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Abstract. The heat flux is one of the key theoretical concepts used to quantify
and understand transport in fusion devices. In this paper, a new method is
introduced to calculate the heat flux including its confidence with high accuracy
based on perturbed measurements such as the electron temperature. The new
method is based on ideal filtering to optimally reduce the noise contributions
on the measurements and piece-wise polynomial approximations to calculate the
time derivative. Both methods are necessary to arrive at a heat flux and effective
diffusion coefficient with high accuracy. The new methodology is applied to
a measurement example using electron cyclotron resonance heating block-wave
modulation at the Large Helical Device showing the merit of the newly developed
methodology.
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1. Introduction

The heat flux is one of the key theoretical concepts used
to quantify and understand transport in fusion devices.
However, the heat flux q cannot be directly measured
and consequently needs to be estimated in some way.
Generally, a specific structure for the heat flux is
defined, e.g., in terms of a diffusion coefficient χ and
convective velocity V (pinch term). These terms χ and
V are then estimated from the experimental data and
can then be used to reconstruct the heat flux [1, 2, 3, 4].
However, predefining the structure of the heat flux
imposes which physical mechanisms determine the
heat flux. Consequently, new or different physics
that may also contribute to the heat flux cannot be
identified and assessed choosing such an approach.
Even worse, imposing the wrong structure can lead
to erroneous estimates of the transport coefficients
and will lead to apparent frequency dependency of
transport coefficients or false non-linear dependencies
of transport coefficients on for instance the gradients
∇T or T . Hence, an alternative approach is to estimate
the heat flux directly from its definition in the heat
equation. This was first introduced in [5] and is
closely related to the power balance analysis. In [6],
this was used to asses the perturbation only and used
on measurement data. This became possible due to
the improved signal-to-noise ratio’s of the electron-
cyclotron-emission measurements.

In this paper, we significantly optimize the
approach in [6] using advanced filtering methodologies,
which allows for the direct calculation of the diffusion
coefficient and other physical parameters. The
heat flux is evaluated in non steady-state such
that the different components of heat transport can
be distinguished. Given the complexity of the
filtering methodologies applied, the physics discussions
for various measurements will be performed in
a complementary paper. This paper will focus
on the calculation procedure, filtering techniques,
and statistical analysis and presents an alternative
approach for estimating the diffusion coefficient
compared to standard strategies which impose a heat-
flux structure [7, 8]. Measurements will be used from
the Large Helical Device (LHD). Although this paper
does not address directly physics, the reconstruction
is essentially based on the physics and clearly shows
that the heat pinch (V ) has no relevance in the Large
Helical Device.

The paper is structured as follows. Sec. 2 discusses
the calculation of the heat flux and various heat
flux models from the literature. Sec. 3 discusses the
variance calculation of the temperature measurements
and the ideal filtering technique. Then, Sec. 4 discusses
the derivative calculation, one of the key issues in the
heat flux calculation. It introduces two methodologies
to calculate the temperature derivatives. Sec. 5
describes how to reconstruct heat flux and how to
estimate the effective diffusion coefficient. Finally,
some conclusions are summarized.

2. Thermal transport and inversion

This section discusses various heat flux models, how
they would appear in the standard transport paradigm
of the electron heat flux qe plotted against the
product of density and spatial derivative of the electron
temperature −ne∇ρTe, and how the heat flux can be
calculated. Although this methodology is applicable in
different transport channels, in this paper we focus on
the electron heat transport.

2.1. Heat equation

Electron heat transport in fusion devices is generally
described by the heat equation in one-dimension

∂

∂t
(neTe (ρ, t)) = ∇ρ (−qe (ρ, t)) + p (ρ, t) , (1)

where Te (ρ, t) is the electron temperature, ρ the
normalized radius, ne the electron density, and p (ρ, t)
the heating power density.

2.2. Heat flux models

Generally, the heat flux is calculated based on a
predefined structure. The standard structure used in
the fusion literature is based on Fourier’s law [4]

qe = −neχe∇ρTe, (2)

where χe is the diffusion coefficient. If the heat flux
qe is plotted against −ne∇ρTe, the diffusion coefficient
is the slope of the line. This is also shown in Fig. 1,
which has been calculated using the method introduced
in this paper. The underlying temperature used to
calculate the heat flux in Fig. 1 is based on (1) and
(2).
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Figure 1. Reconstruction of the heat flux based on a finite
difference simulation of (1). The slight opening of the two-lines
is due to numerical errors in the finite difference approximation.
Moreover, only the heat flux due to a change in perturbation is
shown (otherwise it would be always positive).

Heat flux models [reference] Type
qe = −neχe∇ρTe [4] linear

qe = −neχe (∇ρT )∇ρTe [9] non-linear
qe = −neχe∇ρTe − neVeTe [10] linear
qe = −neχe (P )∇ρTe [5] non-linear
qe = q0 (P )− neχe∇ρTe [11] (non-)linear

Table 1. Common heat flux models in the literature, where P
is a proxy for a heat flux dependency on the time scale of p (ρ, t).

