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A new tomographic scheme is proposed for reconstructing three dimensional (3D) impurity emission
distributions from two dimensional (2D) measurements with a single field-of-view in the magne-
tized edge plasma in a Large Helical Device (LHD). The 2D image is obtained with a multi-channel
fiber array spectrometer, which views the entire region of the edge stochastic magnetic layer of
LHD, including divertor plates, divertor legs, the stochastic layer, and the last closed flux surface.
The scheme introduces new regularization terms in the Lagrangian function, based on the trans-
port feature in magnetized plasma that the transport parallel to the magnetic field lines is much
faster than the transport across the magnetic field, thus assuming smooth distribution in the paral-
lel direction. The scheme is benchmarked with the test data of 3D distribution in the measurement
volume, where the effectiveness of the various regularization terms is surveyed and feasibility of the
scheme is confirmed. The new scheme is applied to the experimental data in LHD for carbon impu-
rity emissions of C1+ and C3+, where the obtained distributions are discussed taking into account the
plasma wall interaction and charge dependence of ionization potentials. Published by AIP Publishing.
https://doi.org/10.1063/1.5048218

I. INTRODUCTION

In magnetically confined fusion devices, understanding
impurity transport in the edge region is a critical issue for
controlling impurity radiation in the divertor region as well
as impurity influx into the confinement region. Because of
the very fast transport of charged particles parallel to mag-
netic field lines, the resulting impurity distributions are largely
affected by magnetic field structure.1

LHD (Large Helical Device) is a heliotron type device,
in which the magnetic field configuration is inherently
non-axisymmetric.2 The edge region is called the stochastic
magnetic layer, where magnetic islands with different mode
numbers overlap each other to induce chaotic field line tra-
jectories. In this region, strong poloidal and toroidal asym-
metry of impurity emission is predicted by plasma transport
simulations.3,4 Two-dimensional (2D) emission distribution
measurements have been conducted so far with spectrome-
ters in the edge region of LHD in order to study the rela-
tion between plasma transport and magnetic field structure.5–7

However, the detailed comparison between the measured
impurity emission and the magnetic field structure has been
limited because of the line integration effect along the line of
sight (LOS).

In this paper, we propose a new tomographic scheme to
reconstruct three dimensional (3D) impurity emission distribu-
tion from single field of view 2D measurement in magnetized
plasma by redistributing the signal along the line of sight.
For this purpose, we utilize a characteristic of the magnetized
plasma, where the plasma transport parallel to the magnetic
field line is much faster than the plasma transport perpendicular

to magnetic field lines. The scheme is useful not only for heli-
cal devices with the complex magnetic field structure but also
for tokamaks in the case of a limited number of observation
ports.

The paper is organized as follows. In Sec. II, the experi-
mental setup of the spectroscopy system as well as the mag-
netic field structure of LHD is explained. In Sec. III, the
tomographic scheme is described with various regularization
methods tested and its feasibility is discussed. The scheme
is applied to the experimental data in Sec. IV. The paper is
summarized in Sec. V.

II. EXPERIMENTAL SETUP

The relation between the viewing area of the spectrom-
eter and the LHD torus is shown in Fig. 1. The open field
lines in the edge region go around the torus along the heli-
cal coils until they are terminated by the divertor plates. The
trajectories of the field lines are also shown in Fig. 1 in red
and yellow. The spectrometer views the plasma from the out-
board side. The line of sight (LOS) is inclined toward the
top of the torus and toward the toroidal direction such that
the LOS is almost tangential to the edge magnetic field lines.
Figure 2 shows the field of view of the spectrometer, where
131 optical fibers are distributed to spatially resolve the edge
region. The viewing area covers the last closed flux surface
(LCFS), divertor legs, X-point, and divertor plates. The groups
of red and yellow lines in Fig. 2 indicate divertor leg field
lines; each group is connected to the different divertor plate
arrays.
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FIG. 1. The viewing area of the spectrometer shaded by yellow (quadrangular
pyramid). The divertor leg field lines are shown with yellow and red lines. The
divertor plate arrays at the inboard side are shown with black and pink surfaces.
The vacuum vessel shape is shown in transparent gray.

