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Abstract. In collisionless plasma, it is known that linearly stable modes can
be destabilized (subcritically) by the presence of structures in phase-space. The
growth of such structures is a nonlinear, kinetic mechanism, which provides a
channel for free-energy extraction, different from conventional inverse Landau
damping. However, such nonlinear growth requires the presence of a seed
structure with a relatively large threshold in amplitude. We demonstrate that,
in the presence of another, linearly unstable (supercritical) mode, wave-wave
coupling can provide a seed, which can lead to subcritical instability by either
one of two mechanisms. Both mechanisms hinge on a collaboration between
fluid nonlinearity and kinetic nonlinearity. If collisional velocity diffusion is low
enough, the seed provided by the supercritical mode overcomes the threshold for
nonlinear growth of phase-space structure. Then, the supercritical mode triggers
the conventional subcritical instability. If collisional velocity diffusion is too large,
the seed is significantly below the threshold, but can still grow by a sustained
collaboration between fluid and kinetic nonlinearities. Both of these subcritical
instabilities can be triggered, even when the frequency of the supercritical mode
is rapidly sweeping. These results were obtained by modeling the subcritical
mode kinetically, and the impact of the supercritical mode by simple wave-wave
coupling equations. This model is applied to bursty onset of geodesic acoustic
modes in a LHD experiment. The model recovers several key features such as
relative amplitude, timescales, and phase relations. It suggests that the strongest
bursts are subcritical instabilities, with sustained collaboration between fluid and
kinetic nonlinearities.

PACS numbers: 52.35.Mw,52.35.Sb,52.35.Bj
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1. Introduction

Subcritical instabilities, which circumvent linear
theory, are ubiquitous in fluids and plasmas [1]. These
include subcritical or submarginal turbulence, which is
self-sustained nonlinearly. Subcritical, or submarginal
turbulence, is observed in pipe flow, planar Poiseuille
flow, and planar Couette flow, which is linearly stable
at all Reynolds numbers [2]. In magnetized fusion
plasmas, subcritical turbulence is predicted by theory
for current-diffusive interchange turbulence [3], and
drift-wave turbulence in slab geometry [4]. Subcritical
excitation also concerns large-scale perturbations, such
as Kelvin-Helmholtz instability [5, 6]. The formation
of self-sustaining magnetic islands (neoclassical tearing
mode) is a well-known example in magnetized fusion
plasmas [7].

For this wide range of subcritical systems,
the subcritical bifurcation originates from a fluid
nonlinearity, or nonlinearity in real space. On the
other hand, kinetic nonlinearities, or nonlinearities
in the phase-space of particle distribution, play a
crucial role in hot plasmas. In general, hot plasmas
include modes with a wave-length much smaller than
the collisional mean-free-path, which enable strong
wave-particle resonances. In this regime, particles
are free to explore the energy space. This often
leads to the formation of structures in the phase-
space of particle distribution. This is observed in a
wide range of laboratory and space plasmas [8]. The
most ubiquitous phase-space structure is a phase-space
hole [9], a vortex-like negative phase-space density
perturbation, which results from the localized self-
consistent trapping of particles by their own electric
potential. Phase-space structure formation is a kinetic
nonlinearity, in the sense that it cannot be described by
fluid models, unlike other nonlinearities such as higher
harmonic generation, mode coupling, fluid vortex, etc.
Theory predicts that these structures can tap free
energy where wave excitation cannot, and lead to
subcritical instabilities, where the kinetic nonlinearity
enables the growth of a mode that is linearly damped
[10, 11].

However, such subcritical growth requires a large-
amplitude seed perturbation. Several scenarios could
provide the seed for kinetic nonlinear growth of a
linearly stable mode:

1. the presence of large thermal noise or an external
source of wave excitation,

2. a hysteresic path from supercritical to subcritical
regime, or

3. a transfer of energy from another, linearly
unstable mode.

Previous works on kinetic subcritical instabilities
assumed some initial, relatively large amplitude (at
least, compared to thermal noise) perturbation [12, 13,
14] for the subcritical mode, corresponding to scenario
1. The hysteretic behavior, corresponding to scenario
2, was obtained in a COBBLES simulation, and will be
the subject of a future paper. Another work explored
an artificial scenario, where a seed phase-space hole is
imposed at t = 0 [15].

In Ref. [16], a model was developed to explore
the third scenario. The model combines the kinetic
description of a linearly stable (subcritical) mode with
the nonlinear fluid coupling with a prescribed linearly
unstable (supercritical) mode. This can be seen as
an extension of the Berk-Breizman (BB) model [17]
to two interacting modes. The model suggests that
the supercritical mode can provide a seed for the
nonlinear growth of the subcritical mode. In this
paper, we investigate two interesting regimes. In a
first regime, of successive fluid then kinetic growth, the
dormant subcritical mode is first triggered by fluid
coupling to the supercritical mode, which allows it
to reach amplitudes of the same order of magnitude
as the supercritical mode. This amplitude is above
the threshold for the conventional kinetic subcritical
instability [12, 14], therefore the amplitude can keep
growing by momentum exchange between the wave
and phase-space structure(s). In a second regime,
of collaborative fluid-kinetic growth, the subcritical
growth is due to an uninterrupted collaboration
between fluid and kinetic nonlinearities. This is a new
kind of instability mechanism, where fluid and kinetic
nonlinearities have similar (in amplitude) contributions
to the mode growth. Contrarily to the mechanism
developed in earlier theories [12, 14], the growth occurs
much below the amplitude threshold, and without
chirping.