A number of alternative transport models based
on experimental observations are proposed in the
literature. Generally, these models are based on
how the diffusion coefficient changes with respect
to various other plasma parameters or follow from
the linearization of non-linear or coupled transport
equations. A number of these standard and less
standard transport models are presented in Table. 1,
which are interesting to study in the qe − ∇ρTe
plane. A graphical depiction of how a number of
these dependencies would look like in the qe − ∇ρTe-
plane is shown in Fig. 2. Important to note is that
the qe dependencies explicitly depends on p (ρ, t) are
only valid for a block-wave modulation waveform.
Moreover, combinations of these dependencies are also
possible.

2.3. Direct calculation of the heat flux

The mathematical calculation of the heat flux is
straightforward and is based on rewriting (1) in terms

of qe, which in cylindrical form is given by

∂

∂t
(neTe (ρ, t)) =

1

ρ

∂

∂ρ
(−ρ qe (ρ, t)) + p (ρ, t) , (3)

such that

qe (ρ, t) =
1

ρ

∫ ρ

0

ρ

(
∂

∂t
(neTe (ρ, t))− p (ρ, t)

)
dρ. (4)

In principle, also other terms can appear such
as terms related to the linearization of coupled
transport coefficients. An example is the ion-electron
equilibration, which appears as a damping term τinv
[8]. These terms can either be taken into account
explicitly, i.e.,

qe (ρ, t) =
1

ρ

∫ ρ

0

ρ

(
∂

∂t
(neTe (ρ, t))− p (ρ, t)

− ρτinv (ρ)Te (ρ, t)
)
dρ, (5)

or can be treated as contribution to the heat flux.
Moreover, the heating term can consist of a number
of other power contributions such as neutral beam
injection pnbi (ρ), ion cyclotron heating pich (ρ), and
electron cyclotron heating pech (ρ, t). It is not always
clear what the exact deposition profiles are, hence,
calculating the perturbative heat flux based on only
the heating terms that are perturbed is a more reliable
option than calculating the full heat flux. This still
allows to distinguish between the different heat flux
dependencies on other plasma parameters around an
operating point, but the absolute values of the heat
flux have less meaning.

In the next section, the temperature signals
are filtered such that the derivatives necessary
to determine the (perturbative) heat flux can be
calculated.

3. Filtering of temperature

This section introduces the ideal filtering technique
and a stochastic confidence analysis to arrive at
temperature profiles with a significant improvement
in signal-to-noise ratio (SNR) without modifying the
relevant signal information. This allows for a proper
estimate of the time derivative of the temperature
necessary to estimate the time dependent heat flux in
(4). For completness also the experimental conditions
of the discharge analyzed are briefly discussed.

3.1. Experimental set-up and conditions

As in this paper the same time trace as in [6] is
used to show the optimized methodology, briefly the
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Figure 2. Projection of the heat flux against the spatial temperature gradient as a result of various heat flux dependencies on plasma
parameters, (a) qe = −neχe (∇ρT )∇ρTe, (b) qe = −neχe∇ρTe−neVeTe, (c) qe = −neχe (P )∇ρTe, and (d) qe = q0 (P )−neχe∇ρTe.
P is a proxy for a heat flux dependency on the time scale of p (ρ, t). Projections (b)-(d) are only valid for symmetric block-wave
modulation forms.

experimental conditions are summarized. The Large
Helical Device (LHD) [12] is a heliotron-type machine
which is free from macroscopic magneto-hydrodynamic
instabilities that could distort transport studies. LHD
has a major radius of 3.5≈3.9 m and a typical effective
(averaged) minor radius a99≈0.6 m. The dimensionless
radius ρ is defined here as reff/a99. This is similar to
the dimensionless radius ρ in tokamaks. The magnetic
field strength at the magnetic axis 3.6 m is 2.75 T.
Thomson scattering measurements are used to obtain
the density profiles. The averaged static density at ρ =
0 is 3.6 1019 m−3 which smoothly decays to 3.44 1019
m−3 at ρ = 0.47. The entire density profile is shown
in [6, Fig. 2a]. The corresponding time evolution of
the density profile is measured using a 13-channel far-
infrared interferometer (FIR), which measures the line-
averaged densities [13]. These line-averaged densities
are fluctuating less than 1% [6, Fig. 3b] when averaged
over periods (the relevant frequency range). Hence, the
density profile is considered in steady-state.

Steady-state balanced neutral beam injection of 2
MW is used in this discharge. In addition, modulated
electron cyclotron heating is used with a duty cycle
of approximately 50% with a period of 0.04 s (25
Hz). The corresponding frequency of the gyrotron is
77 GHz. Consequently, the main component of the
deposition is at ρ ≈ 0.2. The electron temperature
was measured using electron cyclotron emission (ECE)
by a 28-channel radiometer [14] and calibrated using
a Thomson scattering system [15]. It is important
to note that the electron-ion energy exchange time is
approximately 0.6 s [6], which is significantly longer
than the modulation period of 0.04 s. A more detailed
description of this discharge can be found in [6].