FIG. 2. Field of view and fiber distribution for the two-dimensional mea-
surement. Yellow and red lines represent divertor legs, and the dashed line
indicates the LCFS.

At the entrance slit of the spectrometer, the optical fibers
are vertically aligned with a separation of 150 µm between
each other. The image of the fibers is focused at the exit slit,
where a charge coupled device (CCD) camera is equipped.

In order to obtain good focus of the fiber image in the wide area
on the CCD detector, astigmatism is suppressed by introducing
toroidal and spherical mirrors in the spectrometer. The detail
of the optics of the spectroscopy system is described in Ref. 8.
The spectrometer can change diffraction gratings remotely
between 150, 300, and 2400 grooves/mm. In the present
measurements, the grating of 150 grooves/mm is used for
measurements of CII (1s22s2p3s 4Po-1s22s2p3p 4P, 514 nm),
and the grating of 2400 grooves/mm is used for CIII (1s22s3s
3S-1s22s3p 3Po, 465 nm) and CIV (1s25f 2Fo-1s26g 2G, 1s25g
2G-1s26h 2Ho, 466 nm). The wavelength resolutions near the
center of the CCD are 1.07 nm and 0.06 nm with the gratings
of 150 and 2400 grooves/mm, respectively. Exposure time and
cycle time are set to 0.09-0.19 s and 0.2-0.3 s, respectively.
These settings were changed depending on the gratings and
the plasma parameters.

III. TOMOGRAPHY SCHEME
A. Field-line aligned 3D grid generation

For the present tomography scheme, we make use of the
plasma transport feature that the transport is much faster along
magnetic field lines as compared to the transport perpendicular
to the field lines, which leads to smooth distribution of physical
quantity along the magnetic field lines. In order to incorporate
this effect in the projection matrix and in the regularizations of
the tomographic inversion, the voxellation of the measurement
volume is made such that the vertices of voxels are aligned
along magnetic field lines.

Figure 3 shows the 2D distributions of the magnetic field
line connection length (LC) at different cross sections perpen-
dicular to the LOS. LC is defined as a length of the field line
trajectory between divertor plates. The length labels in each
panel in Fig. 3 (also Figs. 4, 6, and 10 below) show the distance
from the observation point to the cross section, Ldp. The region
in red represents LC more than 104 m, which corresponds to
a confinement region. Around the confinement region, the so-
called stochastic magnetic field layer is formed, where regions
with different LC’s (yellow, green, and blue) are mixed. LC

rapidly decreases in the radially outward direction as seen in
the change of the color in the figure. Two divertor legs are
visible with blue thin lines, and they cross each other at the

FIG. 3. Connection length (LC) distri-
bution in cross sections perpendicular
to LOS. Length in each panel indicates
the distance from the observation point.
Two divertor legs are visible with blue
thin lines, and they cross each other at
the X-point.
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FIG. 4. Field-aligned 3D grid con-
structed for tomography: cross-
sectional illustrations with the label
Ldp. Vertices are aligned along the
magnetic field lines.

X-point. (The color of the divertor legs in Figs. 1 and 2 is not
relevant to the LC but are only for visualization.)

