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In collisionless plasma, it is known that linearly stable modes can be destabilized (subcritically)
by the presence of structures in phase-space. However, nonlinear growth requires the presence
of a seed structure with a relatively large threshold in amplitude. We demonstrate that, in the
presence of another, linearly unstable (supercritical) mode, wave-wave coupling can provide a seed,
which is significantly below the threshold, but can still grow by (and only by) the collaboration of
fluid and kinetic nonlinearities. By modeling the subcritical mode kinetically, and the impact of
the supercritical mode by simple wave-wave coupling equations, it is shown that this new kind of
subcritical instability can be triggered, even when the frequency of the supercritical mode is rapidly
sweeping. The model is applied to bursty onset of geodesic acoustic modes in a LHD experiment. The
model recovers several key features such as relative amplitude, timescales, and phase relations. It
suggests that the strongest bursts are subcritical instabilities, driven by this mechanism of combined
fluid and kinetic nonlinearities.

Subcritical instabilities are ubiquitous in fluids and
plasmas [1]. These include subcritical or submarginal
turbulence, which is self-sustained nonlinearly. Subcriti-
cal, or submarginal turbulence, is observed in pipe flow,
planar Poiseuille flow, and planar Couette flow [2]. In
magnetized fusion plasmas, subcritical turbulence is pre-
dicted by theory for current-diffusive interchange turbu-
lence [3], and drift-wave turbulence in slab geometry [4].
Subcritical excitation also concerns large-scale perturba-
tions, such as Kelvin-Helmholtz instability [5, 6], or the
formation of self-sustaining magnetic islands (neoclassi-
cal tearing mode) in magnetized fusion plasmas [7].

For this wide range of subcritical systems, the sub-
critical bifurcation originates from a fluid nonlinearity,
or nonlinearity in real space. On the other hand, ki-
netic nonlinearities, or nonlinearities in the phase-space
of particle distribution, play a crucial role in hot plasmas
in general. In particular, strong wave-particle resonances
lead to the formation of structures in phase-space. This
is observed in a wide range of laboratory and space plas-
mas [8]. Theory predicts that these structures can lead
to subcritical instabilities, where the kinetic nonlinear-
ity enable the growth of a mode that is linearly damped
[9, 10]. In this Letter, we report the first theoretical
analysis that interprets an experimental observation as
a subcritical instability with an essential role of kinetic
nonlinearity.

We analyze an intriguing observation in the helical
plasma of the LHD, which was described in Ref. [11]
(paper one). Chirping bursts of Energetic particle-driven
Geodesic Acoustic Mode (EGAM) [12] are sometimes ac-
companied by a stronger burst with twice the amplitude.
We call the stronger, faster burst as secondary, or daugh-
ter mode, and the weaker, slower (chirping) EGAM burst
as primary, or mother mode. The daughter’s growth rate

is one order-of-magnitude larger than the mother’s. The
amplitude increase of the daughter is so large (compared
with the amplitude decrease of the mother) that it clearly
violates the Manley-Rowe relations [13]. This suggests
that the daughter is not excited by e.g. simple paramet-
ric coupling.

To analyze this observation, we develop a new reduced
model, which combines the kinetic description of the
daughter mode with the nonlinear fluid coupling [14] be-
tween mother and daughter. This model can be seen
as an extension of the Berk-Breizman (BB) model [15].
The model is able to qualitatively reproduce relative am-
plitudes, and timescales, as well as the mother-daughter
phase relation. This analysis suggests that the daughter
mode is a subcritical instability, which is dormant un-
til the mother excites it by fluid nonlinearity, leveraged
by kinetic nonlinearity. Neither fluid nonlinearities alone,
nor kinetic nonlinearities alone, can sustain the growth of
the daughter mode to large amplitude. Surprisingly, the
mechanism involved here is different from that described
in earlier theories [16], in that the growth occurs much
below the amplitude threshold, and without dynamical
evolution of frequency (chirping).

Model - In a toroidal device, the structure, linear fre-
quency and linear growth rate of an energetic particle-
driven mode is determined by 3D calculations, and evolve
on a slow time scale of mean field evolution (∼ 100
ms). However, the kinetic nonlinear effects, which in-
duce chirping and subcritical instability, happen on a fast
time scale (∼ 1 ms) and can be treated perturbatively in
a 1D model (the BB model) [17]. Here, we consider the
interaction of two modes. To treat the present prob-
lem, we split the electric field E between the two waves,
E = E1 +E2, and introduce a hybrid model. The daugh-
ter mode (E1) is treated by a kinetic 1D model, and
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the mother mode (E2) is treated as a simple medium for
nonlinear energy transfer. For E2, we prescribe the ini-
tial amplitude Z2,0 and time-evolution of frequency ω2(t)
from experimental data. We assume that the impact of
the mother on the particles near the resonant location of
the daughter is negligible. The interaction between the
two waves is modeled by the equations for period dou-
bling.

