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1.Introduction 

In magnetically confined fusion reactors, 
understanding of impurity transport in edge region is a 
critical issue to control impurity radiation in divertor 
region as well as impurity influx into the confinement 
region. Because of the very fast transport of charged 
particles parallel to magnetic field lines, the resulting 
impurity distributions are largely affected by magnetic 
field structure [1]. 

LHD (Large Helical Device) is a heliotron type 
device, in which magnetic field configuration is inherently 
non-axisymmetric [2]. The edge region is called stochastic 
magnetic layer, where magnetic islands with different 
mode numbers overlap each other to induce chaotic field 
line trajectories. In this region, strong poloidal and toroidal 
asymmetry of impurity emission is predicted by plasma 
transport simulations [ 3 , 4 ]. Two-dimensional (2D) 
emission distribution measurements have been conducted 
so far with spectrometers in edge region of LHD in order 
to study relation between plasma transport and magnetic 
field structure [5,6,7]. However, the detailed comparison 
between the measured impurity emission and magnetic 
field structure has been limited because of the line 
integration effect along the line of sight (LOS).  

In this paper, we propose a new tomographic scheme 
to reconstruct three dimensional (3D) impurity emission 
distribution from single field of view 2D measurement in 
magnetized plasma by redistributing the signal along the 
line of sight. For this purpose, we utilize a characteristic of 
the magnetized plasma, where plasma transport parallel to 
the magnetic field line is much larger than those 
perpendicular to magnetic field lines. The scheme is useful 
not only for helical devices with the complex magnetic 
field structure, but also for tokamaks in case of limited 
number of observation ports. The paper is organized as 
follows. In section 2, the experimental set up of the 
spectroscopy system as well as magnetic field structure of 
LHD are explained. In section 3, the tomographic scheme 
is described with various regularization methods tested and 
its feasibility is discussed. The scheme is applied to 
experimental data in section 4. The paper is summarized in 
section 5. 

 

2.Experimental setup 
The relation between the viewing area of the 

spectrometer and the LHD torus is shown in Fig.1. The 
open field lines in the edge region go around torus along 
helical coils until they are cut by the divertor plates. The 
trajectories of the fields lines are also shown in Fig.1 with 
red and yellow colors. The spectrometer views the plasma 
from the outboard side. The line of sight (LOS) is inclined 
toward top of torus and toward toroidal direction such that 
the LOS is almost tangential to the edge magnetic field 
lines. Figure 2 shows the field of view of the spectrometer, 
where 131 optical fibers are distributed to spatially resolve 
the edge region. The viewing area covers the last closed 
flux surface (LCFS), divertor legs, X-point, and divertor 
plates. The groups of red and yellow lines in Fig. 2 indicate 
divertor leg field lines, each group connects to the different 
divertor plate arrays, respectively.  

At the entrance slit of the spectrometer, the optical 
fibers are vertically aligned with separation of 150 μm 
each other. The image of the fibers is focused at the exit 
slit, where a charge couple device (CCD) camera is 
equipped. In order to obtain good focus of the fiber image 
in wide area on the CCD detector, an astigmatism is 
suppressed by introducing toroidal and spherical mirrors in 
the spectrometer. The detail of the optics of the 
spectroscopy system is described in ref.[ 8 ]. The 
spectrometer can change diffraction gratings remotely 
between 150, 300, and 2400 grooves/mm. In the present 
measurements, the grating of 150 grooves/mm is used for 
measurements of CII (1s22s2p3s 4Po-1s22s2p3p 4P, 514 nm), 
and the grating of 2400 grooves/mm is used for CIII (1s22s3s 
3S-1s22s3p 3Po, 465 nm) and CIV (1s25f 2Fo-1s26g 2G, 1s25g 
2G-1s26h 2Ho, 466 nm). The wavelength resolutions near the 
center of the CCD are 1.07 nm and 0.06 nm with the gratings 
of 150 and 2400 grooves/mm, respectively. Exposure time 
and cycle time are set to 0.09-0.19 sec and 0.2-0.3 sec, 
respectively. These settings were changed depending on the 
gratings and the plasma parameters. 

