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Abstract. The aim of this study is to perform a theoretical analysis of the
magnetohydrodynamic (MHD) stability and energetic particle effects on a LHD
equilibria, calculated during a discharge where energetic-ion-driven resistive
interchange mode (EIC) events were triggered. We use the reduced MHD
equations to describe the linear evolution of the poloidal flux and the toroidal
component of the vorticity in a full 3D system, coupled with equations of density
and parallel velocity moments for the energetic particles species, including the
effect of the acoustic modes, multiple energetic particles (EP) species, helical
couplings and helically trapped EP. We add the Landau damping and resonant
destabilization effects using a closure relation. The simulations suggest that the
helically trapped EP driven by the perpendicular neutral beam injector (NBI)
further destabilizes the 1/1 MHD-like mode located at the plasma periphery
(r/a = 0.88). If the β of the EP driven by the perpendicular NBI is larger
than 0.0025 a 1/1 EIC with a frequency around 3 kHz is destabilized. If the
effect of the passing EP driven by the tangential NBI is included on the model,
any enhancement of the injection intensity of the tangential NBI below β = 0.025
leads to a decrease of the instability growth rate. The simulations indicate that the
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perpendicular NBI EP is the main driver of the EIC events, as it was observed in
the experiment. If the effect of the helical couplings are added in the model,
an 11/13 EIC is destabilized with a frequency around 9 kHz, inward shifted
(r/a = 0.81) compared to the 1/1 EIC. Thus, one possible explanation for the EIC
frequency chirping down from 9 to 3 kHz is a transition between the 11/13 to the
1/1 EIC due to a weakening of the destabilizing effect of the high n modes, caused
by a decrease of the EP drive due to a loss of helically trapped EP or a change in
the EP distribution function after the EIC burst. The experimental data during
the EIC bursting phase shows a complex mode structure and an inward shift of
the instability, although no direct evidence of the proposed transition has been
observed yet.

PACS numbers: 52.35.Py, 52.55.Hc, 52.55.Tn, 52.65.Kj

Keywords: Stellarator, LHD, EIC, MHD, AE, energetic particles
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1. Introduction

The EIC events are observed in LHD discharges with
low density and high ion temperature if the plasma
is heated by strong perpendicular and tangential
NBIs [1], showing magnetic fluctuations similar to
the fishbone oscillations [2, 3]. In these discharges,
the β of the thermal plasma is small due to the low
electron density and the large magnetic field strength,
comparable with the β of the EP driven by the
perpendicular NBI. EIC events consist in a bursting
instability with a frequency (f) around 9 kHz triggered
if the perpendicular NBI injection overcome some
threshold, chirping down to 4 kHz before stabilization
[4].

Energetic particle driven instabilities can enhance
the transport of fusion produced alpha particles,
energetic hydrogen neutral beams and ion cyclotron
resonance heated particles (ICRF) [5, 6, 7]. The
consequence is a decrease of the heating efficiency in
helical devices such as LHD and W7-AS stellarators or
tokamaks such as TFTR, JET and DIII-D [8, 9, 10, 11,
12, 13]. If the EP drift, bounce or transit frequencies
are similar to the mode frequency a resonance takes
place leading to an enhancement of the EP losses. In
addition, plasma instabilities such as internal kinks
[14, 15] or ballooning modes [16, 17] can be kinetically
destabilized, as well as the energetic particle modes
(EPM). these can be unstable for frequencies in the
shear Alfven continua if the continuum damping is
not strong enough to stabilize them [18, 19, 20,
21, 22]. On the other hand, Alfvén Eigenmodes
(AE) are driven in the spectral gaps of the shear
Alfvén continua [23, 24]; these instabilities have been
observed in several discharges and configurations [25,
26, 27, 28]. The different Alfvén eigenmode families
(n is the toroidal mode and m the poloidal mode)
are linked to frequency gaps produced by periodic
variations of the Alfvén speed, for example: toroidicity
induced Alfvén Eigenmodes (TAE) coupling m with
m + 1 modes [29, 30, 31, 32], beta induced Alfvén
Eigenmodes driven by compressibility effects (BAE)
[33], Reversed-shear Alfvén Eigenmodes (RSAE) due
to local maxima/minima in the safety factor q profile
[34, 35], Global Alfvén Eigenmodes (GAE) observed
when there is an extremum in the Alfvén continua
[36, 37, 38], ellipticity induced Alfvén Eigenmodes
(EAE) coupling m with m+2 modes [39, 40] and helical
Alfvén Eigenmodes (HAE) where different toroidal

modes are coupled [41].
Previous studies pointed out that the resistive

interchange modes (RIC) are unstable in the magnetic
hill region of LHD [42, 43, 44, 45, 46]. The RIC can
resonate with the precession motion of the helically
trapped EP generated by the perpendicular NBI in the
range of f = 10 kHz, leading to the enhancement of
the EP radial transport [47, 48]. Such instability was
identified as the trigger of the EIC events in previous
studies [2, 4]. Consequently, the EIC events can be
grouped in the family of the EPM.

LHD is a helical device heated by three NBI lines
almost parallel to the magnetic axis with an energy of
180 keV and two NBI perpendicular to the magnetic
axis with an energy of 32 keV. This study is limited to
LHD discharges with Hydrogen plasma where the NBIs
also inject Hydrogen; the EIC events are also observed
in Deuterium plasma [49]. The destabilization of EPM
and AE caused by strong NBI injection was already
observed in several LHD discharges [19, 32, 34, 38, 41].