The preparation of voxels for the projection matrix has
been performed taking into account these magnetic field struc-
tures. The grid starts from the region just inside of LCFS and
extends radially outward along the divertor legs, as shown in
Fig. 4. This selection of grid area is based on possible emis-
sion areas of CII, CIII, and CIV, whose ionization potentials
are 24.4, 48.0, and 64.7 eV, respectively, so that they rarely
emit inside LCFS, where the temperature is usually higher
than a few hundred eV. It is also considered that in the deep
blue region in Fig. 3, where the LC is less than 5 m, the plasma
density is so low that impurity emission (except for neutrals)
is very weak. The grid is first constructed at 4.0 m from the
observation point. Then each vertex of the grid is traced along
magnetic field lines to construct the 3D grid structure, in order
to cover the region of Ldp = 2.8–5.7 m. The flux tube cross sec-
tion in the edge region is strongly deformed along the magnetic
field due to magnetic shear. Therefore, the grid was carefully
constructed not to be crushed during the tracing, taking into
account the magnetic field structure. At first, the very fine grid
(typical size of 51 mm, and minimum size of 1.3 mm) was
constructed to accommodate the strong deformation. Then the
neighboring voxels having similar LC within one order of mag-
nitude are unified in order to reduce the number of voxels as
much as possible to remedy the ill condition in tomographic
inversion. There is, however, a region, where the field lines
with different LC’s by several orders of magnitudes co-exist
within a few mm in a radial direction. In such a region, the
voxels with different LC’s more than one order are unified,
anticipating that the perpendicular plasma transport smears
out such fine structure. The criterion for the tomography voxel
construction in the magnetized plasma still has to be stud-
ied carefully with a more refined measurement system and
with a fine grid structure to find out a tolerable resolution of
the grid. Eventually, in the present analysis, 1464 voxels in
the entire measurement volume, which consists of 242 flux
tubes, are constructed successfully, as shown in Fig. 4. The
resulting spatial resolution of the grid along the line of sight
is 30 cm. With this non-uniform voxellation, the elements
Lm,k of the projection matrix L in image analysis below are
evaluated as

Lm,k =Vm,k/Am,l, (1)

where m and k are the indices of the optical fibers and the
tomography voxels in the measurement domain, respectively.
l is the index of each cross section perpendicular to the line of
sight. Then, Vm,k is the k-th voxel volume in the field of view

of the m-th fiber, and Am,l is the area in the l-th cross section
covered by the field of view of the m-th fiber. The schematic
of the voxel structure together with the indexes is shown in
Fig. 5.

B. Regularization operators and solution

Using the provided L, an unknown vector E which rep-
resents the spatial distribution of emissivity in measurement
volume is related to a data vector S which represents the
observed image at the detector as follows:

LE=S. (2)

The size of E is the number of voxels K = 1464, while the
size of S is the number of fibers M = 131. Lm,k in Eq. (1) is
the contribution rate of the voxel value Ek to the output Sm.
With the under-determined equation (2) (K > M), the inverse
problem to obtain E from S will be ill-conditioned as is often
the case in plasma imaging and especially in our experiment
with a single field-of-view. In order to obtain a good solution,
an appropriate regularization is required.

In the least-squares approach, a well-known strategy is to
solve the problem in the scheme of minimization under con-
straint, which is reduced to minimizing Lagrangian functions
of the form

Λ(E)=
1
M
‖LE − S‖2 + regularization terms,

where ‖a‖ denotes the norm of vector a. A variety of regular-
ization terms that lead to linear and nonlinear solutions have

FIG. 5. Schematics of the structure of voxels and index used for the tomog-
raphy, as an example of 5 voxels along field lines. k, m, and l represent the
index of voxel, the optical fiber, and the cross section perpendicular to the line
of sight, respectively.
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been investigated in plasma imaging, which is usually given a
strong limitation in the number of fields of view. When applied
to plasma imaging, a notable feature is to use derivative oper-
ators, which are effective for smooth plasma profiles. Studies
in the L2-norm regularizations of the Tikhonov type9–13 and a
modified type14,15 and nonlinear regularizations of the Fisher
type16–19 and Hopfield neural net20 are typical studies. In
Ref. 18, an anisotropic derivative operator was applied and
examined for 2D tomography in JET. The use of the anisotropic
operator in velocity space was studied for fast-ion diagnostics
in Ref. 21.

In the present analysis, within the Tikhonov scheme, we
introduce a new anisotropic regularization, taking into account
the transport feature of the magnetized plasma which should
have distribution smoothed along flux tubes, as described in
Sec. III A. That is, we define Λ(E) as

Λ(E)=
1
M
‖LE − S‖2 + γ1‖D1E‖2 + γ2‖D2E‖2 + γ3‖TE‖2.

