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In this paper, a number of new approximations are introduced to estimate the perturbative

diffusivity (v), convectivity (V), and damping (s) in cylindrical geometry. For this purpose, the

harmonic components of heat waves induced by localized deposition of modulated power are

used. The approximations are based on semi-infinite slab approximations of the heat equation.

The main result is the approximation of v under the influence of V and s based on the phase of

two harmonics making the estimate less sensitive to calibration errors. To understand why the

slab approximations can estimate v well in cylindrical geometry, the relationships between heat

transport models in slab and cylindrical geometry are studied. In addition, the relationship

between amplitude and phase with respect to their derivatives, used to estimate v, is discussed.

The results are presented in terms of the relative error for the different derived approximations

for different values of frequency, transport coefficients, and dimensionless radius. The approxi-

mations show a significant region in which v, V, and s can be estimated well, but also regions in

which the error is large. Also, it is shown that some compensation is necessary to estimate V and

s in a cylindrical geometry. On the other hand, errors resulting from the simplified assumptions

are also discussed showing that estimating realistic values for V and s based on infinite domains

will be difficult in practice. This paper is the first part (Part I) of a series of three papers. In Part II

and Part III, cylindrical approximations based directly on semi-infinite cylindrical domain (out-

ward propagating heat pulses) and inward propagating heat pulses in a cylindrical domain,

respectively, will be treated. [http://dx.doi.org/10.1063/1.4901309]

I. GENERAL INTRODUCTION

The efficiency of future thermo-nuclear fusion reactors

will be largely determined by the level of transport of heat

and particles in the magnetically confined plasma.

Magnetically confined plasmas are organized in nested surfa-

ces of constant pressure and magnetic flux, which can be la-

beled by a dimensionless radius q, ranging from 0 at the

magnetic axis to 1 at the last closed flux surface. The thermal

transport is oriented perpendicular to these surfaces; conse-

quently, thermal transport can be modeled in terms of a one-

dimensional transport equation in q.

When one derives the diffusivity of a species j (vj) from

the local power balance in steady state, the off-diagonal

terms in the transport matrix, i.e., heat fluxes driven by, e.g.,

the density gradient and the temperature gradients of other

species, contribute to the heat flux of species j. These contri-

butions pollute the thus derived diffusivity, which is there-

fore usually called veff
j . An alternative and cleaner method to

derive vj is to periodically perturb the plasma and describe

the thermal transport as a linearized equation around steady

state. This is the subject of this paper, which appears in three

parts (Part I, Part II, and Part III).

In this method, one analyzes heat pulses in the plasma

induced by localized deposition of modulated power. The

perturbed heat flux can be described by a linearized equation

containing a diffusive, convectivity, and damping part, with

an incremental diffusivity (vinc
j ), an effective convection

speed Vj, and a damping term sj, respectively. The off-

diagonal terms in the transport matrix act as a convectivity

term; effects like the modulated electron-ion heat exchange

and modulated ohmic heating are adequately captured in a

damping term s.1–3 These parameters as function of q are

called profiles. The heat pulse propagation and dispersion

carry the information for the estimation of the profiles of

vinc
j , Vj, and sj.

In this paper, various new approximations are presented

for determining vinc
j , Vj, and sj. The quality of the individual

approximations depends on q, the frequency x, and the

transport coefficients themselves. Hence, not only different
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approximations are necessary for different values of the

transport coefficients, but also a selection method to select

the proper approximation is necessary. Although the vast

majority of perturbative transport studies so far were done

for the electron channel, the methods described in this paper

apply to any species j (electrons, ions, impurity species). In

the remainder of the text, we will drop the subscript “j” and

the superscript “inc.”

Perturbative analysis of thermal transport in magneti-

cally confined plasmas started as early as in the 1970s, using

heat waves that originated from the sawtooth instability.4,5

The first equations to analyze the perturbated transport were

derived in this period, see, e.g., Ref. 6. These were extended

in the 1980s7,8 and the 1990s.9 These equations use the har-

monic components of the temperature perturbations at differ-

ent radial locations to determine the perturbative thermal

diffusion coefficient v, which are now commonly used equa-

tions to analyze transport.1,10–13 They use the amplitude A
and phase / in terms of the spatial logarithmic amplitude de-

rivative A0=A and spatial phase derivative /0. However, these

equations only approximate the thermal diffusion coefficient

v of the underlying cylindrical Partial Differential Equation

(PDE) by either assuming a slab-geometry or by assuming

/0 to be independent of q, i.e., /00 ¼ 0, such that it can be

used to derive a direct equation for v. As such, these approxi-

mations do not approximate the thermal diffusion coefficient

v well in a plasma subject to strong cylindrical effects. In

addition, the exact region in which v is well approximated

by these equations is not clear, which is caused by the fact

that the quality of the approximation depends on the

unknown v to be estimated. Moreover, these equations only

approximate the thermal diffusion coefficient and do not

take the convectivity into account. The argument has been

put forward that the convectivity and damping are negligible

if a high enough modulation frequency is used. Although

this argument is mathematically correct, at such high fre-

quencies the heat waves will penetrate less deep, i.e., the am-

plitude of the perturbation will be smaller, whereas the noise

level can be considered constant. Hence, measurements at

these frequencies are more susceptible to noise, which leads

to more uncertainty on the estimated diffusivity. Moreover,

experiments are always performed at finite modulation fre-

quencies such that the effect of convectivity and damping

terms cannot be entirely excluded.

Working at low frequencies implies that in many cases,

the convectivity and the damping need to be taken into

account. In addition, the increase in the size of fusion reac-

tors and the corresponding increase in confinement time

require a decrease in modulation frequencies at roughly the

same rate. Decreasing the modulation frequencies also

implies that the cylindrical effects become more dominant.

Therefore, in this paper, a large number of new approxima-

tions are derived, which estimate the diffusivity, the convec-

tivity, and the damping in regions with strong cylindrical

effects. These approximations can be used in any frequency

range and as such v, V, and s can be estimated with much

more precision than for instance the method presented in

Refs. 1 and 14, where the limit of high frequency, resulting

in noisy measurements, is necessary to determine v first after

which V and s can be studied. In addition, these approxima-

tions also show a better performance in regimes with weak

cylindrical effects (slab-like). More importantly, the quality

of the approximations in relation to the original assumed

model can be verified using the corresponding approxima-

tions of damping and possibly convectivity.

The new approximations still assume that the transport

coefficients are independent of q and some still assume a

semi-infinite domain. In addition, it is assumed that density

gradients are negligible, which is one additional assumption

compared to the cylindrical approximation derived in Ref. 9.