3.2. Ideal frequency domain filtering and conditional
average

Calculating the heat flux over the full time trace
of a discharge is generally not feasible due to the
noise level being too high. Hence, to reduce the
noise level, periodic measurements are used allowing
to average out the noise and to study the dynamic
behavior. In [6] a method called conditional averaging
is used. Conditional averaging refers generally to a
more advanced method applying statistics on various
samples and selecting data based on their statistics
[16]. However, conditional averaging in [6] refers to
a simple average over periods in the time domain. In
other words, the data is separated in blocks of time
data corresponding to a full period of the applied
perturbation. These windows are averaged over the
blocks. Moreover, a low-pass filter is applied in [6]
to reduce the high frequent noise level necessary to
calculate the derivative. The latter also means that the
high frequent components related to the perturbation,
i.e., heat flux physics, are suppressed and become
biased. This can be seen in Fig. 3(a) where a moving
average filter with length 2 ms is used. The advantage
of using a moving average filter is that it has unit group
delay and hence the phase (time delay) is not distorted.
On the other hand, filters with a stronger cut-off often
distort also the phase characteristic which is undesired.
Note that taking conditional average or taking the fast
Fourier transform (FFT) over the entire time trace are
mathematically equivalent.

This work will take a different approach by
removing all noise not related to the perturbation,
which leads to a signal-to-noise ratio increase of a
factor ≈ 100 dB (6·106) compared to the unfiltered
original signal under the assumption of stationary
noise. This may come as a surprise, but in reality
this is exactly what we exploit in case of perturbative
experiments. In such experiments only frequency lines
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Figure 3. Comparison (a) moving average filter and (b) ideal
filter. Note that 300 Hz has been suppressed due to electrical
network disturbance (LHD#111121, ρ = 0.47). Moreover, the
spectrum of the last period (one period) is shown to show
the importance of using averaging either through the FFT or
conditional averaging.

or harmonic components that are excited by the source
(and possible higher and intermodulation harmonic
components of the harmonic components of the source)
are considered [4]. This is what we apply here as
can be seen in Fig. 3(b). Possible variations over
periods contribute to the stochastic uncertainties. Of
course, it is still possible to remove certain periods
from the signal, if they are subject to spurious plasma
disturbances. Moreover, the phase will also remain
unchanged.

The filtering in Fig. 3(b) is known as an ideal
filter as it is non-causal and hence cannot be used to
reduce the noise in real-time unlike the moving average
filter shown in Fig. 3(a). However, the heat flux is
calculated a posteriori for which this filter is optimal
in a linear sense. The next step is to determine which
multiples of the modulation frequency are retained
and which are noise dominated and as such should be
removed. This is especially important with the view
of the temperature derivative calculations necessary
to reconstruct the heat flux. Therefore, the best
method is to select the harmonic components based
on a statistical analysis of the signal-to-noise ratio’s of
the individual harmonic components.

3.3. Three different ways to estimate the stochastic
uncertainty

There are various methodologies to calculate the SNR
of the harmonic components or the SNR of the total
signal. Here, we consider three approaches to evaluate
the SNR of the harmonic components and total signal,
which under the standard assumption of zero-mean

stationary white-noise are equivalent. The first step
in the estimation of the heat flux common to all
approaches is to calculate the variance of the stochastic
uncertainties.

(i) Time domain: calculate variance over periods
where the mean is equivalent to the conditional
average. This gives the variance per time-sample.
Under the assumption of zero-mean stationary
white-noise, these can be averaged over time
samples to find the variance of the entire time
trace. Note that without the assumption of
zero-mean stationary white-noise it becomes very
difficult to calculate the variance of the ideally
filtered temperature signals and the variance of
the derivative. This method is abbreviated with
ca (from conditional average).

(ii) Take Fourier transform per period and calculate
the variances over the individual harmonic
components. This gives the variance per
frequency line. Under the assumption of zero-
mean stationary white-noise, this variance should
be equal within its statistical uncertainty for
all frequency lines. As such this calculation
simultaneously checks if the assumption of
stationary white-noise is valid. The definitions can
be found in [17]. This method is abbreviated with
caf (from conditional average in the frequency
domain).

(iii) Take Fourier transform over the entire time trace
(can also be done per period) and uses the
frequency lines surrounding the excited frequency
lines to estimate the variances. This method
is reliable if the surrounding frequencies are
not influenced by the perturbation, transients,
disturbances (e.g. 60 Hz), and the noise is
locally constant around the excited frequency
line [18]. As there are generally several
surrounding frequency lines around an excited
harmonic they can be averaged to attain a good
variance estimate. Moreover, if the amplitude of
the perturbation such as the electron cyclotron
heating (ECH) fluctuates over periods this method
is more reliable than the first two as it will not be
added to the variance. This method is abbreviated
with sur (from the surrounding frequency lines).