The aim of the present study is to perform a
theoretical analysis of the MHD stability and the
destabilizing effects of the helically trapped EP on a
LHD equilibria calculated during an EIC event. In the
analysis we identify the threshold of the perpendicular
NBI injection intensity to destabilize the EIC events,
namely the β of the helically trapped EP, adding in the
simulations the effect of the acoustic modes, multiple
energetic particles species and helical couplings. In
addition, we analyze the structure of the instability
eigenfunction to compare the simulation results with
the experimental data.

A set of simulations are performed using an
updated version of the FAR3D code [50, 51, 52],
adding the moment equations of the energetic ion
density and parallel velocity [53, 54]. This numerical
model, with the appropriate Landau closure relations,
solves the reduced non-linear resistive MHD equations
including the linear wave-particle resonance effects,
required for Landau damping/growth, and the parallel
momentum response of the thermal plasma, required
for coupling to the geodesic acoustic waves [35]. The
code follows the evolution of six field variables, starting
from equilibria calculated by the VMEC code [55]. A
methodology has been developed to calibrate Landau-
closure models against more complete kinetic models
and optimize the closure coefficients [35]. The model
includes Landau resonance couplings, fast ion FLR [54]
and Landau damping of the modes on the background
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ions/electrons [53], although we did not consider the
last two for simplicity.

This paper is organized as follows. The
model equations, numerical scheme and equilibrium
properties are described in section 2. A study of the
instability properties for different helically trapped EP
configurations are presented in section 3. A parametric
analysis of the NBI injection intensity to identify the
instability threshold is described in section 4. Finally,
the conclusions of this paper and the comparison with
the experimental observations are presented in section
5.

2. Equations and numerical scheme

The reduced set of equations for high-aspect ratio
configurations with moderate β-values (of the order
of the inverse aspect ratio) is obtained following the
method employed in Ref.[56], describing the evolution
of the background plasma and fields retaining the
toroidal angle variation. We obtain a reduced set
of equations based upon an exact three-dimensional
equilibrium that assumes closed nested flux surfaces.
The moments of the fast ions kinetic equation
truncated with a closure relation are added in the
model to introduce the effect of the energetic particle
population [57], describing the evolution of the
energetic particle density (nf ) and velocity moments
parallel to the magnetic field lines (v||f ). The
coefficients of the closure relation are selected to match
analytic TAE growth rates based upon a two-pole
approximation of the plasma dispersion function.

We assume high aspect ratio, medium β (of the
order of the inverse aspect ratio ε = a/R0), small
variation of the fields and small resistivity. The plasma
velocity and perturbation of the magnetic field are
defined as

v =
√
gR0∇ζ ×∇Φ, B = R0∇ζ ×∇ψ, (1)

where ζ is the toroidal angle, Φ is a stream function
proportional to the electrostatic potential, and ψ̃ is the
perturbation of the poloidal flux.

The equations, in dimensionless form, are

∂ψ̃

∂t
=
√
gB∇‖Φ + ηε2JJ̃ζ (2)

∂Ũ

∂t
= −εvζ,eq

∂U

∂ζ

+S2

[
√
gB∇‖Jζ −

β0

2ε2

√
g (∇√g ×∇p̃)ζ

]
−S2

[
βf
2ε2

√
g (∇√g ×∇ñf )

ζ

]
(3)

∂p̃

∂t
= −εvζ,eq

∂p

∂ζ
+
dpeq
dρ

1

ρ

∂Φ̃

∂θ

+Γpeq

[
√
g
(
∇√g ×∇Φ̃

)ζ
−∇‖v‖th

]
(4)

∂ṽ‖th

∂t
= −εvζ,eq

∂v||th

∂ζ
− S2β0

n0,th
∇‖p (5)

∂ñf
∂t

= −εvζ,eq
∂nf
∂ζ
−
Sv2

th,f

ωcy
Ωd(ñf )− Snf0∇‖v‖f

−ε2nf0 Ωd(Φ̃) + ε2nf0 Ω∗(Φ̃) (6)

∂ṽ‖f

∂t
= −εvζ,eq

∂v||f

∂ζ
−
Sv2

th,f

ωcy
Ωd(ṽ‖f )

−
(π

2

)1/2

Svth,f
∣∣∇‖v‖f ∣∣

−
Sv2

th,f

nf0
∇‖nf + Sε2v2

th,f Ω∗(ψ̃) (7)

Equation (2) is derived from Ohms law coupled
with Faradays law, equation (3) is obtained from
the toroidal component of the momentum balance
equation after applying the operator ∇∧√g, equation
(4) is obtained from the thermal plasma continuity
equation with compressibility effects and equation
(5) is obtained from the parallel component of the

momentum balance. Here, U =
√
g
[
∇×

(
ρm
√
gv
)]ζ

is the vorticity, ρm the ion and electron mass
density, ρ =

√
φN the effective radius with φN the

normalized toroidal flux and θ the poloidal angle.
The perturbation of the toroidal current density J̃ζ

is defined as:

J̃ζ =
1

ρ

∂

∂ρ

(
−gρθ√

g

∂ψ̃

∂θ
+ ρ

gθθ√
g

∂ψ̃

∂ρ

)