These assumptions simplify the problem significantly such

that explicit approximations can be derived much more eas-

ily and still will allow for an approximation of the varying

vðqÞ profile. On the other hand, these assumptions introduce

errors on the estimates, which need to be considered. For

instance, these assumptions will limit the ability to estimate

the convectivity and damping significantly. Nevertheless,

including the damping and convectivity is important to arrive

at better estimates of the diffusivity. To understand this, it is

important to study and discuss these errors in detail, which

requires an understanding of the original PDEs describing

transport as introduced in Refs. 15–17. As primarily the elec-

tron thermal diffusion coefficient is determined using the

previously methods, we limit ourselves to the discussion of

the models related to the electron thermal transport.

The models commonly used to describe the thermal

transport, e.g., Refs. 15–17, do not address the underlying

(turbulent) transport mechanisms directly, but rather tries to

capture the effective thermal transport. Physics calculations

suggest that the effective thermal transport is the result of the

complex dynamics between streamers and zonal flows.1

When zonal flows and drift-turbulence co-exist, the transport

coefficients, e.g., v (or heat-flux q), have a T, rT and k de-

pendence, in which k is the inverse length scale of the turbu-

lent fluctuations.11,18,19 The k-space is an important tool to

study the turbulent transport and the relationship between

zonal flows and drift waves.18,20,21 However, in this set of

papers, only the effective thermal transport is estimated

(around an equilibrium) and not the underlying turbulent

transport. Therefore, the unnatural effect of the infinite do-

main boundary conditions and symmetry boundary conditions

(finite domain) can have on the transport description in

k-space domain related to the damping of the modes is not

discussed here. In addition, it is also important to realize that

in steady state, the zonal flows and drift waves can be in equi-

librium. However, in modulated experiments, this equilib-

rium may not be reached sometimes due to the perturbation

as such resulting in different effective transport coefficients.

It is important to understand the underlying boundary

conditions under which these approximations are derived.

Therefore, not only the notion of the logarithmic temperature

derivative is introduced, but also the notion of transfer func-

tions is discussed to clarify the underlying assumptions and

shed light on how A0=A and /0 are related to the measured

amplitude A and /. These transfer functions can also be used

to test the quality of the approximation if other assumptions

hold than under which these approximations have been

derived.
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The new approximations are based on the use of multi-

ple harmonics, continued fractions, and asymptotic expan-

sions. The multiple harmonics are necessary to determine the

diffusivity, in the presence of convectivity and damping. On

the other hand, it is well known that the solutions to the

underlying cylindrical PDE can be expressed using higher

transcendental functions,22 e.g., Bessel functions and conflu-

ent hypergeometric functions. The ratio’s of transcendental

functions can often be well approximated by continued frac-

tions23,24 and asymptotic expansions.25,26

There is a profound difference in cylindrical domains

between heat waves traveling towards the edge (outward) or

towards the plasma center (inward) in terms of their boundary

conditions, thus also in terms of their solutions. Therefore, a

clear distinction is made between inward and outward approx-

imations. The outward approximations based on the semi-

infinite domain include the cylindrical approximations derived

in Refs. 7–9. Interestingly, the phase only equation5 and the

cylindrical approximation9 are also found as the simplest

approximation using the technique of continued fractions.

In total, more than 20 new approximations have been

derived. The different approximations are compared for dif-

ferent values of x, q, v, V, and s. It turns out that in the case

V¼ 0, it suffices to combine two approximations for each

case, i.e., one that estimates v well in a strong cylindrical ge-

ometry and one in a weak cylindrical geometry (slab-like) to

achieve small errors. However, to achieve the most accurate

result, a larger number of approximations are necessary. For

the combined problem of the estimation of v, V, and s, the

new approximations show a significant region in which v can

be approximated well, but also regions in which no suitable

approximation exists.

To increase the readability, this paper has been split into

three parts. This part, Part I, deals with semi-infinite slab

approximations. Part II (Ref. 27) deals with semi-infinite (out-

ward propagating heat pulses) cylindrical approximations.

Finally, Part III (Ref. 28) will deal with approximations for

inward propagating heat pulses in cylindrical geometry.

II. INTRODUCTION TO PART I

This paper, Part I of a series of three papers, deals with

semi-infinite slab approximations. It is structured as follows.

Section III gives an overview of the relevant models and

simplifications of electron thermal transport in fusion reac-

tors, which are necessary for the continuation of the paper.

In Sec. IV, the relationship between simplified models to

determine the parameters, boundary conditions, and A0=A
and /0 is explained; transfer functions, logarithmic tempera-

ture derivatives, and double spatial derivatives of A and /
are treated. Then, in Sec. V, the concept of multiple harmon-

ics is explored to determine new (and old) approximations to

directly calculate the diffusivity, convectivity, and damping.

In Sec. VI, the explicit approximations derived so far are

compared for different values of v, V, and s, and the selec-

tion of the best approximation is discussed. Then Sec. VII

discusses the estimation of V and s and common errors origi-

nating from infinite domain assumptions. Finally in Sec.

VIII, the main results are summarized and discussed.

III. MODELING OF THERMAL TRANSPORT

In this section, the main assumptions and models used

for perturbative transport analysis of the electron transport

are summarized. In addition, it is shown that analyzing the

thermal transport in slab-geometry allows for the determina-

tion of the diffusivity in cylindrical geometry.

A. Conservation of energy and particles

In this paper, only a periodically modulated electron

heating source (Pmod) will be considered. Usually this will be

modulated electron cyclotron heating. However, any local-

ized electron heating could be used, i.e., lower hybrid heat-

ing or ion cyclotron heating in a suitable minority heating

scheme. Therefore, it is reasonable to consider only the

coupled equations of particle density and electron heat trans-

port defined in, e.g., Refs. 1, 15, 29, and 30

@n

@t
¼ �rCþ Sp; (1)

@

@t

3

2
nT

� �
¼ �rqþr 5

2
TC

� �
þ 1

n
Cr nTð Þ þ Sh; (2)

where q denotes the heat flux, C the particle flux, T the elec-

tron temperature, n the density, and Sp the particle sources.