These methods are applied to the same time trace
of the Large Helical Device as in [6]. However,
with the important note that due to improved ray-
trace algorithms for deposition and calibration [19],
the results are slightly different. The spectrum of
one ECE channel is shown in Fig. 4, including the
standard deviations calculated based on the above
methodologies. The calculated standard deviations
are very similar (note the logarithmic scale). Only
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Figure 4. Spectrum of one time trace of LHD#111121 (ρ =
0.47). (a) Shows the noisy signal in grey, the filtered signal
with stars. Moreover, the estimates of the standard deviation
for the signal are shown, where σf is the standard deviation
in the frequency domain and σt time domain (stationary white
noise, i.e., flat spectrum). The abbreviations stand for sur:
surrounding frequency lines used to calculate variance, caf :
variance per frequency line, ca: variance calculated over over
windowed time samples. (b) Amplitude of the time derivative
of Te calculated through the multiplication with iω and the
corresponding standard deviation of the individual frequency
lines in the time derivative spectrum.

at low-frequency there is some deviation due to the
transient, which could be further improved using the
LPM-method introduced in [20, 21].

Methods number (II) or (III) are used to calculate
the variance, i.e., the SNRs, of the individual
harmonic components. Based on these SNRs harmonic
components can be selected. As a rule of thumb,
the minimum SNR of each harmonic component that
should be considered is approximately 5 dB because
Gaussian noise conditions are retained for SNR > 5
dB [17]. For the channel chosen here, this is 275 Hz (in
Fig. 4, at 275 Hz, SNR is ≈ 4.7 dB). For channels closer
to the source the frequency with a SNR> 5 dB is higher
and further away from the source this is generally
lower. We have decided to use for all the channels the
same harmonic components, but this is up to the user.
Even if many excited harmonics are selected for the
ideally filtered signal, the variance drops significantly
as the variances of the intermediate lines only related to
noise and disturbances are removed. This is discussed
and shown in detail in the next section.

3.4. Reconstructed temperature signals after filtering

After removing the harmonic components which are
related to noise and other disturbances, e.g., 60 Hz
electric network, the inverse Fourier transform is
applied to reconstruct the temperature signal in the
time domain. The corresponding noise variances can
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Figure 5. (a) LHD#111121 (ρ = 0.47) temperature signal
after averaging over periods (conditional average without moving
average filter). In black the signal based on ideal filtering
and in color the piece-wise polynomial approximations. (b)
Difference between piece-wise polynomial approximation and the
averaged signal (grey) and in color the difference between the
piece-wise polynomial approximation with the ideally filtered
signal. Also the corresponding confidence bounds based on
a Gaussian distributed noise with a 95% confidence interval
are shown where the dashed-line is confidence bound for the
averaged over periods time trace and the dashed-dotted line the
ideally filtered signal. Note that the difference between the piece-
wise polynomial approximation and the ideally filtered signal
resides perfectly within the confidence bounds.

be found in Fig. 4. For one time trace the filtered
Te signal can be seen in Fig. 5. The filtered Te
signal is compared to the signal averaged over periods
and to a piece-wise polynomial approximation, which
is discussed in the next section. The colour red
corresponds to when the ECH is on and blue when
the ECH is off.

In Fig. 5(b), the 95% confidence bounds (1.96σt)
are plotted based on the additional assumption
of Gaussian distributed noise. The difference in
confidence bounds between the ideally filtered signal
and original signal again confirms the significant
reduction in noise level. Moreover, the confidence
bounds properly include the measurement data
(dashed lines) and the filtered approximation (dash-
dotted lines).

In the next section is discussed how to calculate
the derivatives from the filtered temperature signals
necessary to reconstruct the heat flux.

4. Derivative calculation

The calculation of the temperature derivatives in time
and space are the key problems in estimating the
heat flux directly. There is not a clear answer to
what methodology should be used as the smoothness
of the derivative depends on how the high-frequencies
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Figure 6. (a) Time derivative of the ideally filtered
signal (black) and the polynomial approximation (color). (b)
The corresponding confidence bounds propagated from the
measurements to the polynomial fit. Note its time-dependent
behavior (LHD#111121, ρ = 0.47).

of the temperature spectra are cut-off. This cut-off
is necessary, as in the frequency domain taking the
derivative is equivalent to multiplying the harmonic
components by iω and as such at high-frequencies noise
is amplified significantly. Specifically, for the block
wave modulation there is an additional issue. The
temperature changes its direction when turning on and
off of the power source (in Fig. 5 at 0 and 0.02 s).
Under standard transport assumptions, the temporal
temperature derivative is discontinuous at this point in
time. As such it is senseless to calculate or interpret
the derivative at this sign change of the temperature
derivative. These are the reasons for introducing a
second methodology to calculate the derivative using
a piece-wise polynomial reconstruction next to the
harmonic reconstruction of the derivative based on the
filtered temperature spectra.