−1

ρ

∂

∂θ

(
gρρ√
g

1

ρ

∂ψ̃

∂θ
+ ρ

gρθ√
g

∂ψ̃

∂ρ

)
(8)

v||th is the parallel velocity of the thermal particles
and vζ,eq is the equilibrium toroidal rotation. nf is
normalized to the density at the magnetic axis nf0 , Φ
to a2B0/τR and Ψ to a2B0. The radius ρ is normalized
to a generalized minor radius a; the resistivity to
η0 (its value at the magnetic axis); the time to the
resistive time τR = a2µ0/η0; the magnetic field to B0

(the averaged value at the magnetic axis); and the
pressure to its equilibrium value at the magnetic axis.
The Lundquist number S is the ratio of the resistive
time to the Alfvén time τA0 = R0(µ0ρm)1/2/B0. -ι
is the rotational transform, vth,f =

√
Tf/mf the

energetic particle thermal velocity normalized to the
Alfvén velocity in the magnetic axis vA0 and ωcy the
energetic particle cyclotron frequency times τA0. qf is
the charge, Tf the temperature and mf the mass of the
energetic particles. The Ω operators are defined as:

Ωd =
ε2πρ2ωb
db

[
∂

∂θ

(
1
√
g

)]−1

·
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∂
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1
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Ω∗ =
1

B2√g
1

nf0
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dρ

(
I

ρ

∂

∂ζ
− J 1

ρ

∂

∂θ

)
(10)

Here the Ωd operator is the average drift velocity
of a helically trapped particle and Ω∗ models the
diamagnetic drift frequency. The parameter ωb
indicates the bounce frequency and db the bounce
length of the helically trapped EP guiding center. For
more details regarding the derivation of the average
drift velocity operator please see the Appendix. It
should be noted that the effect of the helical particle
trapping is only considered through a modification
of the average drift velocity, and the simulations are
still based on an isotropic model. Future efforts will
be oriented to improve the present model including
anisotropic distributions, leading to a more accurate
analysis.

We also define the parallel gradient and curvature
operators as

∇‖f =
1

B
√
g

(
∂f̃

∂ζ
+ -ι

∂f̃

∂θ
− ∂feq

∂ρ

1

ρ

∂ψ̃

∂θ
+

1

ρ

∂feq
∂θ

∂ψ̃

∂ρ

)
(11)

√
g
(
∇√g ×∇f̃

)ζ
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∂
√
g

∂ρ

1

ρ

∂f̃

∂θ
− 1

ρ

∂
√
g

∂θ

∂f̃

∂ρ
(12)

with the Jacobian of the transformation,

1
√
g

=
B2

ε2(J + -ιI)
(13)

Equations 4 and 5 introduce the parallel momen-
tum response of the thermal plasma. These are requi-
red for coupling to the geodesic acoustic waves, accoun-
ting for the geodesic compressibility in the frequency
range of the geodesic acoustic mode (GAM) [58, 59].

Equilibrium flux coordinates (ρ, θ, ζ) are used.
Here, ρ is a generalized radial coordinate proportional
to the square root of the toroidal flux function, and
normalized to the unity at the edge. The flux
coordinates used in the code are those described by
Boozer [60], and

√
g is the Jacobian of the coordinate

transformation. All functions have equilibrium and
perturbation components represented as: A = Aeq+Ã.

The FAR3D code uses finite differences in the
radial direction and Fourier expansions in the two
angular variables. The numerical scheme is semi-
implicit in the linear terms.

The present model was already used to study the
AE activity in LHD [31, 61], TJ-II [62, 63, 64] and

Ti (keV) ni (1020 m−3) βth VA (106 m/s)
3.41 0.72 0.002 6.44

Table 1. Thermal plasma properties (values at the magnetic
axis). The first column is the thermal ion temperature, the
second column is the thermal ion density, the third column is
the thermal β and the fourth column is the Alfvén velocity.

Perpendicular NBI EP

nf,⊥ (1020 m−3) βf,⊥
0.0035 0.0013

Parallel NBI EP

nf,|| (1020 m−3) βf,||
0.0039 0.0025

Table 2. Properties of the EP driven by the perpendicular (first
row) and tangential (second row) NBIs (values at the magnetic
axis). First column is the energetic particle density and the
second column is the energetic particle β.

DIII-D [65, 66, 67], indicating reasonable agreement
with the observations.

2.1. Equilibrium properties

We use fixed boundary results from the VMEC
equilibrium code [55] calculated using the LHD
reconstruction of a discharge during an EIC event (shot
116190). The electron density and temperature profiles
were reconstructed by Thomson scattering data and
electron cyclotron emission. Table 1 shows the main
parameters of the thermal plasma and table 2 the
details of the EP driven by the perpendicular and
tangential NBIs. Both NBIs inject hydrogen. Thus,
the cyclotron frequency is the same, ωcy = 2.41 · 108 s.