Based on Ref. 16, the source term Sh includes the electron-

ion energy equipartition Sie, the external heating power den-

sity Sf contributing to the energy balance, Sr the radiation

losses due to Bremsstrahlung, Sohm ohmic heating power,

and Pmod. This leads to

Sh ¼ Sf þ Sohm � Sr � Sie þ Pmod: (3)

In this paper, it is assumed that all source terms except Pmod

in Sh are static (do not depend on time) or their variation in

time is assumed to be negligible compared to the perturba-

tion induced by Pmod. Moreover, only perturbations of the

thermal transport are considered, thus @n=@t ¼ 0. The exact

descriptions for the heat flux q and particle flux C are

unknown. However, classically they are modeled by the laws

of Fick29

C ¼ �Drn (4)

and Fourier

q ¼ �nvrT: (5)

Variations of these laws exist, for instance by considering a

convective velocity term U in q (Ref. 1), i.e.,

q ¼ �nvrT � nUT: (6)

Based on these equations, it is possible to derive a one-

dimensional PDE, which can be used to identify the electron

diffusivity v.

B. Perturbative transport analysis

Generally, thermal transport inside a fusion reactor is mod-

eled as radial (1D) transport in a cylinder due to the magnetic
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confined plasma topology.1 This allows for rewriting (2), using

(6), in terms of partial derivatives with respect to q

@

@t

3

2
nT

� �
¼ 1

q
@

@q
qnv

@T

@q
þ qnUT

� �

þ 1

q
@

@q
q

5

2
TC

� �
þ 1

n
C

1

q
@

@q
qnTð Þ þ Sh; (7)

where the dependencies on the dimensionless radius q have

been omitted. Although non-linear dependencies exist, e.g.,

Te and rT, it is assumed that the temperature perturbation in

Sh used to analyze the transport is small enough to assume

linearity around the equilibrium temperature. In such cases,

the simplified PDEs given in (7) must be seen as the result of

a linearization of transport equations.1 In such a lineariza-

tion, other effects can also be captured in the diffusivity,

convectivity, and a damping term, e.g., the electron-ion heat

exchange can be adequately captured in a damping term. In

addition, non-linear dependencies of for instance v on T and

rT are then partly accounted for in the convective term and/

or damping. Therefore, the one-dimensional parabolic PDE

is generally expressed in a simplified form describing cylin-

drical geometry

@

@t

3

2
nT

� �
¼ 1

q
@

@q
qnv qð Þ

@T

@q
þ qnV qð ÞT

� �

� 3

2
nsinv qð ÞT þ Sh; (8)

where V ¼ U þ 7
2

C
n and sinv ¼ 2

3
1
n C0 � n0

n C
� �

denote the con-

vectivity and damping in cylindrical geometry based on (7)

only. The damping is denoted by its inverse, i.e., sinv � s�1

and the prime, in e.g., n0, denotes the spatial derivative with

respect to q. The reason for this change of variables is that

sinv is bounded making it easier to represent in plots. In addi-

tion, it also is easily transformed back to the well known

damping s ¼ 1=sinv. However, if s is needed it can simply be

calculated s ¼ 1=sinv. The diffusivity vðqÞ, the (effective)

convectivity VðqÞ, and the (inverse) damping sinvðqÞ in front

of T, T0, and T00 can be identified by only considering elec-

tron temperature perturbations.

Unfortunately, (8) is difficult to use in practice to esti-

mate v from measurements. Therefore, a number of simplifi-

cation steps are applied.9 Only measurements are considered

for which the transients due to the initial condition can be

neglected. It is assumed that the parameters are constant

with respect to time and q. Thus, the parameters are assumed

to be homogenous or uniform.1,9 In addition, only spatial

regions are considered where Pmod¼ 0, i.e., outside the

region where the heating is deposited to perturb the plasma

such that (8) is simplified to

@

@t

3

2
nT

� �
¼ 1

q
@

@q
qnv

@T

@q
þ qnVT

� �
� 3

2
nsinvT: (9)

This equation is often used in the literature1,9 to analyze heat

wave propagation in a cylindrical geometry. Alternatively,

for large q, the slab geometry representation of (9) is used to

analyze transport in a cylindrical geometry.1,7,9

C. Slab geometry representation and its relationship
to cylindrical geometry

In slab-geometry, the following representation is used to

determine v explicitly:1

3

2

@T

@t
¼ v

@2T

@q2
þ Vs

@T

@q
� 3

2
sinvsT; (10)

where v, Vs, and sinvs are independent of q.

It is important to realize that the effective convectivity

V 6¼ Vs and the inverse damping sinv 6¼ sinvs represent some-

thing different in (10) and (9). This can be investigated by

transforming (9) assuming n0 ¼ 0

@

@t

3

2
T

� �
¼ v

@2T

@q2
þ V þ v

q

� �
@T

@q
� 3

2
sinv �

2

3

V

q

� �
T: (11)

This means that only when q!1; V ¼ Vs and sinv ¼ sinvs.

Hence, (10) will be a proper approximation of (9) when n0 is

negligible and the variations v=q and V=q are small with

respect to V and sinv, respectively. The diffusivity term v in

front of T00 is unaffected by this change of geometry. On the

other hand, the diffusivity term in cylindrical geometry now

also appears as a pseudo convectivity v=q in slab geometry.

The pseudo convectivity also points out a simple problem

regarding the comparison of the power balance diffusivity

vPB as defined in Ref. 1

vPB ¼ � q

nrT
(12)

and the heat pulse diffusivity v in cylindrical geometry,

which is often denoted as vHP. The power balance (12) is

generally analyzed in slab-geometry such that the term v=q
is not taken into account. This already results in vPB 6¼ vHP.

Therefore, vPB will not be considered in this paper.

In Sec. IV, based on (10), direct expressions for v are

derived to analyze the transport coefficients in a cylindrical

geometry.

IV. SIMPLIFIED MODELS FOR DESCRIBING THERMAL
TRANSPORT

In this section, the classic relationships to determine v
are derived. Therefore, the Laplace transform of (10) is used

3

2
sH ¼ v

d2H
dq2
þ Vs

dH
dq
� 3

2
sinvsH; (13)

where s is the Laplace variable and Hðq; sÞ is the Laplace

transform of Tðq; tÞ.31 The Laplace variable can in practice

only be measured on the imaginary axis, thus s ¼ ix. The

general solution of (13) is given by32

H q; sð Þ ¼ C1 sð Þexp k1qð Þ þ C2 sð Þexp k2qð Þ with

k1;2 ¼ �
Vs

2v
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vs

2v

� �2

þ 3

2

sþ sinvs

v

s
: (14)

The boundary constants C1ðsÞ and C2ðsÞ, which are independ-

ent of q, are determined by the choice of the boundary

conditions.
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There are basically three approaches to derive approxi-

mations for v, which distinguish themselves by the choice

for C1ðxÞ and C2ðxÞ in (14): (1) transfer functions, in which

both C1ðsÞ and C2ðsÞ are fixed explicitly; (2) the logarithmic

temperature derivative, i.e., ð@H=@qÞ=H, in which only one

boundary constant is fixed explicitly by introducing the spa-

tial logarithmic derivative of the amplitude A and the spatial

derivative of /; (3) an approach in which fixing C1ðsÞ and

C2ðsÞ are avoided by introducing double spatial derivatives

to A and /. However, as a solution of a second order PDE is

only defined by two boundary conditions; there must be a

clear relationship between these three approaches. This is

derived in this section giving insight in how A and / are

related to their spatial derivatives.