(3)
The mean of squared residuals is assisted with three terms.
The first term is the most important for regularization and pos-
sesses the 2nd-order derivative operator D1 that is defined over
three neighboring voxels along each flux tube. The next term
is introduced, in imaging, to control spatial roughness perpen-
dicular to the field lines and possesses the 1st-order derivative
operator D2, which is defined for geometrical facility between
two neighboring flux tubes. The last term is the proper term
of Tikhonov regularization with a diagonal matrix T, which is
originally the identity matrix I. The multipliers γ1, γ2, and γ3

are positive-valued and used as parameters for weighting the
three terms.

With the extended Lagrangian function, we employ the
Cholesky decomposition for numerically reliable minimiza-
tion. The Λ(E) is minimized with respect to E by solving
the following linear equation, which has a unique solution
(Appendix A):

{
LTL + Mγ1

(
D1

TD1 + αD2
TD2 + βTTT

)}
=LTS, (4)

with α= γ2/γ1 and β= γ3/γ1. Since the matrix P=D1
TD1 +

αD2
TD2 + βTTT is symmetric and positive definite, the

Cholesky decomposition P=RTR with an upper triangular
matrix R is possible. Then, we have an equation of the conven-
tional form

(
LTL + Mγ1RTR

)
E=LTS. With this rewriting,

the singular value decomposition (SVD) LR−1 =UΣVT leads
the solution E to the ordinary form of series expansion. That
is, we have

E
(
γ1

)
=

M∑
m=1

wm
(
γ1

) (S, um)
σm

(
R−1vm

)
, (5)

with the Tikhonov window

wm
(
γ1

)
=

1

1 + Mγ1/σm
2

. (6)

With the orthonormal column vectors um and vm of the matri-
ces U and V, one has a basis system R−1vm for E(γ1) and
using the series um as the basis system for S. With the singular
values σm (diagonal elements of Σ) in descending order, one
has the monotonically decreasing function wm(γ1) for taper-
ing down the expansion coefficients (S, um)/σm, which may

increase in the region of large m (high spatial-frequency);
(a, b) denotes the inner product of vectors a and b. It should
be noted that the inverse of the triangular matrix, R−1, tends
to be well-conditioned and calculated numerically with high
reliability.

With respect to the solution E(γ1), the generalized cross-
validation (GCV)22 for optimizing the value of γ1 is given as

GCV
(
γ1

)
=

ε2(
1 −M−1 ∑M

m=1 wm
(
γ1

))2
, (7)

where ε2 =M−1‖LE
(
γ1

)
−S‖2 is the attained mean square error

(MSE). Since the matrix R and thus all the SVD components
involve the weights α and β as parameters, the criterion of
minimum GCV is valid for particular values of α and β.

The term ‖D1E‖2 is defined with the central difference
between the second-order differentials along the flux tube. As
a boundary condition at both edges of the field lines in the
measurement volume,∇‖ = 0 and∇2

‖
= 0 have been tested with

respect to the derivative ∇‖ along field lines. It is found that
solutions are almost independent of such boundary conditions.
Therefore, in the present analysis, we used the boundary con-
dition∇‖ = 0 for ‖D1E‖2. The term ‖D2E‖2 is defined with the
one-sided difference between the neighboring voxels perpen-
dicular to field lines. The differentiation is introduced along
the poloidal direction and along divertor legs, in which direc-
tions the flux tubes are stretched by the strong magnetic shear,
and thus plasma parameters are expected to be smoothed out
due to the parallel transport (Appendix B).

C. Algorithm of image reconstruction

There are two reasons for adding the term ‖TE‖2 in
Eq. (3). First, despite the success in Refs. 9–12, the deriva-
tive operators such as the Laplacian operator are never well-
conditioned in general. In the present scheme of single field-
of-view tomography, it is found that the inverse matrix R−1

cannot be calculated without the original Tikhonov term ‖E‖2.
Second, the diagonal matrix T is used for applying the con-
straint of non-negative valued emissivity. That is, when the
initial solution E(γ1) with the identity matrix T= I has nega-
tive values at some voxels, we anticipate that the voxels have
very low emissivity and, therefore, we set the corresponding
diagonal elements Tk,k of T to be large positive values as addi-
tional penalties. Then, the voxel values are forced to approach
zero in the next iterative step of minimizing the Lagrangian
function. With the matrix T so updated, R is recalculated at
each iteration. Experimentally, it is found that in most of the
cases the iteration converges and a reasonable non-negative
solution is obtained.