As shown in Ref. [16], the model qualitatively
reproduces an experimental observation, and interprets
it as a subcritical instability with essential roles
of both fluid and kinetic nonlinearities. In the
latter reference, we analyzed an intriguing observation
in the helical plasma of the LHD, which was
described first in Ref. [18]. Bursts of Energetic
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particle-driven Geodesic Acoustic Mode (EGAM) [19],
with dynamical evolution of frequency (chirping)
are routinely observed, with a 10 ms duration.
Surprisingly, such a primary EGAM burst is sometimes
accompanied by a secondary, stronger burst. The
secondary burst has a 1 ms duration, and a peak
amplitude that significantly exceeds that of the
primary burst. Since the existence of the secondary
burst appears to be tied to the primary burst, we
call the primary (weaker, and chirping) burst as
mother mode, and the secondary burst as daughter
mode. The mother EGAM chirps from 50 kHz to
90 kHz. When it approaches 80 kHz, the daughter
mode abruptly appears at ∼ 40 kHz, with a growth
rate one order-of-magnitude larger than the mother’s.
The amplitude increase of the daughter is so large
(compared to the amplitude decrease of the mother)
that it clearly violates the Manley-Rowe relations [20].
This suggests that the daughter is not excited by
e.g. simple parametric coupling. In section 6, we
summarize the relevant experimental conditions, and
apply our model to a typical daughter burst as shown in
Fig. 5. Our analysis suggests that the daughter mode
is a subcritical instability, which is dormant until the
mother excites it into the regime of collaborative fluid-
kinetic growth. This was first reported in Ref. [16]. In
this paper, we expand on the latter analysis of LHD
experiment. We further discuss the applicability of
the model to this experiment, and several caveats. We
introduce scalar measures to quantify the comparison
between experiment and simulation, and use them to
analyze the robustness of the modeling with respect to
input parameters, as well as to provide readily-testable
predictions.

The main point of this paper, though, is to provide
more theoretical basis for the reduced model (Section
2), explore different regimes (Sections 3 and 4), and
clarify the underlying physics based on the behavior in
simpler limits (Section 5).

2. Model

The model was introduced in Ref. [16]. Here, we
expand on required assumptions, their justification
or validity range, and what novel physics can be
investigated by this model.

2.1. From 3D to 1D

In a toroidal device, the linear structure, linear
frequency and linear growth rate of an energetic
particle-driven mode is determined by 3D calculations.
These linear properties evolve on a slow timescale
of mean field evolution (∼ 100 ms). However, the
kinetic nonlinear effects, which induce chirping and
subcritical instability, are linked with the evolution

Table 1. Analogies between a single wave in a 1D plasma, and
a single EGAM in a 3D toroidal plasma.

1D 3D

Angle kx− ωt θ − ωt

Action mi
v−vR
k I ∼ mi

v‖−vR‖
k‖

Effective mass k2

mi
D ≈ k2‖

mi

Electric potential φ̂ φ̂1

Electric field E Eθ

on a fast timescale (∼ 1 ms). They can be treated
perturbatively in a 1D model (the BB model) [21], by
taking advantage of the timescale separation. This
reduced 1D model is linked to the 3D mode by a
perturbative expansion of a gyrokinetic Hamiltonian
around a resonant surface in phase-space [22].

This procedure is applied to an EGAM in
Appendix A. Here, we summarize how wave-particle
interactions on a fast timescale may be approximated
by a 1D model. Developing the perturbed 3D
Hamiltonian H1 for an EGAM, in the neighborhood
of the flux surface of peak electric potential, yields,
as a zeroth-order-in-∂H0/∂Jθ approximation, and after
substituting the resonance condition ω = mωθ, a 1D
Hamiltonian in a phase-space (θ, Jθ). Here, Jθ is
the canonical poloidal angular momentum. The latter
1D Hamiltonian is isomorphic to the Hamiltonian of a
single sine wave in an electrostatic 1D plasma. In this
sense, the physics of the 1D model, and that of the
reduced 3D model, are analogous. Table 1 summarizes
the analogy.

In this work, we consider the interaction of two
modes. To treat the present problem, we split the
electric field E between the two waves, E = E1 +
E2, and introduce a hybrid model. The subcritical
(daughter) mode (E1) is treated by the kinetic 1D
model, and the supercritical (mother) mode (E2) is
treated as a simple medium for nonlinear energy
transfer. For E2, we prescribe the initial amplitude
Z2,0 and time-evolution of frequency ω2(t). We assume
that the impact of the mother on the particles near
the resonant location of the daughter is negligible.
This is a strong assumption, because there is a near-
integer frequency ratio at the time of daughter burst.
We encourage direct tests of this assumption by first
principles. The interaction between the two waves is
modeled by the equations for period doubling.