A. Description between measurements: transfer
function

The transfer function approach may be less familiar in

the fusion literature,33–35 but it is extensively used in the

field of system identification.36,37 From the available fusion

literature on transfer functions, it may seem that only rational

functions based on measurement data are applicable.

However, as will be shown here, transfer functions can also

be used to describe simplified models for PDEs,38 which are

of non-rational form.

The most important advantage of this technique over the

other two techniques is that it only depends on the measure-

ments. Hence, it is no longer required to approximate the

spatial derivative of phase / and the spatial logarithmic am-

plitude derivative of A. The derivation will be performed for

heat waves traveling towards the edge (outwards).

The first boundary constant C2ðsÞ will be fixed by

assuming an infinite domain. This choice is commonly

used1,9 as it simplifies the solution significantly such that

approximations for v can be easily derived.

The infinite domain boundary condition is defined as

follows, if q!1, then H! 0. This means that at q ¼ 1,

all perturbations need to have vanished. Since, we follow the

standard convention that for z 2 C; argðzÞ 2 ð�p; p� and

arg
ffiffi
z
p� �
¼ 1

2
arg zð Þ, the two eigenfunctions in (14) satisfy

exp ðk1qÞ ! 0 and j exp ðk2qÞj ! 1 for q!1. Hence,

C2ðsÞ ¼ 0, otherwise the solution (14) would not converge to

zero at large q. Then, the solution (14) is simplified to

Hðq; sÞ ¼ C1ðsÞ exp ðk1qÞ: (15)

The other boundary condition is chosen to be the tempera-

ture at the spatial location q1, i.e., Hðq; sÞ ¼ Hðq1; sÞ,
which in contrast to the assumption of an infinite boundary

condition is only a weak assumption. The domain on which

the transport coefficients are estimated cannot contain a

source term. However, this domain should still be limited

by some boundary condition. Hence, Hðq1; sÞ is used,

which is a measured quantity. The boundary constant is

then given by

C1ðsÞ ¼ exp ð�k1q1ÞHðq1; sÞ: (16)

This determines the solution of (14), Hðq; sÞ, such that

Hðq; sÞ ¼ exp ðk1ðq� q1ÞÞHðq1; sÞ: (17)

The solution at a second measurement point q2 > q1 is

denoted by Hðq2Þ. Then (17) can be re-expressed as

H q2; sð Þ
H q1; sð Þ

¼ exp k1 q2 � q1ð Þ
� �

: (18)

The left hand-side is built from the measured complex val-

ued Fourier coefficients at measurement locations q1 and q2.

On the right hand side are the unknown parameters contained

in k1. After the transport coefficients v, V, and sinv have been

determined, the transport coefficients can be substituted in

(18). Then the right hand side can be directly compared to

the measured left hand side to determine the quality of the

estimated parameters. Similarly, the transfer functions for a

cylindrical domain can be derived. In practice, the Laplace

variable s can only be measured on the imaginary axis such

that s ¼ ix.

A simplified case of (18) in which V¼ 0 and only one

harmonic is used, i.e., s ¼ ix is fixed. Thus, the temperatures

at fixed x at two spatial locations can be expressed as

Hðq1Þ ¼ A1ei/1 and Hðq2Þ ¼ A2ei/2 such that the transfer

function (18) can be rewritten as

A2ei/2

A1ei/1
¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

ixþ sinvs

v

s
Dq

0
@

1
A; (19)

where Dq ¼ q2 � q1. Applying the natural logarithm and

taking the square of (19) results in

ln
A2

A1

� �2

� /2 � /1ð Þ2 þ 2ln
A2

A1

� �
i /2 � /1ð Þ

¼ 3

2

ixþ sinvs

v
Dq2: (20)

The diffusivity v can only be calculated properly if the phase

is unwrapped, which means that possible additional 2p rota-

tions between q2 and q1 need to be accounted for. Now by

considering the imaginary part of (20), v can be determined

vs4 ¼
3

4

x
ln A2ð Þ � ln A1ð Þ

Dq
/2 � /1

Dq

� � : (21)

The notation vs4 is used instead of v, to distinguish this spe-

cific form of v as in this paper many other approximations

are found to calculate v. The damping sinvs can also be calcu-

lated by considering the real part

ss4 ¼
x
2

ln A2ð Þ � ln A1ð Þ
/2 � /1

� /2 � /1

ln A2ð Þ � ln A1ð Þ

� �
: (22)

It is clear that two measurement points suffice to deter-

mine v using slab-geometry, in the presence of damping

and under the assumption that the transport coefficients

are independent of q. This description does not require

any approximation of the derivatives A0 and /0 as is used in

Ref. 9.
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B. Logarithmic temperature derivative

The logarithmic temperature derivative is defined as the

ratio of the spatial derivative of the temperature and the tem-

perature (in the frequency domain), i.e., H0ðqÞ=HðqÞ. This

means only one boundary condition is necessary. The other

boundary condition is implicitly contained in the resulting A0

and /0. The solution needs to be simplified to find an explicit

equation for v and so again a semi-infinite slab-geometry is

chosen, i.e., C2 ¼ 0 in (14). Taking the spatial derivative of

HðqÞ results in

@H qð Þ
@q

¼ C1 sð Þk1 exp k1qð Þ; (23)

such that

H0

H
¼ k1: (24)

The temperature is written again in terms of its harmonic

components, i.e., H ¼ A exp ði/Þ and H0 ¼ A0 exp ði/Þ þ
i/0A exp ði/Þ such that the left hand side of (24) becomes

A0

A
þ i/0 ¼ H0

H
; (25)

which is independent of the chosen geometry such that it

also holds in cylindrical geometry. Substituting (25) into

(24) and taking the spatial derivative results in

d

dq
A0

A

� �
þ i/00 ¼ 0: (26)

Hence, the second spatial logarithmic derivative dðA0=AÞ=
dq ¼ 0 and the second spatial derivative /00 ¼ 0 even in the

presence of V, because k1 is independent of q. This means

that in slab-geometry, the spatial derivatives always satisfy

A0

A
¼ d

dq
ln Að Þð Þ � ln A2=A1ð Þ

Dq
; /0 � /2 � /1

Dq
: (27)

This also follows directly from the transfer function descrip-

tion. This is shown by squaring (25) and if again it is

assumed that V¼ 0, the right-hand side is exactly the same

as the right hand side in (20)

A0

A

� �2

þ 2
A0

A
/0i� /0

� �2 ¼ 3

2

xiþ sinvs

v
: (28)

The left-hand side can be made explicit by introducing a

boundary condition. In case Hðq; sÞ ¼ Hðq1; sÞ is used, the

left-hand side of (28) needs to equal the left-hand side of (20).