4.1. Harmonic reconstruction

The harmonic reconstruction uses the harmonic
components selected in the previous section and
multiplies them with iω. Then, the inverse Fourier
transform is applied to arrive at the time derivative
of the temperature. This is shown by the black line
in Fig. 6. The derivative contains large oscillations.
These oscillations are largely the result of truncation
of the Fourier coefficients of the Te due to the filtering
applied and as such are not related to the physics. This
phenomenon is known as the Gibbs effect. Although
the Gibbs effect is small in the temperature signal
shown in Fig. 5, the oscillations are amplified in the
derivative calculation leading to a devastating effect
on the time derivative ∂Te/∂t. Moreover, due to the

truncation at the discontinuity of the temperature, the
derivative is now smooth and as such is unreliable.
Nevertheless, the overall shape of the derivative is
reliable with the exception of the oscillations and
smoothness at the sign changes. It is possible to
increase the smoothness of the derivative by using
additional low-pass filtering, which could be done
in both frequency and time-domain. However, such
changes would be aesthetic and would only lead to a
change in the bias-variance relationship rather than the
true derivative [22]. This also means that calculating
the corresponding variance (standard deviations must
be multiplied by iω) of the derivative based on
the ideally filtered Te calculation is also unreliable.
Therefore, an alternative method which significantly
suppresses the self-introduced Gibbs oscillations and
allows for a calculation closer to the non-smooth sign
change point is used. It is based on a piece-wise
polynomial reconstruction, which also allows for a
proper confidence analysis.

4.2. Piece-wise polynomial reconstruction

The removal of high frequent excited harmonic com-
ponents is a necessity to arrive at a significant im-
provement of the SNRs. However, the associated self-
introduced Gibbs oscillations need to be suppressed to
arrive at a proper derivative estimate. As the input
power is generally constant over a large time trace, it is
reasonable to assume that also the temperature should
increase steadily without oscillations. Hence, instead
of calculating the derivative directly, the temperature
is approximated by a polynomial for the part of the
time trace associated with a constant power. Thereby,
simultaneously avoiding the problem of the derivative
calculation at the sign change of the derivative. Here,
we use a standard polynomial of order n

T̂e (t) = θ1t
n + θ2t

n−1 + . . .+ θnt+ θn+1. (6)

This polynomial can be estimated using a simple least
squares fit

Te = Hθ + V, (7)

where the measurement noise on the time traces
is included via V , which is characterized by the
covariance matrix using the assumption of non-zero
stationary white-noise CV = σ2

t I (I, identity matrix).
The standard deviation σt is shown in Fig. 4. The
matrix H is known as the Vandermonde matrix. The
least-squares solution is given by

θ =
(
HTC−1

V H
)−1

HTC−1
V y, (8)

with its corresponding covariance matrix

Cθ =
(
HTC−1

V H
)−1

. (9)
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This relationship is rather simple due to CV being the
identity matrix times σ2

t . This procedure is repeated
for every interval where the power level is constant.
A fourth order piece-wise polynomial reconstruction of
Te is shown in Fig. 5(a). The differences between the
harmonic reconstruction in black and the piece-wise
polynomial reconstruction are within the statistical
confidence of the measurements (see Fig. 5(b)).
Alternatively, the order of the polynomial can be
selected automatically by calculating the minimum of
the residue for various orders of the polynomial fit.
Of course it is possible to use other approximations
for the time evolution such as least-square spline
approximations [23]. We have chosen for the
polynomial approximation for its ease in calculating
corresponding variances and time derivatives.

Then, the time derivative van be calculated by
reducing the order of the polynomial, i.e.,

∂T̂e
∂t

= nθ1t
n−1 + (n− 1) θ2t

n−2 + . . .+ θn. (10)

The corresponding variance is given by

σ2
∂t (t) = J∂t (t)CθJ∂t (t) , (11)

where J∂t =
[
n tn−1, (n− 1) tn−2, . . . , 1, 0

]
. Note

that this also means that the variance becomes time
dependent, which is a logical consequence of taking
the derivative (iω-multiplication in the frequency
domain). The resulting time derivative can be
seen in Fig. 6. It does not have the problem of
the oscillations and follows approximately the center
of the derivatives calculated using the harmonic
reconstruction. Moreover, the derivative can be
approximated in a large range.

The variances are based on the propagation of
uncertainty of the measurements to the polynomial and
then to its derivative as such they are not subject to the
oscillations. Hence, the confidence bounds are much
smaller than the difference between the ideal filtered
signal and the polynomial fit. The confidence bounds
are exact under the assumption that the piece-wise
polynomial is the correct description of the physics due
to a change in heating power. If this assumption is
not fulfilled a so-called bias-variance relationship holds
again, see for details [22]. It is also important to note
that if the piece-wise polynomial fit is used, it is less
relevant up till which excited frequency is truncated
in the ideal filter, which was discussed in Sec. 3.4.
The reason is that the higher harmonic components
have only a small contribution to Te. The intermediate
(non-excited) frequency lines still need to be removed,
of course.

Both derivatives will be used to calculate the
heat flux, but the polynomial fit will also be used to
calculate the variance on the heat flux.
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Figure 7. (a) Spatial derivative of the temperature signal
of LHD#111121, around ρ = 0.47 of the ideally filtered
signal (black) and the polynomial approximation (color). (b)
Corresponding difference between ideally filtered signal and the
polynomial approximation and the 1.96σ∂ρ confidence bounds
on the polynomial approximation.