2.2. Model equations

We adopt a perturbative approach, and cast the
equations for wave-particle interactions in a reduced
form, which describes the time evolution of the



Subcritical fast ion-driven modes 4

beam particles only [17]. The main hypothesis in
this approach is that the bulk particles interact
adiabatically with the wave, so that their contribution
to the Lagrangian can be expressed as a part of the
electric field. In this model, the linear frequency of the
wave E1 is fixed. Even when chirping occurs, ω1 does
not change. Chirping, when it occurs, is due to the
nonlinear evolution of the amplitude and phase of E1,
rather than the evolution of ω1.

The evolution of the energetic particle distribu-
tion, f(x, v, t), in the neighbourhood of the resonance
of the daughter mode E1, is given by a kinetic equation
[17, 23],

∂f

∂t
+ v

∂f

∂x
+
qE1

m

∂f

∂v
=

ν2
f

k1

∂δf

∂v
+
ν3
d

k2
1

∂2δf

∂v2
, (1)

where δf ≡ f − f0, and f0(v) is the initial velocity
distribution.

The r.h.s. is a collision operator, where νf and
νd are input parameters characterizing dynamical
friction and velocity-space diffusion, respectively. This
operator can be obtained by projecting a Fokker-
Planck operator [24] that describes Coulomb collisions
perceived by energetic ions, on the resonant phase-
space surface [25, 26, 23].

The evolution of the two parts of electric field is
given by

dZ1

dt
= − mω3

1

4πq2n0

∫
f(x, v, t) e−i(k1x−ω1t) dx dv

− γd Z1 − ı
V

ω1
Z2Z

∗
1e
−ıθt, (2)

dZ2

dt
= −ı V

ω2
Z2

1e
ıθt, (3)

where Ej ≡ Zj exp [ı(kjx− ωjt)] + c.c., and n0 is the
total density.

The model above in the limit of no wave coupling
(V = 0) was described in details in Ref. [17].
The perturbed current is obtained by assuming that
energetic particles interact with a mode only if their
velocity vi is close enough to the mode’s phase velocity
vφ = ω1/k1. Terms of the order of (ωb/ω1)2(vi−vφ)/vφ
are neglected. Here, ωb = (|q|k1|Z1|/m)1/2 is the
bounce frequency of particles deeply trapped into the
potential well. This is a perturbative description,
which does not take into account effects of the time-
evolution of the bulk particle velocity distribution
(assuming the bulk of particles interact adiabatically
with the wave). In addition, this model assumes a
constant total number of energetic particles.

The term proportional to γd is an external
wave damping, which is a model for all linear
dissipative mechanisms of the wave energy to the
background plasma [17]. Since the time-scale of fast-
particle evolution is much faster than background
thermal populations evolution, these two dynamics

are decoupled. Hence we can reasonably treat
the effects of background damping in this extrinsic
way. We further assumed that all background
damping mechanisms affect linearly the wave energy.
Modeling all background damping mechanisms as
an extrinsic, fixed linear damping on the wave
is a strong assumption, whose validation requires
significant theoretical advances in the understanding
of these mechanisms. We must assume that γd does
not depend neither on the wave amplitude, nor on
the energetic population. In the case of frequency
sweeping, the assumption is clearly violated if the
nonlinear modification of frequency is of the order
of the linear frequency. In particular, this may be
an important issue if a chirping phase-space structure
approaches the SAW continuum, where damping
rate depends largely on the frequency. Therefore,
application of this reduced model to energetic particle-
driven MHD modes in toroidal plasmas is limited to
cases where mode 1 is not, or only weakly, chirping.

We note that in this model, we split the electric
field into two parts, and assume that there is one class
of particles (distribution f) which does not interact
with one of the two parts of the electric field. We
consider a system composed of the two waves and the
latter class of particles. In this sense, this model system
is an open system. Therefore, the total energy of the
system is not expected to be conserved. Furthermore,
the term in γd is an extrinsic term of prescribed energy
exchange with the ’outside world’.

2.3. Novelty of the model

Eqs. (2) and (3) both include a term that describes
energy exchange between mother and daughter. The
nonlinear interaction between GAMs (zonal flows) has
been studied. The dominant interaction originates
either from second-order coupling between vorticity
and parallel velocity, as well as vorticity and density
[27], or via higher-order modulation mechanisms of
background turbulence [28, 29], when the conventional
v ·∇v nonlinearity is not efficient.

In both cases, the coupling takes a standard form,
which depends on the coupling constant V , and the
frequency mismatch θ ≡ ω2(t) − 2ω1. This choice is
guided by the experimental observation on the LHD
[18], where a ∼ 40 kHz daughter mode abruptly grows
when the mother mode approaches ∼ 80 kHz. This is
not accidental because 1. this ratio of ∼ 2 is observed
in all bursts and in different plasma shots ; and 2. the
dynamics of period doubling has been demonstrated
experimentally in the reference.

In this model, the linear frequency of the mode, ω1

is fixed, but the frequency of E1 can evolve nonlinearly
due to the time-evolution of Z1. In contrast, ω2 is a
prescribed function of time, which is a model for the
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nonlinear chirping of mode 2.
Eq. (3) does not include any dissipative term (no

γd) nor driving term, because we assume a balance
between external drive and external damping for
simplicity. This assumption is consistent with the
experiment we analyze in Sec. 6, given the timescale
separation between evolutions of mother and daughter.
Indeed, in the experiment, the timescale of evolution of
the mother (∼ 10 ms) is much slower than this of the
daughter (< 1 ms), as long as the daughter’s amplitude
is less than half that of the mother’s.