This results in A0=A and /0 in slab-geometry to be defined as

(27), which also shows the equivalence of the transfer func-

tion representation and the logarithmic temperature derivative.

When sinv ¼ 0, (20) or (28) can be expressed in terms of

the amplitude and phase measurements at two locations5–9

vs1 ¼
3

4

x

/0
� �2

; (29)

vs2 ¼
3

4

x

A0=Að Þ2
; (30)

and

vs3 ¼
3x

A0=Aþ /0
� �2

; (31)

where /0 and A0=A are given according to (27). From a math-

ematical point of view: if an assumption is made on the

parameter dependence (here that the transport coefficients

are independent of q) and boundary conditions, then the

properties of the spatial derivatives A0 and /0 follow auto-

matically as is shown here. On the other hand, if one makes

a choice for the approximation of the derivatives, then auto-

matically one has assumed a certain spatial dependence on

the parameters and boundary condition. As such, fitting /0

and A0 differently from (27) is a direct violation of the

assumption that the parameters are independent of q. On the

other hand, if more complicated relationships are used, e.g.,

cylindrical geometry, the derivatives A0=A and /0 are not so

easily expressed in terms of A2, A1, /1, and /2.

C. Double spatial derivatives of A and /

It is also possible to use only spatial derivatives of A and /.

As a second order PDE is used, these relationships include

the double spatial derivatives A00 and /00. This approximation

is found by substituting H ¼ A exp ði/Þ, H0 ¼ A0 exp ði/Þ
þi/0A exp ði/Þ, and H00 ¼ A00 exp ði/Þ þ i/0A0 exp ði/Þ þ iA0

/0 exp ði/Þ � ð/0Þ2A exp ði/Þ þ iA/00 exp ði/Þ in (13) and by

dividing by A exp ði/Þ.
In slab-geometry, this is not so useful as it has already

been shown in (26) that /00 and d
dq

A0

A

� �
equal zero. However,

by expressing (13) in terms of double spatial derivatives, it is

easily shown that the three approaches are equivalent and

that the boundary conditions and spatial dependencies are

again contained within the spatial derivatives.

In cylindrical geometry (7) also H0 and H00 can be sub-

stituted resulting in (for the imaginary part)9

v qð Þ ¼
1:5x� 2:5

C
n
þ C

� �
/0

/00 þ 2
A0

A
þ 1

q
þ n0

n
þ v0

v
þ

U qð Þ
v

� �
/0

(32)

for completeness also C and n (which are assumed constant

in this paper) are included. In this representation, C and n
and its gradient n0 can be included. On the other hand, (32) is

only feasible in practice by assuming v to be constant such

that v0=v ¼ 0 and assuming the convectivity zero, i.e.,

UðqÞ ¼ 0. More importantly, the double derivatives will be

extremely difficult to approximate in practice due to noise

and the spacing between measurement channels. Therefore,

/00 is assumed to be zero in Ref. 9, and v can be calculated

using the simplified form of (32), i.e.,

vc ¼
1:5x

2A0=Aþ 1=qþ n0=nð Þ/0 : (33)
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The assumption of /00 ¼ 0 basically means that (33) is not a

true cylindrical approximation as /00 is not zero under the

influence of cylindrical geometry. The advantage of vc com-

pared to the rest of the approximations derived in this paper

is that it can include density gradients, which are assumed

constant in this paper (n0 ¼ 0).

V. DERIVATION OF EXPLICIT APPROXIMATIONS

Here, a new approximation for determining the v, V, and

sinv is introduced based on the use of two harmonics. The

approximation is based on slab-geometry. However, includ-

ing the convectivity in slab geometry allows for a partial

compensation of the pseudo convectivity v=q introduced

when transforming cylindrical geometry into slab geometry

in (11) making it more applicable to estimate v in cylindrical

geometry.

Every harmonic fixes two degrees of freedom, which

means in practice that either v and sinv or v and V can be esti-

mated if only one harmonic is used. Therefore, to estimate v,

V, and sinv together, it is necessary to use at least two har-

monics. This is easily understood if the solution is derived.

Therefore, consider the semi-infinite slab-geometry solution

again (see (24))

H0

H
¼ k1:

The principal square root in k1 can be split in its real and

imaginary part using

k1 ¼ �
Vs

2v
� aþ bið Þ; (34)

where

aþ bið Þ2 ¼ Vs

2v

� �2

þ 3

2

sinvs þ ixð Þ
v

: (35)

Hence,

a2 � b2 ¼ Vs

2v

� �2

þ 3

2

sinvs

v
(36)

and

2ab ¼ 3

2

x
v
: (37)

The coefficients a and b can also be used to express

A0=A and /0 defined according to (27), by taking the real and

imaginary part of k1 using (24), (34), and (25), i.e.,

A0

A
¼ � Vs

2v
þ a

� �
/0 ¼ �b: (38)

The constants a and b are determined by rewriting (36) and

(37)

4v2a4 � V2
s þ 6vsinvs

� �
a2 ¼ 9

4
x2; (39)

4v2b4 þ V2
s þ 6vsinvs

� �
b2 ¼ 9

4
x2: (40)

Both (39) and (40) are fourth order equations yielding four

solutions for a and four for b. Fortunately, not all of these

solutions are feasible, because under natural assumptions

x > 0 and v > 0 and a semi-infinite domain, /0 is negative.

This means that according to (38), b > 0. In addition, fol-

lowing the definition in (37), the product of a and b is always

positive, hence a > 0.