 
3. Tomography scheme 

3-1. Field-line aligned 3D grid generation 
For the present tomography scheme, we make use of 

the plasma transport feature that the transport is much 
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faster along magnetic field lines as compared to the 
transport perpendicular to the field lines, which leads to 
smooth distribution of physical quantity along the 
magnetic field lines. In order to incorporate this effect in 
the projection matrix and in the regularizations of the 
tomographic inversion, the voxellation of the measurement 
volume is made such that the vertices of voxels are aligned 
along magnetic field lines. 

Figure 3 shows 2D distributions of magnetic field line 
connection length (LC) at different cross sections 
perpendicular to the LOS. LC is defined as a length of field 
lines trajectory between divertor plates. The length labels 
in each panel in Fig.3 (also later figures 4, 5 and 10) show 
the distance from the observation point to the cross section, 
Ldp. The region with red color represents LC more than 104 
m, which corresponds to a confinement region. Around the 
confinement region, the so-called stochastic magnetic field 
layer is formed, where regions with different LC’s (yellow, 
green and blue) are mixed. LC rapidly decreases in the 
radially outward direction as seen in the change of the 
color in the figure. Two divertor legs are visible with thin 
lines of blue color, and they cross each other at X-point 
(The color of the divertor legs in Figs.1 and 2 are not 
relevant to the LC, but only for visualization.). 

The preparation of voxels for projection matrix has 
been done taking into account these magnetic field 
structure. The grid starts from the region just inside of 
LCFS and extends radially outward along the divertor legs, 
as shown in Fig.4. This selection of grid area is based on 
possible emission area of CII, CIII, CIV, whose ionization 
potentials are 24.4, 48.0 and 64.7 eV, respectively, so that 
they rarely emit inside LCFS, where the temperature is 
usually higher than a few hundred eV. It is also considered 
that in the deep blue region in Fig.3, where the LC is less 
than 5 m, the plasma density is so low that impurity 
emission (except for neutrals) is very weak. The gird is first 
constructed at 4.0 m from the observation point. Then each 
vertex of the gird is traced along magnetic field lines to 
construct 3D grid structure. Flux tube cross-section in edge 
region is strongly deformed along magnetic field due to 
magnetic shear. Therefore, the grid was carefully 
constructed not to be crushed during the tracing, taking 
into account the magnetic field structure. At first, the very 
fine grid (typical size of 51 mm, and minimum size of 1.3 
mm) was constructed to accommodate the strong 
deformation. Then the neighboring voxels with similar LC 
are unified in order to reduce the number of voxels as much 
as needed to remedy the ill condition in tomographic 
inversion.  Eventually, in the present analysis, 1464 
voxels in the entire measurement volume, which consists 
of 242 flux tubes, are constructed successfully, as shown 
in Fig. 4. The resulting spatial resolution of the grid along 
the line of sight is 30 cm. With this non-uniform 

voxellation, the elements Lm,k of the projection matrix L in 
image analysis are evaluated as 

𝐿𝐿m,k = 𝑉𝑉m,k 𝐴𝐴m,l⁄  ,      (1)  
where m and k are the indices of the optical fibers, and the 
voxels in the measurement domain, respectively. l is the 
index of each cross section perpendicular to the line of 
sight. Then, 𝑉𝑉m,k is the k-th voxel volume in the field of 
view of the m-th fiber, and 𝐴𝐴m,l is the area in the l-th cross 
section covered by the field of view of the m-th fiber. 
 