We extended the semi-Lagrangian kinetic code
COBBLES [13] to solve the initial-value model
described above. The velocity distribution f0 is
designed with a constant slope, which is measured
by the linear drive γL0 = (πω3

1)/(2k2
1n0)∂vf0. Drive

and damping are defined so that in the limit V =
νf = νd = 0, the linear growth rate reduces to
γ0 = γL0−γd. The spatial and velocity grids have 128
and 2048 points, respectively. The simulation time-
step width is 0.05ω−1

1 . To simulate thermal noise,
we add to Z1 a noise term Znoisee

ıφr , where φr is
a phase that is randomized at each time step. This
is an important component of the modeling, since in
our simulations, mode 1 is linearly damped and the
quasi-resonance condition |θ| � ω1 is only satisfied
for a limited period of time. Without the noise, the
amplitude of mode 1 would quickly decay to values
orders-of-magnitudes below thermal noise, effectively
disabling fluid coupling.

The input parameters of the model are summa-
rized in Table 2, first and second columns. The third
column gives reference values that are used in most
simulations, apart from exceptions as mentioned later.
The choice of reference values, and the meaning of the
fourth and fifth columns, correspond to the LHD ex-
periment, as will be explained in Section 6.

Throughout this paper, the frequency of the
mother mode, ω2, is chosen as a linear function of time,
ω2(t) = 1.5ω1+(dω2/dt)t. The model is consistent with
other kinds of slowly-evolving ω2, but we impose this
prescription in order to reduce the number of input
parameters. The choice of constant slope can be seen
as a first-order approximation based on the time-scale
separation between the mother and the daughter, since
we investigate the abrupt growth of the daughter rather
than the slow evolution of the mother. The initial
frequency mismatch θ(0) = −0.5ω1 is arbitrary, but
we have checked that the results do not depend on θ(0)
(we have checked the range θ(0)/ω1 = −1.0 to −0.4).

The extension of this model to three interacting
modes is straightforward. However, a strong phase
relationship between mode 1 and mode 2 in the
experiment [18], suggests that the mechanism of energy
exchange can be modeled by 2-waves coupling, without

Figure 1. Time evolution of the amplitudes of modes 1 and 2
in simulations of the full model (d), without fluid nonlinearity
(V = 0) for (a) and (c), and without kinetic nonlinearity (no
term in

∫
f in Eq. (2)) for (a) and (b). The input parameters

are given in Table 2. Thin dotted curves indicated by arrows in
(b): case with increased coupling coefficient, V = 400ω2

1/Z0.

introducing additional input parameters associated
with a 3-waves model. In our simulations, the time-
evolution of mode 1 is similar whether we adopt the
2-waves model or 3-waves model. Therefore, for the
sake of clarity, we do not discuss the 3-waves model
any further in this paper.

3. Fluid and kinetic nonlinearities

Equation (2) contains two nonlinear terms, which we
refer to as kinetic nonlinearity (the term proportional
to
∫
fe−ı(k1x−ω1t)), and fluid nonlinearity (the term

proportional to V Z2Z
∗
1e
−ıθt). Figure 1 summarizes

the main message of this paper. It shows the time
evolution of a subcritical mode 1 and a supercritical,
chirping mode 2, obtained with the same input
parameters, as listed in Table 2 (third column), with
the following exceptions. The fluid nonlinearity is
artificially disabled in the left column of the figure, and
the kinetic nonlinearity is disabled in the top row of the
figure. This figure shows that the fluid nonlinearity
(b), and the kinetic nonlinearity (c), can work in
collaboration (d) to drive a subcritical instability to
relatively large amplitude. Figure 1(e) illustrates the
fixed frequency ω1 and the prescribed time-evolution
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Parameter Description Value Range Independent estimation
γL0/ω1 Linear drive of daughter 0.03 0.01− 0.08 0.1 is supercritical [30]
γd/γL0 L. dissipation of daughter 1.03 1.01− 1.7 γL ≈ γd hypothesis
νf/γL0 Collisional friction 0.067 0.003− 0.3 Fokker-Planck, 0.068
νd/γL0 Collisional diffusion 0.53 0.3− 1.5 Fokker-Planck, 0.44
V Z0/ω

2
1 Fluid coupling coefficient 50 40− 80 ∼ 10−2 − 102 [29]

Znoise/Z2,0 Noise amplitude 0.06 10−4 − 0.3 Input from
103Z2,0/Z0 Initial mother’s amplitude 1 0.6− 2.0 experimental
ω−2

1 dω2/dt Mother’s chirping rate 5 · 10−4 10−4 − 10−3 data

Table 2. Input parameters of the model. Here, Z0 is an arbitrary normalizing factor.

of ω2.
Let us make clear, that the message is not that

fluid nonlinearity alone cannot drive a subcritical
instability to relatively large amplitude. In fact,
Fig. 1(b) includes, as dotted curves, a simulation with
increased coupling coefficient, V = 400ω2

1/Z0. In
this case, mode 1 reaches an amplitude similar to
the initial amplitude of mode 2. However, it does
so at the expense of an increased depletion of the
energy of mode 1, and with a qualitatively different
evolution, in terms of e.g. the timing of the growth
phase. The latter timing, in particular, is crucial to
interpret experiments. The message is, rather, that the
presence of kinetic nonlinearity, everything else being
equal, can significantly enhance the subcritical growth
of a mode coupled to a supercritical mode.