The magnetic field at the magnetic axis is 2.5 T
and the averaged inverse aspect ratio is ε = 0.16. The
energy of the injected particles by the perpendicular
NBI is Tf,⊥(0) = 40 keV, but we take the nominal
energy Tf,⊥(0) = 28 keV (vth,f = 1.64 · 106 m/s)
resulting in an averaged Maxwellian energy equal to
the average energy of a slowing-down distribution. In
the same way, the energy of the injected particles by
the tangential NBI is Tf,||(0) = 180 keV but we take
the nominal energy Tf,||(0) = 100 keV (vth,f = 3.1 ·106

m/s). Figure 1 (a) shows the iota profile, (b) the
equilibrium pressure (thermal plasmas + EP pressure),
(c) the thermal plasma density, (d) the thermal plasma
temperature, (e) the perpendicular NBI EP density,
(f) the perpendicular NBI EP temperature, (g) the
parallel NBI EP density and (h) the parallel NBI EP
temperature. It should be noted that the effect of
the equilibrium toroidal rotation is not included in
the model for simplicity. The effect of the Doppler
shift on the instability frequency caused by the toroidal
rotation is small, particularly for a mode located in the
plasma periphery, as it is observed in the experiments.
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Figure 1. (a) Iota profile, (b) equilibrium pressure (thermal
+ EP pressure), (c) thermal plasma density, (d) thermal
plasma temperature, (e) perpendicular NBI EP density, (f)
perpendicular NBI EP temperature, (g) parallel NBI EP density
and (h) parallel NBI EP temperature.

Figure 2 shows the Alfvén gaps for the helical
coupled family n = 1, 9, 11 (b). There are three gaps:
the BAE or low frequency AE gap below 40 kHz that
covers all the normalized minor radius, the n = 1 TAE
gap in the range of f = [65, 75] kHz at the inner plasma
region as well as the n = 1, 9, 11 HAE gap in the range
of f = [110, 180] kHz between the inner-middle plasma
region. The analysis of the continuum gaps includes
the effect of the sound waves.

Figure 2. Alfvén gaps of the n = 1, 9, 11 helical family. The
black dots indicate the n = 1 modes, the blue dots show the
n = 9 modes and the red dots show the n = 11 modes.

2.2. Simulations parameters

The dynamic and equilibrium toroidal (n) and poloidal
(m) modes included in the study are summarized in
table 3 for the simulations with toroidal or helical
couplings. The simulations are performed with a
uniform radial grid of 1000 points. The plasma core
is not included in the analysis (ρ < 0.3) to avoid the
destabilization of undesired modes near the magnetic
axis, because the aim of the study is to analyze
modes destabilized in the plasma periphery. In the
following, the mode number notation is n/m, which
is consistent with the ι = n/m definition for the
associated resonance.

Simulation with toroidal couplings

n 1 0
m [1, 2] [0, 6]

Simulation with helical couplings

n 1 9 11 0 10
m [1, 8] [6, 18] [6, 22] [0, 4] [−7, 3]

Table 3. Dynamic and equilibrium toroidal (n) and poloidal (m)
modes in the simulations with toroidal couplings (upper row) and
in the simulations with helical coupling (lower row).

The usual MHD parities are broken by the
closure of the kinetic moment equations (6) and (7).
Consequently, both parities must be included in the
model sin(mθ+nζ) and cos(mθ+nζ) for all dynamic
variables, and allowing for both a growth rate and a
real frequency in the eigenmode time series analysis.
The convention of the code is, in the case of the
pressure eigenfunction, that n > 0 corresponds to
the Fourier component cos(mθ + nζ) and n < 0 to
sin(−mθ − nζ). For example, the Fourier component
for mode −1/2 is cos(−1θ+2ζ) and for the mode 1/−2
is sin(−1θ + 2ζ). The magnetic Lundquist number is
S = 5 · 106 which similar to the experimental value in
the middle plasma.

The βf value introduces the density ratio between
the EP and bulk plasma (nf (0)/ne(0)) at the magnetic
axis into the model. The EP density and temperature
of the perpendicular beam are calculated by the code
MORH [68, 69]. For the tangential NBI we use the
same parameters as in reference [61]. In addition, we
study the effect of the location of the EP density profile
gradient (NBI deposition region) and profile flatness
using analytic expressions for the density profile of the
perpendicular NBI EP. The analytic expression is the
following:

nf,||(r) =
(0.5(1+tanh(rflat·(rpeak−r))+0.02)

(0.5(1+tanh(rflat·rpeak))+0.02) (14)

The location of the gradient is controlled by the
parameter (rpeak) and the flatness by (rflat). Figure 3
shows some examples of the perpendicular NBI EP
density profiles used in the study.
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Figure 3. Example of the analytic density profiles of the
perpendicular NBI EP used in the parametric study.

The resonance coupling efficiency between the
EIC and the energetic particles is determined by the
ratio between the EP thermal velocity and the Alfvén
velocity at the magnetic axis (vth,f/vA0). The EP
thermal velocity is associated with the beam energy
(NBI voltage). The Landau closure model used here
is based on two moment equations for the fast ions,
which is equivalent to a two-pole approximation to the
plasma dispersion relation. The closure coefficients are
adjusted by fitting analytic AE growth rates. This
translates to a Lorentzian energy distribution function;
to lowest order the Lorentzian can be matched either
to a Maxwellian or a slowing-down distribution by
choosing an equivalent average energy. For the
results given in this paper, we have matched the EP
temperature to the mean energy of a slowing-down
distribution function. A more precise matching to
the resonance function for a slowing-down distribution
can be obtained by including higher moment equations
for the fast ions. FAR3D has recently been extended
to three and four moment versions, for improved
matching to a variety of non-Maxellian distributions.
These require further testing and calibration, using the
methods presented in [35]. They will be the topic of
future research.