4.3. Spatial derivative

The spatial derivative is not necessary for the
calculation of the heat flux. However, we also want
to determine the effective diffusion coefficient from the
projection in qe − ∇ρT plane. Therefore, the spatial
temperature derivative also needs to be determined. As
we want to estimate the local gradient, we have decided
to use a local approximation instead of a spatial
derivative of a spline or polynomial approximation of
the radial profile. Moreover, we want to retain the
symmetry of the derivative, hence, a central difference
is used to approximate the derivative

∂T̂e
∂ρ

(ρn, t) ≈
Te (ρn+1, t)− Te (ρn−1, t)

ρn+1 − ρn−1
. (12)

On the boundaries and in the case that measurement
channels are too far apart, a one-sided finite difference
approximation is used. One can debate which
T̂e should be used. We have chosen to use the
polynomial fit to suppress the oscillations (Gibbs
effect). However, as the spatial derivative is less
subject to the oscillations, one could also use the
ideally filtered temperature T̂e. The variance of the
spatial derivative is approximated using propagation
of uncertainty, i.e.,

σ2
∂ρ (ρn) ≈ (ρn+1 − ρn−1)

−2 (
σ2
t (ρn+1) + σ2

t (ρn−1)
)
.

(13)
Fig. 7 shows both the resulting approximation
methodologies for the spatial derivative. Moreover,
it shows that due to the piece-wise polynomial
approximation there is again suppression of the
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oscillations, but with respect to the variance the effect
is small.

5. Reconstructed heat flux and effective
diffusion estimate

In this section, the heat flux is calculated including its
variance. Moreover, it is shown how to calculate the
effective diffusion coefficient.

5.1. Estimating heat flux

It is rather straightforward to calculate the heat flux
as it only requires taking the spatial integral and
the inclusion of the density, power modulation and
deposition profile. Therefore, this section briefly
discusses how the integral is taken and how the
resulting variance on the heat flux is calculated. First,
the time derivative of the stored power is calculated
with

∂Ŵ

∂t
= n (ρ, t)

∂T̂e
∂t

. (14)

The heat flux is defined by the integral

qe (ρ, t) =
1

ρ

∫ ρ

0

ρQ (ρ, t) dρ, (15)

where

Q (ρ, t) =
∂Ŵ

∂t
− p (ρ, t) . (16)

The heat flux is then calculated by approximating the
integral in (15) using the trapezoidal rule

qe (ρn, t) ≈
1

2

1

ρn

N∑
n=1

(ρn+1 − ρn)

[ρnQ (ρn, t) + ρn+1Q (ρn+1, t)] . (17)

The resulting calculated heat flux is shown in
Fig. 8(a) as function of time and Fig. 8(c) as function
of the spatial gradient. As the oscillations are
averaged due to the integration of space the difference
between the polynomial reconstruction and harmonic
reconstruction are comparable with respect to the
confidence bounds. Except at the end points of the
polynomial reconstructions close to the sign-change
of the derivatives, which is logical as the harmonic
reconstructions are unreliable due to the smoothed
discontinuous derivative of T̂e. Also the phase
difference between the source and the temperature
signal can have impact on this reconstruction.

We also see that the heat flux loop is not closed (in
comparison to Fig. 1), which has two possible reasons:
1) an error in the deposition profile calculation [24]
and 2) non-local transport on the time-scale of the
heating power modulation [5]. It can be shown that

both explanations are mathematically equivalent, but
are of course very different in terms of the physics.
Although this methodology allows further investigation
of this important physics problem, it is not the subject
of this paper. Hence, we will not further analyze it
here.

Additionally, errors in how p (ρ, t) is filtered or
treated contributes to errors at the transition of the
levels. We have chosen to filter p (ρ, t) exactly as
we have filtered Te, i.e., using the same harmonic
components. The reason is that as (16) is a power
balance and filtering is equivalent to removing energy
from the measurements, the energy balance is best
preserved. However, as p (ρ, t) is discontinuous at
the power steps truncation of the Fourier coefficients
results in a much more significant Gibbs oscillations
(see Fig. 8(c)). Alternatively, one can use simply
the signal itself or all the higher harmonics, but this
causes strange discontinuities at the change of heat
flux levels. Therefore, there is no clear choice for
filtering for p (ρ, t), but for both hold that they are
reliable in the main region of the piece-wise polynomial
reconstruction.

5.2. Variance calculation on heat flux

The stochastic confidence on the calculations can also
be assessed as is explained in this section. Both the
density ne (ρ, t) and heating powers p (ρ, t) variances
can be evaluated equivalently as is explained for T̂e.
Then, the variance of the density σ2

ne
(t) and σ2

∂t (t)
need to be combined. As the density ne (ρ, t) can be
considered independent of T̂e this results in

σ2
∂W (t) =

(
∂Ŵ

∂t

)2
(σne

(t)

n (t)

)2

+

(
σ∂t (t)

∂T̂e/∂t

)2
 .