4. Phenomenology

We are interested in a parameter range where the
daughter mode is significantly destabilized, with
important contributions from both fluid and kinetic
nonlinearities. In this parameter range, we can
discriminate two interesting regimes (perhaps non-
exhaustively).

(i) In one regime, the daughter growth is first
triggered by wave-wave fluid coupling to the
mother mode, which allows it to reach amplitudes
of the same order of magnitude as the mother.
This amplitude is above the threshold for
the conventional kinetic subcritical instability,
therefore the amplitude can keep growing by
momentum exchange between the wave and phase-
space structure(s). In this case, the daughter
mode chirps significantly, and its amplitude can
grow one or more order(s)-of-magnitude above the
mother.

(ii) In another regime, the daughter growth is due
to an uninterrupted collaboration between fluid
and kinetic nonlinearities. This is a new
kind of instability mechanism, where fluid and
kinetic nonlinearities have similar (in amplitude)

Figure 2. Time-evolution of modes 1 and 2 (a), and
spectrogram of the total field (b), in a simulation in the regime
of successive fluid then kinetic growth. Input parameters are
γL0 = 0.03ω1, γd = 0.031ω1, νf = 1.3γL0, νd = 0.53γL0,
V = 60ω2

1/Z0, Znoise = 0.06Z2,0, Z2,0 = 10−3Z0, and dω2/dt =
5 × 10−4ω2

1 (same as Fig. 5, except for an order-of-magnitude
larger νf ).

contributions to the mode’s growth. In this case,
the daughter mode is not, or very weakly chirping,
and its amplitude stays within the same order-
of-magnitude as the mother. In Section 6, we
interpret an experimental observation of EGAM
in the LHD as an example of this subcritical
instability.

Let us now describe the evidences that support
the previous claims.

4.1. Successive fluid then kinetic growth

When, typically, νf ∼ νd, subcritical instabilities can
arise, even in the single-mode limit, if the initial
amplitude is large enough [31]. In previous works
[12, 13, 14], the kinetic subcritical instability was due
to the growth of phase-space structures, and thus
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Figure 3. Time-evolution of the amplitude of mode 1 for the
same parameters as Fig. 2, but where the fluid nonlinearity is
switched-off at a time marked by an arrow for each simulation.

linked to chirping. In this case, we predicted that
coupling to an unstable mode could provide the seed
perturbation required for subcritical growth [15]. This
is indeed what we observe with the present two-modes
model.

Fig. 2 shows a typical simulation in this regime.
We observe a subcritical instability of mode 1, and
the amplitude grows to values much larger than the
initial amplitude of mode 2. Meanwhile, as can be
seen in the spectrogram (b), the frequency of mode 1
chirps significantly. When δω/ω1 ≈ 20%, we stop the
simulation, because an assumption of the model breaks
down. Namely, in the simulation, the phase-shift θ is
calculated by assuming that ω1 stays nearly constant.

Once fluid nonlinearity pushes the daughter
amplitude to a large enough level, the subcritical
instability is readily interpreted by the mechanism
developed in Ref. [14]. Namely, the electric field of
the daughter traps particles in a phase-space vortex,
which is large enough to grow nonlinearly by climbing
the positive velocity gradient of particle distribution.

This interpretation is further supported by the
following numerical experiment. We switch off the fluid
nonlinearity when the amplitude reaches a preset value.
Fig. 3 shows the time evolution of three simulations
with the same input parameters, except for a different
preset amplitude of switch-off. When the switch-off
amplitude is larger than |Z1|/Z2,0 ≈ 0.3, the growth
of mode 1 continues to much larger levels. This shows
that the fluid nonlinearity is not necessary after an
initial part of the growth phase. This, along with
previous knowledge, indicates that fluid and kinetic
nonlinearities can act in a successive manner to yield
a subcritical instability.

Figure 4. Nonlinear stability diagram for the daughter mode
without (a) and with (b) the kinetic nonlinearity. Peak
amplitude of the daughter mode as a function of both the
distance from linear stability, and the coupling coefficient. The
white area corresponds to the stability threshold in a sense,
which will be explained at the end of Section 5.1. Plain circles
in (b) show the threshold derived in Ref. [32].