3-2. Regularization operators and solution 

Using the provided L, an unknown vector E which 
represents the spatial distribution of emissivity in 
measurement volume is related to a data vector S which 
represents the observed image at detector, as follows: 

𝑳𝑳𝑬𝑬 = 𝑺𝑺 . (2) 
The size of E is the number of voxels K=1464 while the 
size of S is the number of fibers M=131. Lm,k in Eq. (1) is 
the contribution rate of the voxel value Ek to the output Sm. 
With the under-determined equation (2) (K>M), the 
inverse problem to obtain E from S will be ill-conditioned 
as is often the case in plasma imaging and especially in our 
experiment with single field-of-view. In order to obtain a 
good solution, one needs an appropriate regularization. 

In least-squares approach, a well-known strategy is to 
solve the problem in the scheme of minimization under 
constraint, which is reduced to minimizing Lagrangian 
functions of the form 

𝚲𝚲(𝑬𝑬) =
𝟏𝟏
𝐌𝐌
‖𝑳𝑳𝑬𝑬 − 𝑺𝑺‖𝟐𝟐 + 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝐫𝐫𝐫𝐫𝐫𝐫𝐭𝐭𝐭𝐭. 

A variety of regularization terms that lead to linear 
and nonlinear solutions have been investigated in plasma 
imaging, which is usually given a strong limitation in the 
number of fields of view. When applied to plasma imaging, 
a notable feature is to use derivative operators, which are 
effective for smooth plasma profiles. One finds typical 
works in the L2-norm regularizations of Tikhonov type [9-
13] and a modified type [14, 15] and also, in nonlinear 
regularizations of Fisher type [16-19] and Hopfield neural 
net [20]. In Ref. 18, an anisotropic derivative operator was 
contrived and examined for 2D tomography in JET. 

In the present analysis, within the Tikhonov scheme, 
we introduce a new anisotropic regularization, taking into 
account the transport feature of the magnetized plasma 
which should have distribution smoothed much along flux 
tubes as described in section 3-1. That is, we define Λ(𝑬𝑬) 
as 

𝚲𝚲(𝑬𝑬) =
𝟏𝟏
𝐌𝐌
‖𝑳𝑳𝑬𝑬 − 𝑺𝑺‖𝟐𝟐 + 𝛄𝛄𝟏𝟏‖𝐃𝐃𝟏𝟏𝑬𝑬‖𝟐𝟐 + 𝛄𝛄𝟐𝟐‖𝐃𝐃𝟐𝟐𝑬𝑬‖𝟐𝟐 + 𝛄𝛄𝟑𝟑‖𝐓𝐓𝑬𝑬‖𝟐𝟐 (𝟑𝟑). 

The mean of squared residuals is assisted with three terms. 
The first term is the most important for regularization and 
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possesses the 2nd-order derivative operator D1 that is 
defined over three neighboring voxels along each flux tube. 
The next term is introduced, in imaging, to control spatial 
roughness perpendicular to the field lines and possesses the 
1st-order derivative operator D2, which is defined for 
geometrical facility between two neighboring flux tubes. 
The last term is the proper term of Tikhonov regularization 
with a diagonal matrix T, which is originally the identity 
matrix I. The multipliers γ1, γ2 and γ3  are positive-
valued and used as parameters for weighting three terms.  

With the extended Lagrangian function, we 
employ the Cholesky decomposition for numerically 
reliable minimization. The Λ(E) is minimized with 
respect to E by solving the following linear equation, 
which has a unique solution:  

�𝑳𝑳T𝑳𝑳 + 𝑀𝑀𝛾𝛾1�𝑫𝑫1
𝑇𝑇𝑫𝑫1 + α𝑫𝑫2

𝑇𝑇𝑫𝑫2 + β𝐓𝐓T𝐓𝐓�� = 𝑳𝑳𝑇𝑇𝑺𝑺    (4) 

