2 þ 45o2

2

� � ; (B15)

with

dx ¼ x1/
0
2 � x2/

0
1 (B16)

and

o2 ¼
A01
A1

qx1/
0
2 �

A02
A2

qx2/
0
1 � 4dx: (B17)
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The corresponding V and sinv are given by

VU4b ¼ �vU4b

30o2

38qdx
; (B18)

and (subscripts W4b have been omitted)

sU4b ¼
3

2
v
�15

A01
A1

q2x
1

v
� 24

V

2v

� �2

q2/0 � 120/0

15q2/0

þ 3

2
v
�38

V

2v2

� �
q2xþ 96

V

2v

� �
q/0 þ 60qx

1

v

15q2/0
: (B19)

This equation is exactly the same as (23).

(b3) The approximation using the same truncation as

(B15) and A01=A1; A02=A2 and /01, is given in (21) in

the main text. Also, a T-fraction is given in Refs. 11

and 12, but it showed less accurate results than the

continued C-fraction.

APPENDIX C: APPROXIMATIONS FOR X ONLY
(V 5 TINV 5 0)

If sinv¼ 0 and V¼ 0, the truncation of (12) with the last

term a2 is given by

0 ¼ A0

A
þ i/0

� �
q2 � 4q

� �
3

2

xi

v
þ 8

A0

A
þ i/0

� �
: (C1)

The real part is given by

0 ¼ �/0q2 3

2

x
v
þ 8

A0

A
(C2)

and the imaginary part is given by

0 ¼ A0

A
q2 3

2

xi

v
� 4q

3

2

xi

v
þ 8i/0: (C3)

Solving for A0/A and /0 and rewriting in terms of v yields

vIs2A ¼ x
3q3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� A0=Aq

p
16q2

ffiffiffiffiffiffiffiffiffiffi
A0=A

p (C4)

and

vIs2/ ¼ 3xq
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� q2 /0

� �2
q

16/0
: (C5)
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