4.2. Collaborative fluid/kinetic nonlinearity

When, typically, νf � νd, the single-mode model
features no subcritical instability, even for large
initial amplitude of perturbation [31]. In the two-
modes case, significant subcritical instability requires
a combination of fluid and kinetic nonlinearities.
This new hybrid fluid-kinetic subcritical instability is
illustrated in Fig. 4, which compares the stability of
the daughter without (a) and with (b) the kinetic
term in Eq.(2). In this figure, the stability of the
daughter, for a fixed chirping rate, is represented in a
two-dimensional parameter space (γd − γL0, V ). Here,
γd − γL0 is used as a measure of distance from linear
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Figure 5. Comparison of the evolution of perturbation between
the experiment and the simulation. (a) Time evolution of
magnetic perturbation, filtered into low (LF) and high frequency
(HF) components. Here, ”env” refers to the envelope. (b) Time
evolution of the amplitudes of modes 1 and 2 in the simulation.

marginal stability. Fig. 4 shows in color code the peak
amplitude of the daughter mode, in this parameter
space. Each point is the result of an ensemble average
over 8 simulations with identical input parameters (the
statistical variations are due to the random noise). We
observe that the unstable region (max |Z1|/Z2,0 ∼ 1)
is significantly extended to lower V in the parameter
space of (γd − γL0, V ). In Ref. [32], a threshold
condition has been derived analytically for the onset
of abrupt daughter growth, as Z2,0V/ω1 > γd. It is
shown by a series of circles in Fig. 4 (b). There is a
good qualitative agreement with the stability threshold
in the simulations, especially near linear marginality.

Fig. 5(b) shows a typical simulation of the
collaborative fluid/kinetic subcritical instability. We
will describe in Section 6 how this particular simulation
is related to the LHD experiment shown in Fig. 5(a).

Fig. 6 shows snapshots of the perturbed distribu-
tion function, at the time of maximum growthrate (a),
at the time of peak amplitude (b), and at the time
of maximum decay (c) of the daughter mode. We ob-
serve that mode 1 is not significantly chirping during its
growth, and only slightly chirping (by less than 10%)
during its decay. Indeed, the perturbation of particle
distribution at the time of peak amplitude (b) is cen-
tered around the resonant velocity, and apparently cor-
responds to a non-chirping BGK. We then observe ac-
celerating holes and decelerating bumps, but only later,

Figure 6. Snapshots of the perturbed particle distribution
function in phase-space, at three consecutive times of the
daughter mode’s evolution: (a) time of maximum growth-rate,
(b) time of peak amplitude, and (c) time of maximum decay.

during the decay of daughter amplitude (c). There-
fore, the usual mechanism of kinetic subcritical growth,
namely the acceleration of phase-space hole(s), is not
responsible for the instability in this regime.

We can make a stronger statement, namely, that it
is the sustained collaboration between fluid and kinetic
nonlinearities that enable the subcritical growth in this
regime. Indeed, in contrast with the results of Fig. 3 in
the previous regime, |Z1| quickly decays back to noise
level if we artificially disable the fluid nonlinearity at
any point during the simulation.

Let us give more details about the mechanism
of hybrid fluid-kinetic nonlinearity. It is convenient
to describe the three terms in the r.h.s. of Eq. 2
as kinetic term (with the integral), dissipative term
(with γd), and coupling term (with V ), respectively.
The time evolution of the real part of these three
terms is shown in Fig. 7(b), for a simulation with the
same input parameters as the simulation in Fig. 5(b).
During daughter growth, the dissipative and coupling
terms are nearly locked in phase, with an opposite sign
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Figure 7. Collaboration of fluid and kinetic nonlinearities.
(a) Time evolution of the amplitudes of the two modes. Time
evolution of the real part (b) and the absolute value (c) of the
three terms in the r.h.s. of Eq. (2). (d) Time evolution of the
effective damping rate, γd,eff , normalized to γL0.

for the amplitude. We have indeed verified directly
in our simulation that the phase difference between
dissipation and coupling terms stays between 1.2π
and 1.3π during the growth. Therefore, the coupling
acts as an effective reduction of dissipation. The
kinetic term is in phase with the dissipative term. In
amplitude, all three terms are comparable, as shown
in Fig. 7(c). Therefore, the sum of three terms
approximately results in a real, positive growth rate
∼ γd ∼ γL0. This can also be seen by defining an
effective damping rate,

γd,eff = γd + Re
[
ı(V/ω1)Z2Z

∗
1Z
−1
1 e−ıθt

]
. (4)

The time evolution of γd,eff is shown in Fig. 7(d). The
main growth occurs when γd,eff stays below γL0.

Figure 8. Impact of the coupling coefficient V in the fluid
limit. (a) Maximum amplitude of daughter mode, and minimum
amplitude of mother mode. (b) . Error bars correspond to
the top of lower quartile, and bottom of upper quartile, of 128
ensembles. Insets: Lissajous diagrams for (Z1, Z2), at V = 34,
53 and 73 ω2

1/Z2,0

5. Simple limits

In this Section, let us consider two simpler limits.
In the fluid limit, the kinetic nonlinearity (the term
proportional to

∫
fe−ı(k1x−ω1t)) is neglected. In

the kinetic limit, the fluid nonlinearity (the term
proportional to V Z2Z

∗
1e
−ıθt) is neglected.

5.1. Fluid limit

In the fluid limit, the integral in the rhs of Eq. (2) is
dropped, and Eq. (1) can be ignored.