The evolution of the energetic particle distribution,
f(x, v, t), in the neighborhood of the resonance of the
daughter mode E1, is given by a kinetic equation [15, 18],
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where δf ≡ f −f0, and f0(v) is the initial velocity distri-
bution. The r.h.s. is a collision operator, where νf and
νd are input parameters characterizing dynamical fric-
tion and velocity-space diffusion, respectively. Here, k1x
corresponds to the poloidal angle in the perturbative ex-
pansion from 3D to 1D.

The evolution of the two parts of electric field is given
by
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where Ej ≡ Zj exp [i(kjx− ωjt)] + c.c., and n0 is the
total density. The term proportional to γd is an external
wave damping, which is a model for all linear dissipative
mechanisms of the wave energy to the background plasma
[15].

Eqs. (2) and (3) both include a term that describes en-
ergy exchange between mother and daughter. The non-
linear interaction between GAMs (zonal flows) has been
studied. Experimentally, direct measurements indicated
that GAM can drive energy transfer in a range of frequen-
cies higher than the GAM frequency [19]. In theory, the
dominant interaction originates either from second-order
coupling between vorticity and parallel velocity, as well
as vorticity and density [20], or via higher-order modu-
lation mechanisms of background turbulence [21, 22]. In
both cases, the coupling takes a standard form, which
depends on the coupling constant V , and the frequency
mismatch θ ≡ ω2(t)− 2ω1. In this model, the linear fre-
quency of the mode, ω1 is fixed, but the frequency of E1

can evolve nonlinearly due to the time-evolution of Z1.
Eq. (3) does not include any dissipation term (no γd)

nor driving term, because we assume a balance between
external drive and external damping for simplicity. This
assumption is consistent with the timescale separation

between evolutions of E1 and E2. The timescale of evo-
lution of the mother (∼ 10 ms) is much slower than that
of the daughter (< 1 ms), as long as |Z1| < |Z2|/2.

We solve the above model with the COBBLES [23]
code. The initial velocity slope is measured by the linear
drive γL,0 = (πω3

1)/(2k2
1n0)∂vf0. To simulate thermal

noise, we add to Z1 a noise term Znoisee
ıφr , where φr is

a phase that is randomized at each time step.
The system of Eqs. (1)-(2), in the single mode (V → 0)

limit, describes subcritical excitation of an isolated E1

[24]. In this case, Landau damping generates a seed
phase-space structure, whose growth rate can be positive
if the growth due to momentum exchange overcomes de-
cay due to collisions [16]. This process yields a threshold
in initial, or noise amplitude. With the above multiple-
mode model (Eqs. (1)-(3), V 6= 0), we are able to investi-
gate whether a large enough seed phase-space structure
can originate from the wave energy provided by fluid cou-
pling with a linearly unstable mode. As we will explain,
the answer turns out to be: no, but subcritical growth
can occur anyway.

Reproducing the experiment - We concentrate on the
LHD experiment, shot #119729, at t ≈ 3.88 s. Fig. 1
shows the time evolution of the magnetic perturbations
(a), and its spectrogram (b). In Fig. 1(a), the signal from
the Mirnov coil has been filtered into a low frequency (LF,
f = 30−50 kHz) component for the daughter mode, and
a high frequency (HF, f = 60 − 95 kHz) component for
the mother mode. The dynamical change of frequency
of the mother mode (mode 2), around the time of the
burst of the daughter mode (mode 1), is modeled as a
linear increase. Since the spatial 3D structures of mother
and daughter are very similar [11], we ignore the radial
inhomogeneity, and study the ratio between mother and
daughter amplitudes of magnetic perturbation. To relate
the electric field in the simulation with the Mirnov coil
signal, we assume a linear relationship between |φ̃| and
|B̃|, which is consistent with experiment [12].

We scanned the parameter space (γL,0, γd, νf , νd, V ).
We identified a finite region of the parameter space where
the simulation is in qualitative agreement with the exper-
iment, in terms of the time-evolution of the amplitude of
perturbed field. Fig. 1 shows, for a typical simulation,
the time evolution of the amplitudes (c), and the spec-
trogram of the total field (d). Table I lists each input
parameter of the simulation (first and second column).
In addition to the time evolution of amplitude, the sim-
ulation agrees qualitatively with the experiment in the
sense that the daughter mode is only very slightly chirp-
ing (δω/ω1 < 10%, as measured by tracking perturba-
tions in the particle distribution), even though strongly
chirping daughter mode is allowed in the model. The lack
of chirping of the daughter mode validates, a posteriori,
our assumption of fixed ω1 in the frequency mismatch θ
used for computing the wave-wave coupling terms.