with α= γ2 γ1⁄  and β= γ3 γ1⁄  . Since the matrix 𝐏𝐏 =
𝑫𝑫1

𝑇𝑇𝑫𝑫1 + 𝛼𝛼𝑫𝑫2
𝑇𝑇𝑫𝑫2 + β𝐓𝐓T𝐓𝐓  is symmetric and positive 

definite, the Cholesky decomposition 𝐏𝐏 = 𝐑𝐑T𝐑𝐑  with an 
upper triangular matrix R is possible. Then, we have an 
equation of conventional form: (𝑳𝑳𝑇𝑇𝑳𝑳 + Mγ1𝐑𝐑T𝐑𝐑)𝑬𝑬 =
𝑳𝑳𝑇𝑇𝑺𝑺. With this rewriting, the singular value decomposition 
(SVD) 𝑳𝑳𝐑𝐑−1 = 𝐔𝐔𝐔𝐔𝐕𝐕T  leads the solution E to the 
ordinary form of series expansion. That is, we have 

𝑬𝑬(𝜸𝜸𝟏𝟏) = �𝒘𝒘𝒎𝒎(𝜸𝜸𝟏𝟏)
(𝑺𝑺,𝐫𝐫𝒎𝒎)
𝝈𝝈𝒎𝒎

(𝐑𝐑−𝟏𝟏𝐯𝐯𝒎𝒎)
𝑴𝑴

𝒎𝒎=𝟏𝟏

 ,     (𝟓𝟓)  

with the Tikhonov window 

𝐰𝐰𝐭𝐭(𝛄𝛄𝟏𝟏) =
𝟏𝟏

𝟏𝟏 + 𝐌𝐌𝛄𝛄𝟏𝟏 𝛔𝛔𝐭𝐭𝟐𝟐⁄    .                         (𝟔𝟔)  

With the orthonormal column vectors um and vm of the 
matrices U and V, one has a basis system R−1vm for E(γ1) 
and using the series um as the basis system for S. With the 
singular values σm  (diagonal elements of 𝐔𝐔 ) in 
descending order, one has the monotonically decreasing 
function wm(γ1) for tapering down the expansion 
coefficients (S, um)/ 𝛔𝛔𝐭𝐭, which may increase in the region 
of large m (high spatial-frequency); (a, b) denotes the inner 
product of vectors a and b. It should be noted that the 
inverse of the triangular matrix, R−1, is well-conditioned in 
usual and calculated numerically with high reliability.  

With respect to the solution E(γ1), the generalized 
cross-validation (GCV) for optimizing the value of γ1 is 
given as 

GCV(γ1) =
ε2

�1 − M−1 ∑ wm
M
m=1 (γ1)�

2     ,   (7)  

where ε2=M−1||LE(γ1)−S||2 is the attained mean square 
error (MSE). Since the matrix R and thus all the SVD 

components involve the weights α and β  as parameters , 
the criterion of minimum GCV is valid for particular 
values of α and β.  

The term ‖𝑫𝑫1𝑬𝑬‖2  is defined with the central 
difference between the second-order differentials along 
flux tube. As a boundary condition at the both edges of the 
field lines in the measurement volume,  ∇∥= 0 and ∇∥2=
0 have been tested with respect to the derivative ∇∥ along 
field lines. It is found that solutions are almost independent 
of such boundary conditions. Therefore, in the present 
analysis, we used the boundary condition ∇∥= 0  for 
‖𝑫𝑫1𝑬𝑬‖2. The term ‖𝑫𝑫2𝑬𝑬‖2is defined with the one-sided 
difference between the neighboring voxels perpendicular 
to field lines. The differentiation is introduced only for the 
voxels having similar LC values and thereby, for 
derivatives along the poloidal direction and along divertor 
legs as seen in the LC distributions in Fig.4. This treatment 
is based on the plasma transport feature in the magnetic 
field as explained above. 
 