There are three degrees of freedom (unknowns) in (35),

which means that at least two harmonics x1 and x2 must be

used. Consequently, one derivative is unnecessary, e.g.,

/0ðx1Þ or A0ðx2Þ=Aðx2Þ. However, v can be determined by

only using /0ðx1Þ and /0ðx2Þ, because (40) only contains

two unknowns v and CV ¼ ðV2
s þ 6vsinvsÞ such that

v/ ¼
3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1/

0
x2

� �2

� x2/
0
x1

� �2

/02x1
/02x2

/02x1
� /02x2

� �
vuuuut (41)

using the notations /0x1
¼ /0ðx1Þ and /0x2

¼ /0ðx1Þ. The

definition of the spatial phase derivatives in (41) is given by

(27). This formula is based on the phase only, hence insensi-

tive to calibration errors. However, useful amplitude infor-

mation is ignored, which can reduce the accuracy of the

estimate significantly. The convectivity Vs is found by solv-

ing for a in (39) and substituting it into (38) such that

V/ ¼ �2v/
A0

A
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

V þ 36v2
/x2

q
2

vuut
; (42)

where CV is found by solving (40)

CV ¼
9

4
x2 /0
� ��2 � 4v2

/ /0
� �2

: (43)

The damping sinvs is calculated from CV

s/ ¼
CV � V2

/

6v/
: (44)

It is not possible to calculate the convectivity or damping

from the phase only, unless either the damping or convectiv-

ity is considered negligible. In the noiseless slab-geometry

case, it does not matter if x1 or x2 is used for x in A0

A and /0.
However, in practice, generally the best choice is to use a

weighted average as described in Ref. 39. Easier to imple-

ment, but less accurate is to use x1 as it has generally the

best Signal-to-Noise ratio (SNR). This also means that the

second harmonic is generally more sensitive to noise, which

can introduce an error and reduce the accuracy. On the other

hand, by designing proper modulation signals, this effect can

be minimized. This is typically done by choosing a duty

cycle different from 50% such that a similar first and second

harmonic is created with similar SNRs, e.g., Ref. 40. In addi-

tion, as convectivity and damping are included in this

approximation, it is no longer necessary to work in the limit

of high frequency allowing lower excitation frequencies to
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be used with a better SNR. Here, only one variation has been

given to calculate v, Vs, and sinvs using mainly the phase.

There exists a number of variations using also A0ðx1Þ=Aðx1Þ
and A0ðx2Þ=Aðx2Þ.

In the special case that sinvs is considered to be zero, a

single harmonic suffices to estimate both v and Vs. This can

be derived from (36) and (37), which results in

vV ¼
3

2

x
A0

A

A0

A

� �2

þ /0
� �2

 !
/0

(45)

and

VV ¼
3

2

x /0
� �2 � A0

A

� �2
 !

A0

A

� �2

þ /0
� �2

 !
/0

: (46)

These approximations together with the well known equa-

tions in the literature will be used to approximate v, V, and

sinv in cylindrical geometry.

VI. ESTIMATING v UNDER INFLUENCE OF V AND sinv

In this section, the explicit approximations for v, i.e.,

(29), (30), (31), (21), (41), and (33) are compared for differ-

ent values of q, x, v, V, and sinv. For the comparison, the

true values of A0=A and /0 in a semi-infinite cylindrical ge-

ometry are used based on heat waves traveling outwards

(away from the center). These are generated using the analyt-

ical solution of (9), which has been validated using a finite

difference simulation of (9) with Hðq� 1Þ ¼ 0.

It is cumbersome to make a comparison for five

parameters (q, x, v, V, and sinv). However, it is possible to

reduce this to four parameters by normalizing the transport

coefficients with x, e.g., (13) with s ¼ ix can be

re-expressed as

3

2
iH ¼ v

x
d2H
dq2
þ Vs

x
dH
dq
� 3

2

sinvs

x
H: (47)

This can also be done exactly the same in cylindrical geom-

etry. In case two harmonics are necessary, /0ðx1Þ and

/0ðx2Þ are calculated using x1 ¼ x and x2 ¼ 2x corre-

sponding to the first and second harmonics. Consequently,

the normalized transport coefficients in a cylindrical geome-

try are given by �v ¼ v=x; �V ¼ V=x, and �sinv ¼ sinv=x such

that the heat equation and its solutions no longer depend x
explicitly.

This section consists of three parts: a presentation and

discussion on the selection of the best approximations when

only v is considered; a similar discussion when v and sinv

are considered (V¼ 0); and when v, V, and sinv are

considered.

A. Diffusivity only

The comparison for v only (V¼ 0 and sinv ¼ 0) is made

based on a large number of possibilities of v, x, and q in

terms of the normalized �v. The approximations are shown in

Fig. 1 in terms of the relative error with respect to the true

diffusivity v.

It is clear that all approximations perform well in a slab-

like geometry such that they approximate v well if the ratio

q=�v is large. In vc large relative errors are observed for small

q=�v, which can be understood by considering vc in (33). The

large error is caused by q�1 term in vc, which over compen-

sates resulting in a higher estimated diffusivity.9 The A0=A
and /0 are negative quantities for heat waves traveling out-

wards. Hence, the sum of q�1 and A0=A results in zero at the

center of the dark red area. On the other hand, it is also clear

that compared to the other slab-geometry approximations, vc

and v/ perform better. The approximation v/ is more accu-

rate in a slightly larger region than the approximation vc.

However, it is also important to note again that v/ is based

on the phase of two harmonics instead of amplitude and

phase of one harmonic as is the case for vc making it less

comparable.

FIG. 1. Comparison between the dif-

ferent relative errors of the v estimates

for a large range of �v ¼ v=x and q.

The relative error is defined as

erel ¼ 100� jv�vest j
v ; %½ �, where vest is

one of the possible approximations.

Note that V ¼ sinv ¼ 0 is the same as
�V ¼ �s inv ¼ 0. In this case, vs3 and vs4

were almost exactly the same in terms

of their error. This comparison is based

on a cylindrical geometry using an infi-

nite domain boundary condition

assuming v independent of q and

V ¼ sinv ¼ 0, where the heat waves

travel outwards. The darkest blue rep-

resents erel < 1% and the darkest red

represents all erel > 150%.
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B. Diffusivity and damping

Only three approximations are available to estimate v
under the influence of damping sinv, i.e., vs4 in (21), v/ in

(41), and vc in (33). The approximations are presented at a

limited number of spatial locations q. In order to have signif-

icant impact on the heat pulse propagation, s should be of

the order of the energy confinement time (se), i.e., 1 s for

JET or ITER. Therefore, the range of s is chosen such that

0:5 < s <1 (s ¼ 1 meaning no damping), i.e.,

0 � sinv � 2. This range is the same for the normalized �sinv

as the applicable range of x is assumed x > 1 [rad/s].