(18)
In this discharge the density time fluctuations are
neglible in the relevant frequency range, hence,
σne

(t) = 0. Static calibration errors could also
be included using σ2

ne
(t) and σ2

∂t (t). Then, the
calibration error needs to be translated to variances,
which in the Gaussian case can be done using
confidence intervals for the translation of calibration
errors into variances. Calibration errors do not affect
the time evolution when the perturbations are small.
Including extra variance using calibration errors would
result in a larger confidence interval of the diffusion
coefficient. In absolute sense this would be correct,
however, it would suggest that the relative difference
in diffusion coefficients as function of time is less
significant, which would be an incorrect assessment.
Hence, we have decided not to include these static
calibration errors, but focus on the perturbative
uncertainties. Then, the variances for ∂Ŵ/∂t and
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Figure 8. (a) Time evolution of the normalized heat flux using the ideally filtered signal (black) and the polynomial approximation
(color) (LHD#111121, around ρ = 0.47). (b) Difference between ideally filtered signal and the polynomial approximation and
1.96σq (t) confidence bounds on the polynomial approximation. (c) Normalized heat flux versus −∂T/∂ρ for both the approximations.

p (ρ, t) need to be combined, which originate from
independent measurements such that

σ2
Q (t) =

(
∂Ŵ

∂t

)2

σ2
∂W (t) + p (ρ, t)

2
σ2
p. (19)

Then, the variance of the integral based on propagation
of uncertainty and averaging of noise (factor 2) is
calculated as follows

σ2
q (ρ, t) ≈ ρ−2

n

N∑
n=1

(ρn+1 − ρn)2
2[

ρ2nσ
2
∂q (ρn, t) + ρ2n+1σ

2
∂q (ρn+1, t)

]
. (20)

Given that at small ρ only a few samples are available,
it is important to remember that there is an additional
error on the estimate based on the formula for the
trapezoidal approximation, i.e.,

εq (ρn) = −
(ρn)

2

12N2

[
∂Q

∂ρ
(ρn)−

∂Q

∂ρ
(0)

]
+O

(
N−3

)
(21)

which converges rapidly to zero. Also it is important
to note that errors in measurements at small radii or
uncertainty in the radii propagates in the estimate of
qe, hence, in reality the errors on the estimate can be
larger. However, as the we do not know the derivative
of Q (ρ, t) or deterministic errors in radii and the other
measurements. Therefore, we will not further consider
these errors in (21), but focus purely on the stochastic
uncertainties. The 95% confidence bounds based on
(20) assuming Gaussian distributed noise is shown in
Fig. 8.

5.3. Effective diffusion calculation from projection

One of the applications of plotting the perturbative
heat flux is the determination of the effective diffusion
coefficient. The effective diffusion coefficient is
generally defined as the tangent to the heat flux in
the qe − ∇ρTe plane [4]. If the deposition profile
is calculated correctly and there are no non-local
contributions and the transport is purely diffusive,
independently from the source modulation form, the
diffusion coefficient can be calculated from this tangent
(see Fig. 1). However, one or more of these conditions
are generally not valid in practice. Therefore, the
Lissajous-like curve opens up as can be seen in Fig. 8.
How it opens up depends specifically on what kind of
power modulation wave form is used for p (ρ, t) in the
heat flux definition in (4). Consequently, the tangent
is not necessarily a proper definition of the effective
diffusion coefficient. Therefore, the method presented
here should only be used in case of a block-wave
modulation with constant power levels to determine
the effective diffusion coefficient, which is one of the
most common modulation scenario in laboratory fusion
plasmas.

Fig. 8(c) is calculated using the measured time
evolution of p (ρ, t) for which the power density is
shown in Fig. 9 for a few radial locations. In Fig. 5(a)
and subsequent figures, it can be seen that the electron
temperature changes direction at 0.016 ms. However,
in Fig. 9 it changes at 0.02 ms. This is of course
non-causal and originates from a synchronization error,
which in principle can be compensated [6]. However,
as shown in Fig. 8 it only has a significant impact on
a small time interval of the heat flux reconstruction.
Moreover, in Fig. 9 it can be seen that also the power
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Figure 9. (a) Measured time evolution of the power deposition
profile p (ρ, t) (color) (LHD#111121)

density has a slow decay from 0.02 s to 0.025 s and has
fluctuations in the measurements. It is questionable if
these are actual changes or errors in the way p (ρ, t) is
measured and calculated. These possibly non-physical
contributions are the reason for the non-straightness
in Fig. 8(c) of the polynomials. However, it is not
necessary to know or use the exact heat deposition
density profile to calculate the diffusion coefficients.
It is sufficient to know that constant power levels for
p (ρ, t) have been used. This can be shown by analyzing
the 50% duty-cycle in detail. For the 50% duty-cycle
the time evolution of p (ρ, t) is defined as follows

p (ρ, t) =

{
p1 0 < t 6 c

2 ECH-on
p2

c
2 < t 6 c ECH-off , (22)

where c is one period [s]. Consequently, the heat-flux
can be separated into two parts