3-3 Algorithm of image reconstruction 
    There are two reasons for adding the term ||TE||2 in 
Eq. (3). Firstly, despite of the success in Refs. 9-12, the 
derivative operators like the Laplacian operator are never 
well-conditioned in general. In the present scheme of 
single field-of-view tomography, it is found that the 
inverse matrix R−1 cannot be calculated without the 
original Tikhonov term ||E||2. Secondarily, the diagonal 
matrix T is practically used for applying the constraint of 
non-negative valued emissivity. That is, when the initial 
solution E(γ1) with the identity matrix T=I has negative 
values at some voxels, we anticipate that the voxels have 
very low emissivity and therefore, we set the 
corresponding diagonal elements Tk,k of T to be large 
positive values as additional penalties. Then, the voxel 
values are forced to approach zero in the next iterative step 
of minimizing the Lagrangian function. With the matrix T 
so-updated, R is recalculated at each iteration. 
Experimentally, it is found that in most of the cases the 
iteration converges and a reasonable non-negative solution 
is obtained.  

After all, the iterative algorithm of image 
reconstruction is as follows: 
[Step 1] Set the values of α and β. 
[Step 2] T(0)=I 
[Step 3] For T(n), obtain R(n), LR −1(n) and the SVD. 
[Step 4] Find γ1 that minimizes GCV(γ1). 
[Step 5] For the minimizer γ1, calculate E(γ1) according to 
Eq. (5). 
[Step 6] For all k where we have Ek<0, set Tk,k

(n+1) to a large 
value, for example, 107. Go to Step 3 for n+1. 

The procedure from Step 3 to Step 6 is repeated 
iteratively until we have no negative-valued new voxels 
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anywhere. With this iteration, the whole procedure starting 
with Step 1 is repeated in order to find good values of α 
and β, especially, the value of α. The software is interactive 
only for the choice of α and β. 
 
 
3-4 Numerical simulations 
[1] Optimization of regularization parameters 

To check the feasibility of tomographic imaging, 
numerical tests have been conducted. Figure 5 shows one 
of the tested phantoms Eph, which imitates that the 
emissivity is distributed along poloidal direction and 
divertor legs. The emission is nonuniform along flux tubes 
such that the intensity increased linearly with the distance 
from the observation point, Lph. In calculation, 1% 
Gaussian noise with zero mean is added to the projection 
LEph for producing the data S, and γ1 is scanned in a wide 
range from 10-11 to 104 for fixed values of α and β. Figure 
6 shows an obtained behavior of the GCV, the MSE ε2 and 
the reconstruction error δ as functions of γ1, for a particular 
series of Gaussian random number. Corresponding to the 
non-uniform voxellation, the error δ is defined as 

𝛿𝛿 =
∑ �Eph,k − Ek(γ1)�VkK
k=1

∑ VkK
k=1

 .     (8)  

Here 𝑉𝑉k is the own volume of the k-th voxel and has a 
relation 𝑉𝑉k ≥ ∑ 𝑉𝑉m,k

M
m=1   with the volumes 𝑉𝑉m,k  which 

are defined in Eq. (1). Each voxel is not completely 
contained in the measurement area of fibers and further, 
there are spaces among fibers as seen in Fig.2. The error 
δ  is a quantitative estimate of the deviation of the obtained 
E(γ1) from the assumed Eph over the entire 3D 
measurement volume. With the decrease of γ1, the 
regularization along flux tubes is weakened by the effect 
of Tikhonov window wm(γ1). As a result, the recovered 
projection LE(γ1) tends to match precisely the projection 
data S. The ceiling of ε2 at ||Eph||2 for very large γ1 and the 
subsequent monotonic decrease of ε2 seen in Fig. 6 give a 
proof of correct calculation. On the other hand, the GCV 
has a minimum around γ1 = 10−5, below which the GCV 
gradually separates from the value of ε2. The increase of 
GCV for smaller γ1, which suggests that the denominator 
of GCV decreases faster than the numerator, corresponds 
to the appearance of too fine structure in reconstruction due 
to too weak regularization. As expected, the minimum of 
GCV agrees well with the minimum of the reconstruction 
error. 