Furthermore, the mother/daughter phase locking,
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FIG. 1. Comparison between experiment and simulation. (a)
Low (LF) and high frequency (HF) components of magnetic
perturbation. Here, ”env” refers to the envelope. (b) Spec-
trogram of magnetic perturbation. (c) Amplitudes of modes
1 and 2 in the simulation. (d) Spectrogram of the total field.
Dashed line in (b) and (d): ω2(t) used as input in the model.

FIG. 2. Lissajous figure during the growth (a), and the decay
(b) of daughter mode in the experiment, and (c-d) in the

simulation. For the simulation, Z̃i ≡ Zie
−ıωit. The timing is

shown by grey rectangles in Fig. 1. Colorbars show the time
shifted by t0 = 3.879s.

which was discovered in paper one, is qualitatively cap-
tured by numerical simulations. Fig. 2 shows the Lis-
sajous curve during growth and decay phases, for the
experiment (a,b) and for the simulation (c,d) [25]. The
mother/daughter phase relation locks itself during the
growth phase and the decay phase of the daughter.

Therefore, we have shown that our model is able to
qualitatively reproduce the nonlinear evolution of the
daughter, in terms of amplitudes, timescales, and phase
locking. Note that we use a simple 1D model which
was designed to reproduce qualitatively the excitation
mechanism of the daughter. We do not pretend to re-
cover quantitatively from first principles the features of
the child, neither to reproduce the combined evolution of
both mother and daughter, but rather show the possibil-

FIG. 3. Nonlinear stability diagram for the daughter mode
without (a) and with (b) the kinetic term in Eq.(2). Peak
amplitude of daughter mode as a function of distance from
linear stability, and coupling coefficient. The white area is
the stability threshold.

ity of a new mechanism as follows.
Collaborative fluid/kinetic nonlinearity - Here, we

briefly describe the essence of combined dynamics of two
kinds of nonlinear mechanisms. A first crucial point is
that, in the limit V = 0, there is no subcritical insta-
bility unless we apply an artificially large initial pertur-
bation Z1,0 ∼ Z0. Therefore single-mode kinetic non-
linearity alone is insufficient. A second crucial point is
that, if we remove the kinetic part, that is, the first term
of the r.h.s. of Eq.(2), then the amplitude of the daugh-
ter stays negligible compared to the amplitude of the
mother. Therefore fluid nonlinearity alone is also insuf-
ficient. It is the combination of fluid and kinetic non-
linearities that allows significant subcritical instability.
This new hybrid fluid-kinetic subcritical instability is il-
lustrated in Fig. 3, which compares the stability of the
daughter without (a) and with (b) the kinetic term in
Eq.(2). The unstable region (max |Z1|/Z2,0 ∼ 1) is sig-
nificantly extended to lower V in the parameter space of
(−γ, V ). Here, −γ = γd − γL,0 is used as a measure of
distance from linear marginal stability.

In previous works [16, 23, 24], the kinetic subcritical in-
stability was due to the growth of phase-space structures,
and thus linked to chirping. Here, chirping does not oc-
cur during daughter growth (there is slight chirping, but
during daughter decay), consistently with the relatively
large νd ∼ γL,0 [26]. In fact, the peak amplitude |Z1|
produced by fluid coupling alone is orders-of-magnitude
below the predicted amplitude threshold for subcritical
growth. These observations suggest that the mechanism
is different from previously known kinetic subcritical in-
stability.

Let us give more details about the new mechanism. It
is convenient to describe the three terms in the r.h.s. of
Eq. 2 as kinetic, dissipative, and coupling terms, respec-
tively. During daughter growth, the dissipative and cou-
pling terms are nearly locked in anti-phase (1.2π − 1.3π
phase difference). Therefore, the coupling acts as an
effective reduction of dissipation. The kinetic term is
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Parameter Value Range Independent estimation
γL,0/ω1 0.03 0.01− 0.08 0.1 is supercritical [27]

γd/γL,0 − 1 0.03 0.01− 0.7 γL ≈ γd hypothesis
νf/γL,0 0.067 0.003− 0.3 Fokker-Plank, 0.068
νd/γL,0 0.53 0.3− 1.5 Fokker-Plank, 0.44
V Z0/ω

2
1 50 40− 80 ∼ 10−2 − 102 [22]

Znoise/Z2,0 0.06 10−4 − 0.3 Input from
103Z2,0/Z0 1 0.6− 2.0 experimental
ω−2

1 dω2/dt 5× 10−4 10−4 − 10−3 data

TABLE I. Input parameters of the model. Here, Z0 is an
arbitrary normalizing factor.

in phase with the dissipative term. In amplitude, all
three terms are comparable. Therefore, the sum of three
terms approximately results in a real, positive growth
rate ∼ γd ∼ γL,0.