The theory in the dissipation-less (γd = 0) and
chirp-less (dθ/dt = 0) limit, is very well understood.
Here, we investigate the coupled evolution of two
modes in the presence of both finite dissipation, and
finite chirping. We choose γd = 0.031ω1, dθ/dt =
5×10−4ω2

1 , and noise level Znoise/Z2,0 = 0.03, because
these values are used later in modeling the experiment.
Fig. 1(b) is an example of such a situation, with
V = 50ω2

1/Z2,0. Fig. 8 shows the impact of the
remaining free parameter, i.e. the coupling coefficient
V . There are two striking features, which contrast with
the dissipation-less chirp-less case.

• There is a sharp transition between stability
(Z1,max ∼ Znoise) and instability (Z1,max ∼ Z2,0).
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• The relation between peak amplitude and coupling
constant is non monotonous.

Fig. 8(a) includes Lissajous diagrams (Re Z̃1/|Z1|
against Re Z̃2/|Z2|, where Z̃j ≡ Zje

−ıωjt) for three
values of V , just below, at, and just above, the
threshold value. Phase-locking occurs at and above
the threshold. This suggests that the sharpness of
the transition may be linked to a synchronization
phenomenon.

The frequency ratio at the onset of daughter burst
can be quite far from 2. For V = 53, where phase-
locking is observed, ω2/ω1 = 1.77 at the time of
maximum growth. Therefore, note that phase-locking
does not necessarily implies a ratio of 2.

Note that for large values, V > 400ω2
1/Z2,0, the

daughter amplitude can become larger than the mother
amplitude, without the help of the kinetic nonlinearity.
However, in this case, the mother amplitude drops
to 3% of its initial amplitude. This drop, and the
timing with respect to the prescribed evolution of ω2

(see Fig. 1(b), dotted curves), are inconsistent with the
experiment we interpret in Section 6.

Note that, since the peak amplitude is sensi-
tive to V , one can loosely define the unstable re-
gion as a regime where the daughter reaches ampli-
tudes comparable or much greater than the mother
(max |Z1|/Z2,0 ∼ 1), and the stable region as the coun-
terpart (max |Z1|/Z2,0 � 1). In this sense, the white
region in Fig. 4, where max |Z1|/Z2,0 ≈ 0.3, corre-
sponds to the stability threshold.

5.2. Single mode limit

The system of Eqs. (1)-(2), in the single mode (V → 0)
limit, describes the subcritical excitation of an isolated
mode E1 [12]. In this case, Landau damping generates
a seed phase-space structure, whose growth rate can
be positive if the growth due to momentum exchange
overcomes decay due to collisions [14], which yields a
threshold in initial, or noise amplitude.

Fig. 9(a) shows time-series of electric field
amplitude ωb for different initial amplitudes. The
input parameters are γd/γL0 = 1.05 and νf/γL0 =
νd/γL0 = 0.12 which correspond to a linearly stable
system. Fitting an exponentially decaying function
to the simulation for small enough amplitude and at
large enough t, we obtain the linear growth rate γ0 =
−0.045 γL0. Here, in the initial condition we apply a
small perturbation, f(x, v, t = 0) = f0(v)(1+ε cos k1x),
and the initial value of Z1 is given by solving Poisson’s
equation.

However, for parameters relevant to typical
instabilities in fusion plasmas, the threshold is much
larger than thermal noise. Fig. 1(c) is an example of
such a situation. In fact, in the single mode (V →

Figure 9. Time-evolution (a) and spectrograms (b) and (c) of
electric potential for different initial amplitude of perturbation.
The initial amplitude in (b) and (c) are ε = 8 × 10−4 and
ε = 1.2 × 10−3, respectively.

0) limit, there is no subcritical instability unless we
apply an artificially large initial perturbation or unless
effective collisional drag is large enough, roughly νf >
νd. This highlights the importance of the collaborative
fluid/kinetic nonlinearity.

6. Interpretation of LHD experiment

Bursts of Energetic particle-driven Geodesic Acoustic
Mode (EGAM) with dynamical evolution of frequency
(chirping) are routinely observed in tokamaks and
stellerators. Suprisingly, as was reported in Ref. [18],
an EGAM burst, with a 10 ms duration, is sometimes
accompanied by a stronger burst, with a 1 ms duration,
and up to twice the amplitude of the weaker burst. In
Ref. [16], we have used the above model to analyze this
observation. In this section, we provide more details
on the latter analysis. We justify our assumption of
fixed spatial profile of the daughter during its growth,
based on experimental measurements. We discuss
the role of the GAM continuum, and of the weak
broadband signal, which is observed at the time of
daughter growth. To allow quantitative analysis, we
introduce scalar measures of the main properties of
the daughter burst. These scalar measures are used to
analyze the robustness of the modeling with respect to



Subcritical fast ion-driven modes 11

input parameters. Furthermore, observed correlations
between these scalar measures provide readily-testable
predictions.

6.1. Modeling the experiment

We concentrate on the LHD experiment, shot
#119729, at t ≈ 3.88 s. The local plasma parameters
around the radial location of mode 1 (r1 ≈ 0.06m) are
B0 ≈ 1.375T, Ti ≈ 0.5 − 1 keV, Te ≈ 4 keV, ne ≈
1018m−3, and q ≈ 2.5. The ion species is hydrogen.
The energetic particles originate from tangential NBI
with Eb = 175keV, and tangential major radius RT =
3.7m. The major radius of magnetic axis is R0 =
3.75m.