This result of reconstruction in Fig. 6 has been 
obtained for α=10−2 and β=10−6. When the test is made in 
the range of 10−5 ≤ α ≤ 10−1 and 10−6 ≤ β ≤ 10−2 , 
the E(γ1) obtained with the criterion of minimum GCV is 
not changed significantly by the value of β. Therefore, β 

can be fixed at a small value of the level indispensable for 
sure calculation of R−1. However, the change of α gives a 
significant change of reconstruction. In regarding that the 
minimum of GCV for a set of (γ1, α) looks like indicating 
the minimum of δ in many tests, the value of α is selected 
as such without support of statistical mathematics, 
α=10−2 in this example. Recalling that these values of α and 
β are the weights in ratio among three regularization terms 
in Eq. (3), we note that the very small value β=10−6 should 
also be related to the magnitude of the squared norm ||E||2, 
which is much larger than those of the two derivatives. 
Additionally, for phantoms where the emissivity 
distribution is local and narrow in the flux-tube direction, 
the best value of γ1 has tended to decrease. Based on these 
simulation results, the scans of γ1, α and β are made 
efficiently in narrowed ranges for the rest of analyses. 
[2] Regularization effects in reconstructed images 

The two derivative terms ||D1E||2 and ||D2E||2 give 
meaningful effects to the profiles of reconstructed images. 
In the simulations, the reconstruction is studied in 
changing the regularization term design. 

Firstly, comparison is made in two cases of using only 
the Tikhonov term ||TE||2 and using all three terms. Figures 
7 and 8 show a result in the simulation for which the result 
in Fig. 6 was obtained. With similarly good fittings to the 
phantom projection as recognized in Fig. 7, the two 
methods give reconstructions with a remarkable difference 
as in Fig. 8(a) and (b), where both the phantom in Fig. 5 
and the reconstructed images are raster-scanned and 
plotted in one dimension. In this plot of Eph,k, the phantom 
profile is discontinuous in its existence intervals and 
oscillates like saw teeth in corresponding to the linear 
increase of emissivity with Ldp . With the two derivative 
terms and the optimization with GCV, it is found that the 
reconstruction is much improved in giving a better 
recovery of the gradient of phantom along flux tubes and 
the noisy structure effectively diminished. The iterative 
procedure for non-negativity, with 16 iterations in this 
example, has worked well without producing any large 
residual. The iterative update of the operator T, which has 
worked well also in case of the single term ||TE||2, can be 
a tool for eliminating the noisy negative values that appear 
in the original Tikhonov regularization [21, 22]. The tool 
is available wherever one has the linear regularization 
software. 

In Fig. 9, the reconstructed images are illustrated for 
some of various regularization designs. The numerical 
sequences (red lines) in Figs. 8 (a) and (b) are displayed in 
Figs. 9 (a) and (d), now with cross sectional illustrations at 
different Ldp. The image in Fig. 9 (b) is obtained by 
imposing a strong constraint that the objective emissivity 
is constant along the flux tubes, instead of adding the 
parallel derivative term ||D1E||2. The reconstruction so-
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modified is made simply by decreasing the size of E to the 
number of flux tubes and summing the related row vectors 
of the projection matrix L. Evidently, the flux constant 
constraint can never give good effects. In contrast, the 
addition of ||D2E||2 term improves the reconstruction 
clearly as shown in Fig. 9 (c). 

The reconstruction is further improved by adding the 
term ||D2E||2 as seen in Fig. 9 (d), where the reconstruction 
error δ is decreased. 

[3] Regularization effects in numerical components 
The improved image displayed in Figs. 8(b) and 9(d) 

is examined on its spectral components, which are given a 
significant change by applying the two derivative terms.  