3. Instability resonance versus helically
trapped EP configuration

We analyze in this section the effect of the guiding
center bounce frequency and length on the instability
properties. Figure 4 shows the instability growth rate,
frequency and eigenfunction structure for different
bounce frequency and length values (fixed βf,⊥ =
0.015).

The analysis shows two different resonances. On
one side, there is a resonance driven by deeply helically
trapped EP (db/R0 < 0.01) that takes place if the
vb > 2.3 · 103m/s, leading to the destabilization of
the 1/2 mode in the middle plasma and an instability
frequency of f = [8, 28] kHz. On the other hand,
there is another broad resonance if db/R0 > 0.01 and
the bounce frequency is ω < 80 kHz, leading to the

Figure 4. Instability growth rate (a) and frequency (b) driven
by helically trapped EP with different guiding center bounce
frequencies and lengths. The black and blue stars indicate
instabilities driven by deeply helically trapped EP (c) and
helically trapped EP (d).

destabilization of the 1/1 mode in the plasma periphery
and an instability frequency around 4 kHz (vb < 2.3 ·
103m/s). The growth rate of the instability driven by
the deeply trapped EP is up to 10 times higher. In
the following, we only consider the resonance where
the 1/1 mode is destabilized because the experimental
data indicates that this is the mode involved in the EIC
events. In addition, following the guiding center of the
helically trapped particle orbits using the 3D Monte
Carlo code GCR [70], we found that the bounce length
of the helically trapped EP guiding center is several
centimeters and the bounce frequency is ω ≤ 100 kHz,
so vb ≈ 2 · 103, consistent with the resonance regime
of helically trapped EP, not deeply helically trapped
EP. The analysis of the resonance driven by the deeply
trapped EP will be the topic of a future study.

The next step of the study consists of analyzing
the resonance efficiency of the EP to destabilize the
instability given the energy of the EP (the ratio
vth,f/vA0). Figure 5 shows the instability growth rate,
frequency and eigenfunction structure for different
vth,f/vA0 ratios.

The instability growth rate increases as the
vth,f/vA0 ratio decreases, although the highest fre-
quency is observed for vth,f/vA0 = 0.15 if ωb = 80 kHz
and vth,f/vA0 = 0.25 if ωb = 40 kHz. In both cases
the mode 1/1 is destabilized in the plasma periphery
showing a clear asymmetry between parities, pointing
out that the instability is caused by the destabilizing
effect of the EP. The experimental data indicates that
the EP involved in the EIC events do not have time
to undergo a significant slowing down process, thus
they are weakly thermalized when the resonance takes
place. Thus, the simulations with a bounce frequency
of ωb = 40 kHz are expected to be closer to experi-
mental conditions. Because the highest frequency ta-
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Figure 5. Instability growth rate (a) and frequency (b) driven
by helically trapped EP with different vth,f/vA0 ratios. The
green and red stars indicate the instabilities driven if the bounce
frequency is (c) 40 kHz and (d) 80 kHz.

kes place at vth,f/vA0 = 0.25, this may characterize
the EP with a smaller slowing down time compared to
the ωb = 80 kHz case. In the following, we select the
helically trapped EP configuration with ωb = 40 kHz,
db = 0.072 m and vth,f/vA0 = 0.25.

Next, we study the effect of the EP density
profile on the instability properties. Figure 6 shows
the instability growth rate and frequency for several
analytic density profiles defined by equation 14 (see
figure 3).

Figure 6. Instability growth rate (a) and frequency (b)
for different locations of the EP density gradient rpeak. (c)
Instability growth rate and (d) frequency for different flatness
of the EP density profile rflat.

The instability growth rate increases if the EP
density gradient is displaced inward or outward from
rpeak = 0.8, and the instability frequency is larger if
the EP density gradient is located at rpeak > 0.8. The

perpendicular NBI deposition region is located in the
outer plasma region thus the model configuration that
better represents the experiments are the simulations
with rpeak > 0.8. On the other hand, the instability
growth rate and frequency decrease if the gradient of
the EP density profiles is weaker because the source of
free energy to destabilize EP driven modes is linked to
the gradient of the EP density profile. Consequently,
in the following we use an analytic expression of the
density profile with rpeak = 0.85 and rflat = 10
to maximize the destabilizing effect of the EP while
keeping an EP density profile representative of the
experiment.

4. Study of the instability threshold

In this section we analyze the effect of the injection
intensity of the perpendicular and parallel NBI,
identifying the β threshold of the helically trapped
EP driven by the perpendicular NBI (βf,⊥) and the
passing EP driven by the tangential NBI (βf,||) to
destabilize AE. In order to perform this study, we
include in the numerical model two new equations that
introduce the perturbation caused by the passing EP.
The new set of equations have the same structure as
the equations 6 and 7 although the correction of the
averaged drift velocity operator is not included and
the averaged energies are different. Figure 7 shows
the instability growth rate and frequency for different
βf,⊥ and βf,|| values as well as different thermal plasma
resistivities. It should be noted that the simulations
are performed including both EP populations in order
to reproduce the combined effects of the perpendicular
and tangential NBI EP on the instability threshold.