The iterative algorithm of image reconstruction is as
follows:

Step 1 Set the values of α and β.
Step 2 T(0) = I.
Step 3 For T(n), obtain R(n), LR−1(n), and the SVD.
Step 4 Find γ1 that minimizes GCV(γ1).
Step 5 For the minimizer γ1, calculate E(γ1) according to

Eq. (5).
Step 6 For all k where we have Ek < 0, set Tk,k

(n+1) to a large
value, for example, 107. Go to step 3 for n + 1.
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The procedure from step 3 to step 6 is repeated iteratively
until we have no negative-valued new voxels anywhere. With
this iteration, the procedure starting with step 1 is repeated
in order to find optimum values of α and β, which minimize
the reconstruction errors in the test calculation, especially the
value of α. The software is interactive only for the choice of α
and β. A practical procedure of choosing the α and β values is
studied in Sec. III D.

D. Numerical simulations
1. Optimization of regularization parameters

To check the feasibility of tomographic imaging, numeri-
cal tests have been conducted. Figure 6 shows one of the tested
phantoms, Eph, which imitates emission distribution along the
poloidal direction and divertor legs. The emission is nonuni-
form along flux tubes such that the intensity increased linearly
with the distance from the observation point, Lph. In calcu-
lation, 1% Gaussian noise with zero mean is added to the
projection LEph for producing the data S, and γ1 is scanned
in a wide range from 10−11 to 104 for fixed values of α and β.
Figure 7 shows an obtained behavior of the GCV, the MSE ε2,
and the reconstruction error δ as functions of γ1, for a particu-
lar series of Gaussian random numbers. Corresponding to the
non-uniform voxellation, the error δ is defined as

δ =

∑K
k=1

���Eph,k − Ek
(
γ1

) ���V
k∑K

k=1 Vk
. (8)

Here Vk is the own volume of the k-th voxel and has a relation
Vk ≥

∑M
m=1 Vm,k with the volumes Vm,k which are defined in

Eq. (1). Each voxel is not completely contained in the mea-
surement area of fibers. Furthermore, there are spaces among
fibers as seen in Fig. 2. The error δ is a quantitative estimate
of the deviation of the obtained E(γ1) from the assumed Eph

over the entire 3D measurement volume. With the decrease
in γ1, the regularization along flux tubes is weakened by the
effect of the Tikhonov window wm(γ1). As a result, the recov-
ered projection LE(γ1) tends to match precisely the projection
data S. The ceiling of ε2 at ||Eph||2 for very large γ1 and the
subsequent monotonic decrease in ε2 seen in Fig. 7 give a
proof of correct calculation. On the other hand, the GCV has a
minimum around γ1 = 10−5, below which the GCV gradually
separates from the value of ε2. The increase in GCV for smaller
γ1, which suggests that the denominator of GCV decreases
faster than the numerator, corresponds to the appearance of too
fine structure in reconstruction due to too weak regularization.

FIG. 6. 3D profile of a phantom. The variation of emissivity along LOS is
shown with cross-sectional illustrations at different Ldp. Red circles in each
panel indicate the fiber positions.

FIG. 7. Behaviors of GCV, ε2, and δ when the parameter γ1 is changed for
fixed values of α= 10−2 and β= 10−6.

As expected, the minimum of GCV agrees well with the
minimum of the reconstruction error.

This result of reconstruction in Fig. 7 has been obtained
forα= 10−2 andβ= 10−6. When the test is made in the range of
10−5 ≤ α ≤ 10−1 and 10−6 ≤ β ≤ 10−2, the E(γ1) obtained with
the criterion of minimum GCV is not changed significantly
by the value of β. Therefore, β can be fixed at such a small
value of the level that is indispensable for sure calculation of
R−1. However, the change in α gives a significant change in
reconstruction. Considering that the minimum of GCV for a
set of (γ1, α) seems to indicate the minimum of δ in many
tests, the value of α is selected as such without support of sta-
tistical mathematics, α= 10−2 in this example. Recalling that
these values of α and β are the weights in ratio among three
regularization terms in Eq. (3), we note that the very small
value β= 10−6 should also be related to the magnitude of the
squared norm ‖E‖2, which is much larger than those of the two
derivatives. Additionally, for phantoms where the emissivity
distribution is local and narrow in the flux-tube direction, the
best value of γ1 has tended to decrease. Based on these simu-
lation results, the scans of γ1, α, and β are efficiently made in
narrowed ranges for the rest of the analyses.