In general, the effect of damping sinv is not directly

influenced by the cylindrical geometry (V¼ 0), which can be

understood by comparing (10) and (11). In addition, sinv acts

as a shift parameter in (10), which basically shifts the

solution in q. This means that for large sinv, the regions in

which v is approximated well are extended for increasing

sinv. However, these effects are also influenced by the

approximation error in v and V. Therefore, it is not a one-to-

one relationship. This can also be seen in Fig. 2, where with

increasing sinv also the approximation region increases for

all approximations. All approximations under the influence

of damping behave similar to the case of v only.

C. Diffusivity, convectivity, and damping

If v, V, and sinv need to be estimated, at least two harmon-

ics are necessary. This also means that it is no longer possible

to estimate v with vc as is illustrated in Fig. 3, which is also

well known in the literature.9 On the other hand, v can be esti-

mated using v/ for a large range of parameters as is shown in

FIG. 2. Comparison between the rela-

tive errors of the v estimates using

vs4; v/, and vc for a large range of

�v ¼ v=x; �s inv, and q. This comparison

is based on a cylindrical geometry

using an infinite domain boundary con-

dition assuming constant spatial

dependencies of v and sinv. The darkest

blue represents erel < 1% and the dark-

est red represents all erel > 150%.

FIG. 3. The relative errors of the vc

estimates as function of �v ¼ v=x, V,

and q. These errors are based on a

cylindrical geometry using an infinite

domain boundary condition, where v,

V, and sinv ¼ 2 are independent of q.

The heat waves travel outwards. The

darkest blue represents erel < 1% and

the darkest red represents all

erel > 150%.
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Fig. 4. It is unclear what a good range is for the parameter
�V ¼ V=x except that it can also be negative. Therefore, an ar-

bitrary choice for this range is made �100 � �V � 100. In

general, v can be approximated well for large q as it than

behaves more slab-like. On the other hand, for large �v and

small q, the cylindrical effects are stronger, thus the errors are

large. The effect of the damping coefficients is not shown

here as it is rather small. The approximation vV can also be

used when sinv ¼ 0 and performs well, but only for positive

V. In Sec. VII, it is discussed how to estimate the convectivity

and damping and their common errors.

VII. ESTIMATING THE CONVECTIVITY AND DAMPING

In this section, the possibility of estimating the convec-

tivity V and damping sinv in a semi-infinite cylindrical

domain is investigated based on the slab-geometry estimates

V/ and s/. Then, the effect of model errors arising from

idealized assumptions is studied in a slab-geometry to distin-

guish between errors arising from the idealized assumptions

and the cylindrical geometry.

A. Estimation of V and sinv in a semi-infinite cylindrical
geometry

The only possibility to estimate v in a cylindrical geom-

etry under the influence of V and sinv presented here is by

using v/ in (41). The accompanying V/ in (42) and s/ in

(44) give the slab estimates Vs and sinvs and not the cylindri-

cal V and sinv. The quality of these estimates using Vs and

sinvs is investigated on the basis of a semi-infinite cylindrical

geometry and is presented in Fig. 5.

FIG. 4. The relative errors of the v/
estimates as function of �v ¼ v=x; �V ,

and q. The errors are based on a cylin-

drical geometry using an infinite

domain boundary condition, where v,

V, and �s inv ¼ 2 are independent of q.

The heat waves travel outwards. The

darkest blue represents erel < 1% and

the darkest red represents all

erel > 150%.

FIG. 5. The relative error of the esti-

mates of V and sinv using the approxi-

mations V/; Vcomp
/ , and scomp

/ for a

large range of �v; �V , and q. This com-

parison is based on a cylindrical geom-

etry using an infinite domain, where

the heat waves travel outwards. The

darkest blue represents erel < 1% and

the darkest red represents all

erel > 150%.
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The slab approximation V/ still gives a good estimate of

the cylindrical geometry because the damping takes part of

the model errors into account (see (11)). However, this also

means that the estimates of sinv in a cylindrical geometry are

poorly approximated by s/ (not shown here). On the other

hand, it is also possible to compensate for the model errors

based on (11), i.e.,

Vcomp
/ ¼ V/ �

v/

q
; and scomp

/ ¼ s/ þ
2

3

V/

q
: (48)

The compensated Vcomp
/ improves the estimate of V in some

regions, but decreases it in other regions. However, this can

be understood by comparing Vcomp
/ to v in Fig. 4. The region

where Vcomp
/ approximates V well is almost an exact copy of

the region where v/ approximates v well in Fig. 4. In (48), it

also becomes clear that there is a clear relationship between

the chosen base geometry (slab, cylindrical) and the spatial

variation of the transport coefficients. If one allows, the

transport coefficients Vs and ss to be spatial dependent then it

is possible to transform a cylindrical geometry into a slab

geometry.

The damping can only be estimated by the use of scomp
/

in a limited region. One might expect that by replacing V/

by Vcomp
/ to calculate scomp

/ might increase the approximation

region, but the differences are rather small.

It is clear that the slab approximations with or without

compensation can approximate the convectivity and damp-

ing in a semi-infinite cylindrical geometry with constant pa-

rameters in certain parameter ranges of �v, �V ; �sinv, and q.

However, in reality, the profiles can vary spatially and a dif-

ferent boundary condition is present than the infinite domain.

The effect of these varying profiles and different boundary

conditions on the estimates of v, V, and sinv is investigated

next.

B. The effect of boundary conditions and radial
dependent profiles

Here, the errors originating from (varying) spatial de-

pendent profiles and boundary conditions are studied. It has

been shown that using slab geometry approximations to esti-

mate the transport coefficients in a cylindrical geometry also

introduces errors. Therefore, a slab-geometry simulation is

used here to distinguish between errors originating from

varying profiles/boundary conditions and cylindrical geome-

try. Although only the errors for (41), (42), and (44) are

shown, these errors occur for all approximations presented in

this paper, including the ones from the literature, as they are

based on the same assumptions.

The choice of an infinite domain description allows the

derivation of explicit equations, which is an important

advantage over other choices of the boundary conditions.

However, the disadvantages are generally not so clear, but

should also be considered: (1) it is assumed that the parame-

ters are independent of q from ½qi;1Þ, so even variations far

from the used A0=A and /0 will introduce an error on the esti-

mated diffusivity even if it is locally constant in space and;

(2) there is a difference between the modeled and the real

boundary, i.e., estimates close to the real boundary will show

a significant bias (errors). This was already shown in Ref. 41

using analytic expansions.