qe (ρ, t) =

{
1
ρ

∫ ρ
0
ρ∂Ŵ∂t dρ+Q1 0 < t 6 c

2 ECH-on
1
ρ

∫ ρ
0
ρ∂Ŵ∂t dρ+Q2

c
2 < t 6 c ECH-off

,

(23)
with constant levels as was the case in Fig. 8. As the
constants Q1 and Q2 do not contribute to the slope
(effective diffusion coefficients), they can be ignored for
the slow-time scale. Therefore, it suffices to calculate
the integral

q∂T/∂t (ρ, t) =
1

ρ

∫ ρ

0

ρ
∂Ŵ

∂t
dρ, (24)

avoiding the introduction of an extra uncertainty
component on p (ρ, t) into the estimate of χeffe . Its
corresponding variance is given by

σ2
q∂T/∂t

(ρ, t) ≈ ρ−2
n

N∑
n=1

(ρn+1 − ρn)2
2[

ρ2nσ
2
∂W (ρn, t) + ρ2n+1σ

2
∂W (ρn+1, t)

]
. (25)

Fig. 10 shows the temperature dependent part of
the heat flux calculated with (24) for the analyzed
discharge. The constant levels are different from
Fig. 8(c) due to the omission of p (ρ, t). Moreover, due
to this omission the slopes are no longer subject to
the Gibbs effect and even though a fourth order piece-
wise polynomial approximation is used the slopes are
remarkably constant. Hence, a large part of the slope
for a respective power level is used to estimate the
effective diffusion coefficient.

Both ∂T (t) /∂ρ and q∂T/∂t (t) are uncertain
quantities with time-varying variances. Therefore, the
effective diffusion estimation problem is an errors-
in-variables problem and needs to be solved using
a maximum likelihood estimation. However, if we
compare the noise levels of ∂T (t) /∂ρ and q∂T/∂t (t)
with respect to the change of the signal, we note that
the variance on ∂T (t) /∂ρ is rather small compared to
that of q∂T/∂t (t). Hence, to simplify the calculation
the variance on ∂T (t) /∂ρ is ignored. As such the
estimation problem for χeff can be calculated based
on (8) and its covariance (9) (with n = 1 in (6)).
Of course, the absolute levels of the heat flux have
no physical meaning as Q1 and Q2 in (23) have been
omitted, which is attested by the negative heat-flux.

The resulting estimate of χeff with 1.96σ bounds
are given in Fig. 10 on the spatial derivative and heat
flux. The resulting estimate of the effective diffusion
coefficient with ECH on (red) is χeff = 4.71 ± 0.01
m2/s and off (blue) is χeff = 5.41 ± 0.01 m2/s. The
small confidence bounds are a consequence of the slopes
being remarkably straight, this also suggests that other
effects such as convective velocity and damping are
negligible compared to the diffusion component of
transport. Note that fast transport components and
errors in the deposition profile cannot be seen here
as they contribute to the difference in power levels
and not in the slopes. On the other hand, the power
dependence of the diffusion coefficient can be studied
due to the separation of slopes for the corresponding
power levels as is discussed in, e.g., [25, 26]. The
corresponding effective diffusion coefficient in steady-
state is given by the diffusion coefficient that has been
estimated using the slope for the corresponding power
level. Note that the power balance diffusion coefficient
is not determined by the slopes, but depends implicitly
on the total heat flux.

6. Conclusion

This paper shows that by applying physics based
filtering and assumptions, that the heat flux can
be reconstructed with high accuracy. Consequently,
the physics structure of the heat flux can be
studied in more detail. Moreover, a full variance
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Figure 10. (a) Normalized heat flux based on temperature only versus −∂T/∂ρ based on harmonic reconstruction where the ·
represents increments of ∆t = 2 ms. (b) Normalized heat flux based on temperature only versus −∂T/∂ρ based on polynomial
approximation. (LHD#111121, around ρ = 0.47)

analysis is performed such that the confidence of the
reconstructed heat flux can be assessed.

The two major improvements in the heat flux
calculations are based on exploiting the property that
only the excited harmonic components are relevant in
the temperature measurements and that the heating
power is constant over a large time interval such that
the change in temperature over time is smooth and not
oscillating. These two properties have been exploited
through the use of an ideal filter and the piece-
wise polynomial approximation thereby significantly
increasing SNRs and stabilizing the calculation of
the time derivative of the temperature. Moreover,
these processes are statistically well defined such
that a confidence analysis can be performed. The
method is applied to measurements from the Large
Helical Device thereby showing the merit of this
methodology. Moreover, as the heat flux estimates
at LHD show that at the slow time-scale transport
can be considered diffusive (straight lines), it is also
possible to estimate the (effective) diffusion coefficient.
In the future, this estimation will be a valuable tool in
the experimental analysis of power dependent diffusion
coefficients as suggested in [5], in the estimation of
power deposition profiles in relation to missing power
[24], and critical gradient type heat -flux dependencies
next to convective velocities, damping, and the effect
of boundary conditions.
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