For a fixed injection intensity of the tangential
beam to βf,|| = 0.002, if βf,⊥ > 0.0025 there is a large
increase of the instability growth rate and frequency,
Figure 7a and b, pointing out a threshold in βf,⊥
linked to a transition between different instabilities.
Below this threshold a 1/1 MHD mode at r/a = 0.88
is unstable, identified by its low frequency (below 1
kHz) and the eigenfunction structure where both mode
parities are similar (asymmetries in the mode parities
are caused by the destabilizing effect of the EP). See
figure 8a. The 1/1 MHD mode calculated in the
simulation is similar to the precursor MHD activity of
the EIC events [4]. Above the threshold, the 1/1 EIC
at r/a = 0.88 is destabilized with a f > 3 kHz showing
asymmetries in the mode parities. See figure 8b. This
instability is similar to the perturbation observed in
the experiment before and after the bursting phase of
the EIC events.

Now we analyze the effect of the tangential NBI
EP with the injection intensity of the perpendicular
beam fixed at βf,⊥ = 0.015, Figure 7c and d.
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Figure 7. Instability growth rate (a) and frequency (b) for different values of βf,⊥ (fixed βf,|| = 0.002 and S = 5 · 106). Instability

growth rate (c) and frequency (d) for different values of βf,|| (fixed βf,⊥ = 0.015 and S = 5 · 106). Instability growth rate (e) and
frequency (f) for different values of the thermal plasma resistivity (fixed βf,|| = 0.002 and βf,⊥ = 0.015).

Increasing βf,|| leads to a decrease of the instability
growth rate and frequency. The βf,|| threshold to drive
an instability is higher than 0.01, the highest value used
in this study, although the characteristic of the AE
destabilized by the tangential NBI EP can be analyzed
increasing the βf,|| up to 0.025, a drive strong enough
to destabilize a 1/2 BAE in the middle plasma region
with a frequency of 23 kHz. The decrease of the 1/1
EIC growth rate is caused by the different resonance
properties of the passing EP with the thermal plasma,
leading to a stabilizing effect over the perturbation
driven by the helically trapped EP that we refer to as
the multiple beam damping effect. Such a damping
effect was already observed in TFTR experiments
where the NBI driven EP provided damping that
prevented the destabilization of Alpha particle driven
AEs [71, 72, 73] except in the afterglow phase of the
discharge. It should be noted that the simulations
are coherent with the experimental observations that
identified an increase of the time-wise spacing of the
EIC events as the injection intensity of the tangential
NBI increases. In addition, the simulations also
indicate that the 1/1 EIC is destabilized if βf,|| = 0,
in line with the experimental observations, because the
EIC events are only triggered if the perpendicular NBI
injection intensity is large enough to overcome the EIC
threshold, even if the tangential NBI injection is weak,
but never in discharges with plasma heated only by
tangential beams.

To confirm the destabilization of the EIC above
the βf,⊥ threshold we analyze the dependence of the
instability growth rate and frequency on the thermal
plasma resistivity. See Figure 7e and f. A large
plasma resistivity must lead to an enhancement of

the instability growth rate if the mode is MHD-
like. On the other hand, if the plasma resistivity
is small enough the mode is stabilized. If the
simulation resistivity is reduced by a factor of two,
increasing the magnetic Lundquist number up to S =
107, the mode is not stabilized and its growth rate
decreases less than 10% keeping almost the same
instability frequency. On the other hand, increasing
the simulation resistivity by a factor of 50 (S = 105)
leads to an increase of the instability growth rate
by around 30%, although the instability frequency
increases less than 5%. Consequently, even if the
instability shows some dependency on the thermal
plasma resistivity, it is weaker than an MHD-like
mode. Figure 8c shows the instability eigenfunction
structure for the simulation with the largest plasma
resistivity (S = 105), indicating an increase of the
eigenfunctions width and the destabilization of the 1/2
modes. Hence the perturbation is enhanced, although
the eigenfunction structure is similar compared to the
simulations with lower resistivity, pointing out that the
same type of instability is involved in both cases. See
figure 8b.

4.1. Effect of the helical couplings

Next, we study the effect of the helical couplings on the
instability growth rate, frequency and eigenfunction
structure. See figure 9.

Again, if βf,⊥ = 0.005 (fixed βf,|| = 0.002) an
11/13 EIC is destabilized, displaced inward (r/a =
0.82) and also showing a more complex structure
compared to the simulations with only toroidal
couplings. See figure 9c. In addition, the instability
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Figure 8. Instability eigenfunction if (a) βf,⊥ = 0.0025, (b) βf,⊥ = 0.005 and S = 5 · 106, (c) βf,⊥ = 0.005 and S = 105.