2. Regularization effects in reconstructed images

The two derivative terms ‖D1E‖2 and ‖D2E‖2 give mean-
ingful effects to the profiles of reconstructed images. In the
simulations, the reconstruction is studied for changing the
regularization term design.

First, comparison is made in two cases of using only the
Tikhonov term ‖TE‖2 and using all three terms. Figures 8
and 9 show a result in the simulation for which the result
in Fig. 7 was obtained. With similarly good fittings to the
phantom projection as recognized in Fig. 8, the two meth-
ods give reconstructions with a remarkable difference as in
Figs. 9(a) and 9(b), where both the phantom in Fig. 6 and
the reconstructed images are raster-scanned and plotted in one
dimension. In this plot of Eph,k, the phantom profile is discon-
tinuous in its existence intervals and oscillates like saw teeth
corresponding to the linear increase in emissivity with Ldp.
With the two derivative terms and the optimization with GCV,
it is found that the reconstruction is much improved in giving
a better recovery of the gradient of phantom along flux tubes
and the noisy structure effectively diminished. The iterative
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FIG. 8. (a) Projection image of the phantom with no noise; those recovered
with (b) the Tikhonov term only and (c) all terms.

procedure for non-negativity, with 14 iterations in this exam-
ple, has worked well without producing any large residual. The
iterative update of the operator T, which has worked well also
in the case of the single term ‖TE‖2, can be a tool for elim-
inating the noisy negative values that appear in the original
Tikhonov regularization.23,24 The tool is available wherever
one has the linear regularization software.

In Fig. 10, the reconstructed images are illustrated for
some of the various regularization designs. The numerical
sequences (red lines) in Figs. 9(a) and 9(b) are displayed in
Figs. 10(a) and 10(d), now with cross-sectional illustrations at
different Ldp. Here we tested also the assumption of constant
emission along field lines in order to see how the result devi-
ates from that with the regularizations of the parallel derivative
term ‖D1E‖2. The resulting image is plotted in Fig. 10(b).
The reconstruction so-modified is made simply by decreas-
ing the size of E to the number of flux tubes and summing
the related row vectors of the projection matrix L. Evidently,
the flux constant constraint can never give good effects as the
result of imposing an excessive claim on the reconstruction.

FIG. 9. 1D display of the phantom and the images reconstructed with (a) the
Tikhonov term only and (b) all terms. 1464 voxels are indexed in sequence by
raster scan along the LOS of fibers.

FIG. 10. Reconstructed images for different designs of regularization:
(a) ‖TE‖2 only

(
δ= 1.8 × 10−1

)
, (b) ‖TE‖2 with the constraint of flux con-

stant
(
δ= 3.0 × 10−1

)
, (c) ‖TE‖2 and ‖D1E‖2

(
δ= 7.1 × 10−2

)
, and (d) all

terms
(
δ= 3.6 × 10−2

)
.

By contrast, the addition of ‖D2E‖2 term improves the
reconstruction clearly, as shown in Fig. 10(c).

The reconstruction is further improved by adding the term
‖D2E‖2 as seen in Fig. 10(d), where the reconstruction error
δ is decreased.

3. Regularization effects in numerical components

The improved image displayed in Figs. 9(b) and 10(d)
is examined on its spectral components, which are given a
significant change by applying the two derivative terms.