In Figures 10, 11 and 12 are exhibited the singular 
value series, the Tikhonov window, the spectral 
coefficients and a couple of basis systems, which were 
used to calculate the image according to Eq. (5). The σm 
as well as wm gradually decrease with increasing m. The 
spectral coefficients of S and E(γ1) in Figs. 10(b) and (c) 
are compressed nicely in the region of low spatial-
frequency (small number m), especially, at m=1. This 
compression is supported by the basis systems that are 
displayed in Figs. 11 and 12. The bases R−1vm for E(γ1) 
change in profile with the increase of m from smooth to 
random functions. In particular, the basis R−1v1 has a 
distribution that is similar to the emission region in shape, 
and thereby supports the strong spectral compression of 
E(γ1) at m=1 and the related smooth profile seen in Fig. 
9(d). The great profile change of R−1vm in the interval of 1
≦m≦M suggests that the basis system can support various 
emissivity distributions, occasionally with fine structures. 
Contrarily, the regularization only with ||TE||2 fails in 
generation of smooth bases for small m and, as a result, 
gives the unstable profile of emissivity as seen in Fig. 9(a). 
This notable improvement of basis system has been 
obtained by involving the derivative terms in 
regularization. 

The above results have been obtained with the T-
iteration for non-negativity and with the GCV-
optimization according to the previously described 
algorithm. In Fig. 9(b) and (d), the spectral coefficients are 
plotted in magnitude for graphic convenience. Calculation 
was carried out with the software Matlab. 

 

4. Application to impurity emissions in the LHD edge 

region 
Impurity emissions in the LHD experiments, 

CII(1s22s2p3s 4Po-1s22s2p3p 4P, 514 nm), CIV(1s25f 2Fo-
1s26g 2G, 1s25g 2G-1s26h 2Ho, 466 nm) are analyzed with 
the tomography method described above. Figure 13 shows 
CII and CIV projection images at the detector and the 
recovered ones in tomography. Here we have 𝑛𝑛e =

2 × 1019 m−3 , NBI heating power of 13, 14 MW, shot 
numbers 133323, 137177, t=4.75, 4.30 sec, exposure time 
= 0.15, 0.30 sec, gratings of 150, 2400 grating/mm , 
respectively, for CII and CIV measurements ( γ1 =
2.6 × 10−6, 1.0 × 10−6 ;  α = 10−3 , β = 10−6 ). For the 
reasonably recovered projections, the reconstructed 3D 
images are shown in Fig. 14 at different distances from the 
detector, Ldp. In reconstruction, the emissions are peaked 
at the left divertor leg of Ldp = 5.5 m for both CII and CIV. 
This is considered due to strong plasma-wall interaction 
caused by divertor shaping at the top of the torus that 
terminates the divertor leg field lines with rather large 
incident angle. The emission of CIV is found to peak 
around the X-point and also distributed in poloidal 
direction with a certain modulation. On the other hand, 
there exists no clear peak in the CII emission except for the 
left leg. These differences between CII and CIV emission 
distributions are probably attributed to different ionization 
potentials, 24.4 eV for CII and 64.7 eV for CIV. That 
means CIV emission occur in higher temperature region.  

Based on this experimental result, the following point 
may be noted for application and improvement of the 
tomography method for the edge plasma. In the edge 
region, strongly peaked emissions can exist especially near 
the divertor plates due to strong plasma-wall interaction, as 
observed also in the present analysis. In this case, 
reconstruction needs basic functions with high orders m to 
reproduce such peaked distributions. The basic functions 
with higher m, on the other hand, has potential to increase 
the spatial oscillation of emission by amplifying noise 
components, and thus tend to be suppressed by the window 
function. Therefore, the selection of regularization 
parameters that control smoothness of the solution should 
be made carefully by considering possible peaks appearing 
near plasma-facing components. In order to avoid any 
misleading reconstruction caused by the peaked 
distributions, separation of the control volume with 
possible peaked solution from the others in tomography 
analysis may be one solution.  
 