Impact of input parameters - The model includes a
priori 8 input parameters (assuming a constant chirping
rate dθ/dt for the mother mode at the onset of daughter).
Here we describe the sensitivity, and the experimental
and theoretical basis for these parameters.

We have conducted a sensitivity analysis, where we
vary each input parameter, everything else being equal,
and measure the impact on the time evolution of the
daughter mode. The third column (Range) of Table I
lists for each parameter the range (everything else being
equal) where the simulation qualitatively agrees with the
experiment. Note that the evolution of the daughter is
mostly sensitive to γL,0, νd, V , Z2,0 and dω2/dt.

The fourth column of Table I lists estimations from
independent methods when available. Two of the five
sensitive parameters, Z2,0, dω2/dt, as well as Znoise, are
inputs from experimental data. Another sensitive pa-
rameter, νd, as well as νf , can be obtained from exper-
imental measurements, by projecting the Fokker-Plank
collision operator on the resonance surface of the daugh-
ter [28, 29], including the significant impact of impurities
[18]. We use the local plasma parameters around the ra-
dial location of the daughter as given in paper one, and
a magnetic shear S ≈ 0.2. In addition, we assume car-
bon impurities with TC = Ti and Zeff = 2. We obtain
νf/γL,0 ≈ 0.068 and νd/γL,0 ≈ 0.44, which are 1% and
17%, respectively, below the parameters of the simulation
shown in Fig. 1.

There remain two parameters with significant im-
pacts: 1. the slope of energetic particle distribution,
parametrized by γL,0, and 2. the coupling coefficient
V . For 1., it was shown that the order of magnitude
γL,0/ω1 ∼ 0.1 is relevant for linearly unstable EGAMs
on similar LHD plasmas [27], which suggests that 0.03
is relevant for linearly stable EGAMs. For 2., substitut-
ing the parameters of the experiment into Eq. (35) of
Ref. [22] yields an estimate Z0V/ω

2
1 ∼ 10−2 − 102. The

result is sensitive to the radial wave number of the GAM,
but not inconsistent with our simulation. Thus, V is a

key parameter, with a finite range that reproduces the
experiment, but with poor theoretical guide. Therefore,
quantitative deduction of V from the first principles is
encouraged.

The model provides the following predictions, which
are open to future experimental tests.

1. The ratio between the mother and the daughter
mode can become much larger, |Z1|/|Z2| > 2, if the
daughter mode exhibits strong chirping, ∆ω1 ∼ ω1 (see
discussion below).

2. Since the best limit for driving a subcritical in-
stability is dω2/dt→ 0, and in this case, we observed no
nonlinear instability for γd > 2γL,0, we predict that there
won’t appear any subcritical instability with γd � γL,0.

Summary - We have shown that the model can repro-
duce key aspects of the experimental observation of paper
one. It interprets the daughter mode as a manifestation
of a subcritical instability, driven by the cooperative com-
bination of fluid nonlinearity and kinetic nonlinearity. In
contrast with previously-known kinetic subcritical insta-
bilities, the amplitude stays below the kinetic threshold,
and the chirping of the present fluid/kinetic hybrid sub-
critical instability seems to be limited by a quasi-phase-
matching condition with the mother mode. These results
imply a new channel of mode excitation, which modifies
the flow of energy in the system.

Discussion - The model underlies a broader phe-
nomenology. By varying the input parameters, it leads to
other kinds of nonlinear evolution of both the daughter
and the mother mode. In particular, if the ratio νf/νd
increases, the amplitude threshold for pure kinetic insta-
bility significantly decreases. For νf/νd ∼ 1, the mother
mode can push the daughter mode over the threshold,
then the daughter chirps strongly. In this case, the role of
the mother is reduced to that of an initial trigger, and the
daughter’s amplitude can grow an order-of-magnitude
above the mother’s amplitude. This may turn out to
be a significant issue in ITER, where νf/νd is predicted
to be above unity [29], in contrast to currently operating
devices.

In our analysis, we have prescribed the time evolu-
tion of mother frequency ω2(t) with constant chirping
rate. As a caveat, this prescribed evolution ends when
|Z1| ∼ |Z2|. Indeed, in the experiment, the ratio ω2/ω1

increases very rapidly, but almost linearly, from 1.9 to
2.0, within a 0.2ms span during the daughter growth.
The model, by its design, is unable to recover this ap-
parent synchronization mechanism. However, the ratio
of 2.0 is not reached before the very end of daughter
growth. This indicates that the synchronization may not
be a key aspect of the instability mechanism, although
it may be a key aspect of the full dynamics of coupled
modes. Reproducing the self-consistent coupled evolu-
tion of both mother and daughter is a relevant challenge
that we leave for future work. Here we focused on the
origin of the subcritical, daughter mode.
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