The introduced bias due to mismodeling is partly sup-

pressed in practice. This is because (10) acts as a low-pass

filter, suppressing high-frequency errors more strongly than

low-frequency information. The amount of suppression also

depends on the distance to the boundary, on the variation of

the parameters, and on the distance of this variation to the

location q. However, as sinv and V are influenced by low-

frequency information, they are affected more strongly by

these errors, making it often impossible to find the correct

sinv and V.

These effects can be shown through an example.

Therefore, the heat-transport model in slab (10) is discretized

using finite difference and simulated with boundary condi-

tions @T=@qðq ¼ 0Þ ¼ 0 and Tðq ¼ 2:2Þ ¼ 0 with a (point)

source term at q ¼ 0:0025. Heat waves are studied traveling

towards the edge. The choice for slab-geometry and heat

waves towards the edge is made, because under these

assumptions, v/; V/, and s/, using (41), (42), and (44),

exactly determine v, Vs, and sinvs such that only the effect of

varying profiles and boundary conditions influence the result.

A finite difference simulation is used with 2000 measure-

ment (spatial grid) points, which are equidistant with

Dq ¼ 0:001. The phase and amplitude as function of q are

calculated from this finite difference simulation. The corre-

sponding A0=A and /0 are calculated using (27), because this

is the correct way to calculate A0=A and /0 in the case of

slab-geometry. In addition, as the distance between two

points Dq is very small, the errors in A0=A and /0 are negligi-

ble. The dimensionless radius q has been extended here to

two to more clearly show the errors originating from varying

profiles and boundary conditions. The result is shown in

Fig. 6, where a varying profile of v and Vs in terms of steps

is shown. It is clear that the estimates of v/ feel the step in

vðqÞ before it occurs, which is, as explained, a direct conse-

quence of choosing infinite domains. However, interestingly

at the step in vðqÞ (q ¼ 0:5), the estimates v/ and V/ are

close to the true values. The small difference at the step in

vðqÞ at q ¼ 0:5 is caused by the step in VsðqÞ at q ¼ 1:25,

which influences the estimates at q ¼ 0:5. The same phe-

nomenon can be observed at the step in VsðqÞ where both the

estimates v/ and V/ are exact. Due to (17), the estimates are

insensitive to what happens before /1 ¼ /ðq1Þ. However, in

principle, they are sensitive to what happens at q > q1,

hence sinv is not exact at the steps. The estimates that come

close to the boundary condition will also show errors, as was

already discussed in Ref. 41.

A different aspect is the magnitude of variation in the

estimates due to variations in the profiles and boundary con-

ditions. Therefore, it is important to consider the y-scales in

Fig. 6. The variations in the profiles influence v to a lesser

extent, but are disastrous for the estimates of Vs and sinvs.

Moreover, a step in vðqÞ has a large influence on the esti-

mates V/ and s/, but a step in VsðqÞ and sinvsðqÞ (not shown

here) influences v/ to a lesser extent. Note that the step in

VsðqÞ is 10 times larger than the step in vðqÞ.
The errors introduced by the boundary errors show a

similar behavior, which are significantly larger for V/ and
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s/. The main reason why the errors are significantly larger

for s/ and to a lesser extent V/ is that errors propagate

further at low frequencies. Both VsðqÞ and sinvsðqÞ are only

important at low frequencies, see (14). This also explains

why the estimate of v using 25 Hz shows larger errors than

the estimate based on 100 Hz.

We refrain here from making statements about direction

and absolute values of errors as this depends on too many

factors, such as the boundary conditions, the absolute values,

and the variation of profiles, frequency, how A0=A and /0 are

approximated, etc. Therefore, only the qualitative behavior

is shown, which also led us to the conclusion that Vs and sinvs

will be very difficult to study in practice using infinite

domains. This also holds for the estimates of the cylindrical

V and sinv. On the other hand, a step in a profile is also the

most extreme case and different boundary conditions prob-

ably hold. This means that it is not always impossible to esti-

mate Vs and sinvs or V and sinv in practice, but great care

should be taken and different approximation methods for V
and sinv may be necessary.

The argument could be made that these errors are sup-

pressed by increasing the frequency of the perturbation

source, but that will lead to noisy measurements. A better so-

lution is to use implicit methods, which allow the use of

much more complex models without many of the problems

encountered by infinite domains. In that case, the approxima-

tions presented in this paper form a tool for finding starting

values for such implicit methods and to have a rough idea of

the values of vðqÞ. However, this is not the subject of this

paper.

VIII. SUMMARY AND DISCUSSION PART I

In this paper, the problem of determining the thermal

diffusion coefficient from electron temperature measure-

ments during power modulation experiments has been revis-

ited. A number of new approximations have been introduced

to estimate v, V, and sinv directly from A0=A and /0 for differ-

ent combinations of v, V, and sinv. The approximations are

based on infinite slab domains using common assumptions.

To gain an understanding of how / and A are related to A0=A
and /0, on which the approximations are based, the notion of

transfer functions is introduced. This makes the relationship

between /0 and / explicit. The study of this relationship also

shows that the dependency of q is contained in A0 and /0 and

as such depends on how A0 and /0 are calculated.

The main result is the approximation of v, under the

influence of V and s, based on the phases of two harmonics.

Hence, this new approximation is less sensitive to calibration

errors. The new approximation extends the region in which v
can be approximated compared to the well known relation-

ship in Ref. 9 for cylindrical geometry even if V¼ 0.

However, it should be noted that unlike the relationship in

Ref. 9, the new approximation does not take density gra-

dients into account and is based on the phase of two harmon-

ics instead of amplitude and phase of one harmonic. This

approximation performs well in a large region when convec-

tivity is present for which no direct expression is currently

available. Here, the use of two harmonics cannot be seen as

a deficit as always at least two harmonics will be necessary.

Also the use of infinite domains necessary to arrive at

explicit approximations is discussed. The infinite domain

assumption introduces errors, which are related to varying

profiles and boundary conditions. Moreover, these errors

influence the convectivity and damping significantly, making

the estimated V and sinv often erroneous. On the other hand,

it is important to still estimate V and sinv as they can be used

to select the proper approximation and to verify if the esti-

mates of v in the presence of V and sinv are correct. This will

be explained in Part II, where a number of new approxima-

tions are derived. The results in Part II are based directly on

a semi-infinite cylindrical domain.
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