Figure 9. Instability growth rate (a) and frequency (b)
for different values of βf,⊥ including the effect of the helical
couplings (fixed βf,|| = 0.002). Instability eigenfunction if (c)
βf,⊥ = 0.005 and (d) βf,⊥ = 0.015.

frequency is larger, around the 8.5 kHz. Any further
increment of βf,⊥ leads to a larger growth rate and
frequency, although the eigenfunction structure of the
11/13 EIC is similar. See figure 9d. It should be
noted that if the simulation is performed below the
βf,⊥ threshold to destabilize the 11/13 EIC, a 11/13
MHD like mode is unstable. Figure 10 shows the
instability frequency driven by the n = 1 toroidal
family (black line) and helical family n = 1, 9, 11
(red line), identifying with increased accuracy the βf,⊥
value required to trigger the transition between the
MHD-like modes and EIC. The transition for the n = 1
toroidal family takes place if βf,⊥ = 0.0028 although
for the helical family n = 1, 9, 11 is observed if βf,⊥ =
0.0032, pointing out that the 1/1 EIC is destabilized by
a lower EP driving regarding 11/13 EIC. Consequently,
the EIC is first destabilized by the 1/1 mode and a
further increase of the βf,⊥ leads to the destabilization
of the high n modes of the n = 1, 9, 11 helical family
triggering an 11/13 EIC. The normalized width of
the instability eigen-function (pink triangles) increases
with βf,⊥. Below the βf,⊥ threshold to destabilize
the 1/1 EIC (βf,⊥ = 0.0026), the normalized eigen-
function width of the 1/1 RIC is ∆rp/a = 0.04, similar
to the instability width measured in the experiment

during the phase I and early phase II. Above the
1/1 EIC βf,⊥ threshold the eigen-function width keeps
increasing, up to ∆rp/a = 0.07 for βf,⊥ = 0.0036,
consistent with the inward extension of the instability
observed in the experiment during the late phase II
and the transition to the phase III.

Figure 10. Instability frequency for different values of βf,⊥
near the transition between MHD-like and EIC for the n = 1
toroidal family (black line) and helical family n = 1, 9, 11 (red
line) fixed βf,|| = 0.002. The pink triangles show the instability
eigen-function width (normalized to the minor radius).

The 11/13 EIC calculated by the simulation
shows some analogies with the observations during
the bursting phase of the EIC event, for example,
the instability frequency range, the inward shifted
location and the complex mode structure. In addition,
the simulations suggest a transition from the 1/1
EIC to the 11/13 EIC caused by an increment of
the EP driving, although there is no experimental
evidence that such transition takes place. Dedicated
experiments are required to confirm the proposed
scenario by the numerical modeling.

5. Conclusions and discussion

The set of linear simulations performed by the FAR3d
code identified several instabilities whose features are
compatible with the experimental observations during
different phases of the EIC events.
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The FAR3d model is updated to include the
effect of the helically trapped energetic particles in the
averaged drift velocity operator. The new formulation
of the averaged drift velocity operator is used to
study the destabilizing effect of the EP driven by
the perpendicular NBI on LHD plasma, including
characteristics of the motion of the helically trapped
particle, in particular the bounce length and frequency
of the guiding center.

Two different resonances are identified regarding
the bounce length and frequency of the helically
trapped particle guiding center. One resonance is
caused by deeply helically trapped EP with a fast
bounce frequency (ωb ≥ 120 kHz), leading to the
destabilization of a 1/2 EIC or BAE in the central
plasma region with frequencies between f = [8, 28]
kHz. The other resonance is associated with helically
trapped EP with a bounce frequency ωb ≤ 80 kHz,
leading to the destabilization of a 1/1 EIC at r/a =
0.88 with a frequency around f = 4 kHz. The
instabilities caused by the helically trapped resonance
are further analyzed due to the similarities with
perturbations observed during the EIC events.

The simulations show an unstable 1/1 MHD-like
mode at r/a = 0.88 similar to the precursor MHD
activity observed before the triggering of the EIC
events, identified as a resistive interchange mode. An
increase of the perpendicular NBI injection intensity
leads to a further destabilization of the 1/1 MHD-like
mode until a threshold at βf,⊥ = 0.0028 is overcome,
leading to the triggering of a 1/1 EIC with a frequency
around 3 kHz, also located at r/a = 0.88. The
transition from the 1/1 MHD-like mode to the 1/1
EIC is consistent with phase I of the EIC event as it
was defined in reference [4], as well as the threshold of
the perpendicular NBI injection intensity observed in
the experiment. As the EP drive is increased (larger
βf,⊥) the 1/1 EIC is further destabilization and the
perturbation extends inwards, similar to the phase II
of the EIC event. If the EP driving is further increased
up to βf,⊥ = 0.0032 and the effect of the helical
couplings is added in the simulations, an 11/13 EIC is
destabilized at r/a = 0.82 with a frequency around f =
8.5 kHz, showing a complex eigenfunction structure.
Such an instability has several features in common
with the perturbation observed during the bursting
phase III of the EIC events. It should be noted that
the mode structure in the experiment is very complex
and present analysis is limited to linear simulations
where only the dominant mode is considered. Thus,
the model only reproduces part of the complexity of
the process, identifying the different EIC phases with
the destabilization of a 1/1 RIC (phase I), a 1/1 EIC
(phase II), an 11/13 EIC (phase III) and again a 1/1
EIC (phase IV), as a simplification of the experimental

observations. Consequently, to assess the problem
in a more comprehensive way non linear simulations
that include the effect of the subdominant modes are
required. Nevertheless, the present study is already
able to evaluate the major modes involved in the EIC
event. In addition, the simulations without helical
couplings assume that the helical couplings are weak
because the high n modes of the n = 1, 9, 11 helical
family are EIC stable, thus the analysis of the n = 1
toroidal family represents in first approximation the
EIC phenomena before and after the EIC bursting
phase.