In Fig. 11 are exhibited the singular value series, the
Tikhonov window, the spectral coefficients, and the coupling
of basis systems, which were used to calculate the image
according to Eq. (5). The σm as well as wm gradually decrease
with increasing m. The spectral coefficients of S and E(γ1) in
Figs. 11(b) and 11(c) are compressed nicely in the region of
low spatial-frequency (small number m), especially at m= 1.
This compression is supported by the basis systems that are dis-
played in Figs. 12 and 13. The bases R−1vm for E(γ1) change
in profile with the increase in m from smooth to random func-
tions. In particular, the basis R−1v1 has a distribution that is
similar to the emission region in shape and thereby supports the
strong spectral compression of E(γ1) at m= 1 and the related
smooth profile seen in Fig. 10(d). The great profile change in
R−1vm in the interval of 15m5M suggests that the basis sys-
tem can support various emissivity distributions, occasionally
with fine structures. On the contrary, the regularization only
with ‖TE‖2 fails in generation of smooth bases for small m
and, as a result, gives the unstable profile of emissivity, as
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FIG. 11. (a) Singular value series σm normalized with σ1 and the window
function wm, (b) the spectrum of data S, and (c) the normalized spectrum of
the image E(γ1) obtained with all regularization terms (γ1 = 10−5, α= 10−2,
and β= 10−6).

seen in Fig. 10(a). This notable improvement of the basis sys-
tem has been obtained by involving the derivative terms in
regularization.

The above results have been obtained with the T-iteration
for non-negativity and with the GCV-optimization according
to the previously described algorithm. In Figs. 10(b) and 10(d),
the spectral coefficients are plotted in magnitude for graphic
convenience. Calculation was carried out with the software
Matlab. To obtain the result of, for example, Fig. 10(d), com-
puting time with 14 iterations is 50 s using the Intel® Core�
i7-6700K without sparse matrix acceleration.25

FIG. 12. Bases um for the spectral decomposition in Fig. 10(b).

FIG. 13. Bases R−1vm for the spectral decomposition in Fig. 11(c): (a) cross-
sectional display for various m (Ldp = 4.3 m), where each basis is normalized
with its maximum value. (b) Cross sections of R−1v1 at different Ldp. The
inversion in color-bar is in correspondence with the sign inversion of the
spectrum in Fig. 11(c).

IV. APPLICATION TO IMPURITY EMISSIONS
IN THE LHD EDGE REGION

Impurity emissions in the LHD experiments,
CII(1s22s2p3s 4Po-1s22s2p3p 4P, 514 nm) and CIV(1s25f 2Fo-
1s26g 2G, 1s25g 2G-1s26h 2Ho, 466 nm), are analyzed with the
tomography method described above. Figure 14 shows CII and
CIV projection images at the detector and the recovered images
in tomography. Here we have ne = 2 × 1019 m−3, NBI heating
power of 13 and 14 MW, shot numbers 133 323 and 137 177,
t = 4.75 and 4.30 s, exposure time = 0.15 and 0.30 s, gratings of
150 and 2400 grating/mm, respectively, for CII and CIV mea-
surements (γ1 = 2.6 × 10−6, 1.0 × 10−6; α= 10−3, β= 10−6).
The selection of α is based on the analysis as follows. Before

FIG. 14. (a) Projection data in the LHD experiment and (b) the recovered
projections for CII and CIV.
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the application to the experimental data, we have tested sev-
eral different phantoms with emission distributed only along
LCFS and only localized around the X-point in addition to the
one shown in Fig. 6. We have found that the optimum value
of α, which gives minimum δ, changes from 10−4 to 10−2

in the tests depending on the emission distributions. Based
on the tests, we have selected α= 10−3 for the analysis of
experimental data. The reconstructed 3D images are shown
in Fig. 15 at different distances from the detector, Ldp. In
reconstruction, the emissions are peaked at the left divertor
leg of Ldp = 5.5 m for both CII and CIV. This is consid-
ered due to strong plasma-wall interaction caused by divertor
shaping at the top of the torus that terminates the divertor leg
field lines with a rather large incident angle. The emission
of CIV is found to peak around the X-point and is also dis-
tributed in the poloidal direction with a certain modulation.
On the other hand, there exists no clear peak in the CII emis-
sion except for the left leg. These differences between CII
and CIV emission distributions are probably attributed to dif-
ferent ionization potentials, 24.4 eV for CII and 64.7 eV for
CIV. That means CIV emission occurs in a higher temperature
region.