5. Summary 
A single field-of-view tomography method has been 

proposed for inverting the impurity emission distributions 
measured in magnetized edge plasma. Several 
regularization terms have been introduced taking into 
account the plasma transport characteristics in the 
magnetized plasma, in addition to the conventional 
Tikhonov regularization. The new scheme has been tested 
with the phantom data that varies the emissivity along field 
line direction. The effectiveness of the regularization terms 
has been confirmed in regard to the reconstruction error 
that can be reduced with the introduced regularization of 
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derivative operators parallel and perpendicular to the 
magnetic field lines. In the test, the selection of 
regularization parameter values has also been discussed. It 
is found that the test image is effectively compressed to the 
Fourier-type components of low order, m=1 and around 
m=20. The scheme has been applied to the experimental 
data in LHD. Different distributions are obtained for CII 
(C1+) and CIV (C3+), which seem reasonable in terms of 
ionization potentials of each charge state and of the 
plasma-wall interaction. Special care should be taken for 
tomography analysis in the edge plasma, where strongly 
peaked emission can exist due to plasma-wall interaction, 
which may conflict with regularizations that usually 
promote smooth distribution of solutions. 
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Fig.2  Field of view and fiber distribution for the two-

dimensional measurement. Yellow and red lines 

represent divertor legs, and dashed line 

indicates the LCFS. 

 
Fig.3  Connection length (LC) distribution in cross sections perpendicular to LOS. Length in each panel indicates 

distance from the observation point. Two divertor legs are visible with thin lines of blue color, and they cross 

each other at X-point. 

 

Fig.1  The viewing area of the spectrometer shaded 

by yellow (quadrangular pyramid). The 

divertor leg field lines are shown with yellow 

and red lines. The divertor plate arrays at 

inboard side are shown with black and pink 

surfaces. The vacuum vessel shape is shown 

with transparent gray color.  



  

 

Fig.4  Field-aligned 3D grid constructed for tomography: cross sectional illustrations with the label Ldp. Vertices 

are aligned along the magnetic field lines. 

 

Fig.5 3D profile of a phantom. The variation of 

emissivity along LOS is shown with cross-sectional 

illustrations at different Ldp. Red circles in each panel 

indicate the fiber positions. 

 
Fig. 6 Behaviors of GCV, ε2 and δ when the parameter 

γ1 is changed for fixed values of α=10−2 and β=10−6. 



  

 

Fig. 7 (a) Projection image of the phantom with no 

noise, those recovered with (b) the Tikhonov term only 

and (c) all terms. 

 
Fig. 9 Reconstructed images for different designs of 

regularization: (a) ||TE||2 only δ = 1.8 × 10  , (b) 

||TE||2 with the constraint of flux constant δ =3.0 × 10 , (c) ||TE||2 and ||D1E||2 δ = 7.1 × 10 , 

and (d) all terms δ = 3.6 × 10 . 

 
Fig. 8 1D display of the phantom and the images 

reconstructed with (a) the Tikhonov term only and (b) 

all terms. 1464 voxels are indexed in sequence by raster 

scan along the LOS of fibers. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Fig. 11  Bases um for the spectral decomposition in 

Fig. 10(b). 

 

Fig.12 Bases R−1vm for the spectral decomposition 

in Fig. 10(c): (a) Cross sectional display for 

various m (Ldp=4.3 [m]), where each basis is 

normalized with its maximum value. (b) Cross 

sections of R−1v1 at different Ldp. The inversion in 

color-bar is in correspondence with the sign 

inversion of spectrum in Fig. 10 (c). 

 
Fig. 10 (a) Singular value series σm normalized with 

σ1 and the window function wm, (b) the spectrum of 

data S, and (c) the normalized spectrum of the image 

E(γ1) obtained with all regularization terms (γ1=10−5, 

α=10−2, β=10−6 ). 



 

 

Fig.13 (a) Projection data in LHD experiment and (b) 

the recovered projections for CⅡ and CⅣ. 

 

Fig. 14 Reconstructed images of (a) CII and (b) CIV in 

cross sectional display at different Ldp. 
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