The simulations also suggest an explanation for
the frequency chirp down observed in the experiment,
showing a transition from the 11/13 to the 1/1 EIC.
Such a transition takes place because the EP driving
effect decreases due to a loss of helically trapped
particles [47, 48], lower βf,⊥, or the modification of
the helical trapped particle distribution function after
each EIC burst. A more detailed analysis of the effect
of the helically trapped distribution function during
the EIC events will be the topic of a future study. It
should be noted that there is no experimental evidence
of the transition proposed by the numerical modeling,
although the simulations reproduce several features
of the EIC bursting phase. This scenario must be
confirmed on dedicated experiments.

The simulations with multiple EP populations,
particularly the helically trapped energetic particles
driven by the perpendicular NBI and the passing
energetic particles driven by the tangential NBI, show
a stabilizing effect of the tangential beam as the
injection intensity increases, reducing the growth rate
of the EIC destabilized by the perpendicular beam.
A similar behavior was observed in the experiments
because the EIC events show a larger time-wise
spacing as the injection intensity of the tangential
NBI increases, pointing out a stabilizing effect over
the perpendicular NBI driving. The multiple beam
damping effect is caused by the different resonance
properties of the passing energetic particles with the
thermal plasma compared to the helically trapped
energetic particles. The threshold to trigger an AE
driven by the tangential NBI is βf,|| = 0.025, higher
than that which characterized perpendicular NBI. If
this threshold is overcome a 1/2 BAE with a frequency
of 23 kHz is destabilized. In addition, the simulations
with multiple EP simulations confirm that the main
drivers of the EIC event are the helically trapped
energetic particles generated by the perpendicular
NBI, because the 1/1 EIC are destabilized even if the
tangential NBI injection intensity is small, but never if
the perpendicular NBI injection intensity is below the
1/1 EIC destabilization threshold.

Present study conclusions support the scenario
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proposed previously by other authors [2, 4], identifying
the EIC as resistive interchange modes further
destabilized by the driving effect of the helically
trapped EP. On the other hand, the destabilization of
the 11/13 EIC and the transition to the 1/1 EIC when
the EIC frequency chirp down during the bursting
phase must be verified by dedicated experiments.
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Appendix

The effect of the helically trapped EP are introduced
in the model through modification of the average
drift velocity operator of the passing EP. Using the
expressions 6.72, 6.77 and 6.83 of the ref [74], the
trapped EP trajectory can be derived in the ψ−θ plane,
described by the period of the guiding center motion
in the helical ripple (T ) and the adiabatic invariant Λ
defined as:

Λ = 2Bφ

∫ φ+

φ−

mv||

B0
dφ =

4ψ‘

a2√g

∫ φ+

φ−

mv||

B0
dφ

The averaged drift equations of the helically trapped
EP can be written as:

dψ

dt
= ωb

4ψ‘
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∂
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(
1
√
g

m

q
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φ−

v||
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dt
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4ψ‘
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(
1
√
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m

q

∫ φ+

φ−

v||

B0
dφ

)
with ωb = 1/2πT the averaged bounce frequency of
the guiding center. We can also define the square of
the averaged bounce length of the guiding center (db),
defined as:

d2
b =

m

q

∫ φ+

φ−

v||

B0
dφ =

m

q
lim

∆φ→∞

φ+∑
φ−

v||

B0
dφ

The experimental data indicates that the EP participa-
ting in the resonance have defined characteristics, thus
we consider for simplicity the next assumption: the
EP involved in the resonance have the same averaged
guiding center bounce frequency and length. In effect,
this implies that we are considering only particles at
a single energy and pitch angle ∆ = µB0/2, with µ

the magnetic moment. Consequently, as first order ap-
proximation, no radial or angular dependency of the
averaged bounce length is included in the model, thus:

dψ

dt
= ωbd

2
b

4ψ‘

a2

∂

∂θ

(
1
√
g

)
dθ

dt
= −ωbd2

b

4ψ‘
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∂

∂ψ

(
1
√
g

)
Following such simplification, figure 11 shows a
representation of the guiding center motion of the
helically trapped EP that participate in the resonance.

Figure 11. Schematic view of the guiding center motion of
the helically trapped EP that participate in the resonance. The
red line indicates the magnetic field line and the green line the
motion of the helically trapped EP. The yellow dots indicate the
motion of the EP guiding center during one oscillation period.

If we define the averaged bounce velocity of the
guiding center as vb = 2πωbdb, the averaged drift
equations can be reformulated as:

vb =
ρ2

4db

[∫ t+

t−

∂

∂θ

(
1
√
g

)
dt

]−1

= − θ

4db
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∂
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(
1
√
g

)
dt

]−1

(15)

where the Jacobian is an equilibrium variable thus it
is not time dependent. Consequently:∫ t+

t−

∂

∂θ

(
1
√
g

)
dt =
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∂θ

(
1
√
g
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dt =
∂
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√
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)
T

Using the expression of the averaged bounce velocity,
we introduce a correction to the averaged drift velocity
operator of the passing particles (Ωd,||):

ε2πρ2ωb
db

[
∂

∂θ

(
1
√
g

)]−1

Ωd,||

The new averaged drift velocity operator includes
information of the averaged bounce frequency and
length of the guiding center of the helically trapped
EP.
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