Based on this experimental result, the following point may
be noted for application and improvement of the tomogra-
phy method for the edge plasma. In the edge region, strongly
peaked emissions can exist especially near the divertor plates
due to strong plasma-wall interaction, as also observed in
the present analysis. In this case, reconstruction needs basis
functions with high orders m to reproduce such peaked dis-
tributions. The basis functions with higher m, on the other
hand, have the potential to increase the spatial oscillation of
emission by amplifying noise components and thus tend to be
suppressed by the window function. Therefore, the selection of
regularization parameters that control smoothness of the solu-
tion should be made carefully by considering possible peaks
appearing near plasma-facing components. In order to avoid
any misleading reconstruction caused by the peaked distribu-
tions, separation of the control volume with possible peaked

FIG. 15. Reconstructed images of (a) CII and (b) CIV in the cross-sectional
display at different Ldp.

solution from the others in tomography analysis may be one
solution.

V. SUMMARY

A single field-of-view tomography method has been pro-
posed for inverting the impurity emission distributions mea-
sured in magnetized edge plasma. Several regularization terms
have been introduced taking into account the plasma trans-
port characteristics in the magnetized plasma, in addition to
the conventional Tikhonov regularization. The new scheme
has been tested with the phantom data that vary the emis-
sivity along the field line direction. The effectiveness of the
regularization terms has been confirmed in regard to the recon-
struction error that can be reduced with the introduced regular-
ization of derivative operators parallel and perpendicular to the
magnetic field lines. In the test, the selection of regularization
parameter values has also been discussed. It is found that the
test image is effectively compressed to the Fourier-type com-
ponents of low order, m= 1 and around m= 20. The scheme has
been applied to the experimental data in LHD. Different distri-
butions are obtained for CII (C1+) and CIV (C3+), which seem
reasonable in terms of ionization potentials of each charge
state and of the plasma-wall interaction. Special care should
be taken for tomography analysis in the edge plasma, where
strongly peaked emission can exist due to plasma-wall inter-
action, which may conflict with regularizations that usually
promote smooth distribution of solutions.
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APPENDIX A: EXTENDED LEAST-SQUARES
SOLUTION

Equation (4) can be obtained from ∂Λ(E)/∂Ek

(k= 1, 2, . . . , K) on the convex function Λ(E). But an effi-
cient procedure is as follows. As well known, the minimizer
of ‖LE − S‖2 (i.e., the lest-squares solution of LE=S) is
the solution of the normal equation LTLE=LTS. Noting the
relation
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with the K-dimensional zero vector 0. With the enlarged coef-
ficient matrix L̄ and data vector S̄, the minimization ofΛ(E) is
reduced to minimizing ‖ L̄E− S̄‖2. The corresponding normal
equation L̄TL̄E= L̄TS is deployed as Eq. (4) by simple matrix
manipulation.

APPENDIX B: FORMS OF D1 AND D2

The operator D1, the second order derivative along the
field line that consists of 5 voxels, e.g., from k − 2 to k + 2, as
shown in Fig. 5, can be written as

where dl is the distance between neighboring planes perpen-
dicular to the line of sight, l and l + 1. The derivative constitutes
a 5×5 cluster in the matrix D1, which has a size of K×K with
K being the total number of voxels. The derivative is defined
as the central difference except for the edges of the field lines
(k − 2 and k + 2 in this case), where ∇‖ = 0 is assumed.

On the other hand, the first order derivative perpendicular
to the field line, D2, with one-sided difference, is written as

,

where dlk,k+1 represents the distance between the center of
gravities of the voxels k and k + 1. The first line shown in the
matrix represents the derivative between the voxels of k − 6
and k − 1, and the second line represents that between k − 1
and k + 4, respectively, as shown in Fig. 5. The similar opera-
tions are applied for the voxels k, k − 5, and k + 5 as defined
in the fourth and fifth lines in the shown matrix. Then, the
number of columns of D2 is the total number of voxels, K, and
the number of lines is the number of derivatives defined in the
calculations.
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