The density of energetic particles has not been
measured in this experiment, but we may estimate the
ratio between fast ions pressure βh and thermal plasma
pressure β or thermal ion pressure βi, to help situate
the experimental conditions in terms of dimensionless
parameters (although this is not used in any of the
calculations in this paper). The density of energetic
particles can be estimated [19] from the absorbed NBI
power PNBI = 140kW as nNBI ≈ 2 × 1016m−3, if
we assume that the particle confinement time of the
injected fast ions is ≈ 0.1s. Then, βh/β ≈ 0.7 − 0.8,
and βh/βi ≈ 3.5− 7.

Fig. 5(a) shows the time evolution of the magnetic
perturbations. Here, the signal from the Mirnov coil
has been filtered into a low frequency (LF, f = 30−50
kHz) component for the daughter mode, and a high
frequency (HF, f = 60 − 95 kHz) component for the
mother mode. From experimental measurements [18],
the electric potential of the daughter mode is located
in the core region, with a rather broad structure,
∆r/a ∼ 0.5, centered around r/a ≈ 0−0.1. The spatial
configuration agrees with this of a GAM. The toroidal
mode number is n = 0. The poloidal mode number is
dominantly m = 0 for the electric potential fluctuation,
and m = 1 for the density fluctuation (up-down anti-
symmetric).

Since the spatial 3D structures of mother and
daughter are very similar [18], we ignore the radial
inhomogeneity, and study the ratio between mother
and daughter amplitudes of magnetic perturbation.
As measured by heavy-ion beam probe, the profile of
electric potential (normalized by the peak amplitude)
in the core is unchanged during the rapid growth
of daughter mode in experiments. As for the outer
region, the profile is inferred from the ratio between
measured electric potential and amplitude of magnetic
field perturbations. The latter ratio for the daughter
is unchanged during the growth in experiments.
These indicate that the spatial profile of the mode
is nearly unchanged during the growth. This is
consistent with our simple 1D model with constant

input parameters. To relate the electric field in the
simulation with the Mirnov coil signal, we assume
a linear relationship between |φ̃| and |B̃|, which is
consistent with experiment [19].

The dynamical change of frequency of the mother
mode (mode 2), around the time of the burst of
the daughter mode (mode 1), is modeled as a linear
increase, with dω2/dt = 5 × 10−4ω2

1 , where ω1 =
2πf1 and f1 = 43 kHz. Here, f1 is obtained from
reading the frequency of the peak in the spectrum
of measured magnetic fluctuations at the time of
maximum amplitude of the daughter.

We use four scalar measures to objectively
characterize the evolution of the daughter:

(i) the maximum instantaneous growth rate γ,

(ii) the normalized peak amplitude, A ≡ max |Z1|/Z2,0,

(iii) a scalar τ that measures the duration of daughter
burst, and

(iv) the ratio Rω ≡ ω2(tgrowth)/ω1 between mother
and daughter frequencies at the time tgrowth of
largest growth of the daughter.

Here, the duration τ of the daughter burst is defined
as

τ ≡ 1

Z2,0

∫
|Z1|S(|Z1|)dt, (5)

where S(|Z1|) = 1 if |Z1| > Znoise, 0 else. For the
experiment, we measure growth rate γ = 1.2 × 104

s−1, amplitude A = 2.17, duration τ = 0.6 ms, and
frequency ratio Rω = 1.9. Note that Rω is slightly
below the perfect frequency matching condition Rω =
2.

We scanned the parameter space (γL0, γd, νf , νd,
V ). We identified a finite region of the parameter
space where γ, A, τ and Rω in the simulation are
in reasonable agreement with the experimental values.
The experimental observation could also be reproduced
by a wider range of input parameters (Znoise, Z2,0,
and dθ/dt). Fig. 5(b) shows the time evolution of the
amplitudes |Z1| and |Z2| in the simulation. In Figure 5,
time is scaled from normalized units to seconds by the
coefficient ω1, and shifted in such a way that simulation
and experiment are synchronized on the instant where
ω2(t)/ω1 = 1.5, which we choose arbitrarily as the
beginning of the simulation, as explained in subsection
2.3. For example, the beginning of the simulation
here is at t = 3.8775s. Table 2 lists each input
parameter (first and second columns), and its value
used in the simulation of Fig. 5(b) (third column).
In this simulation, we measure growthrate γ = 1.4 ×
104 s−1, amplitude A = 1.34, duration τ = 0.6
ms, and frequency ratio Rω = 1.8. In addition to
these four scalars, the simulation agrees qualitatively
with the experiment in the sense that the daughter
mode is only very slightly chirping (δω/ω1 < 10%,
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Figure 10. Impact of input parameters and free parameters of the model on the evolution of the daughter mode, in terms of the
maximum instantaneous growth rate (γ [104s−1]), normalized peak amplitude (A), duration of daughter burst (τ [ms]), and ratio
of frequencies at the time of maximum growth (Rω). The values for the selected simulation of Fig. 5 are shown by 4 larger symbols
in each subplot. The values for the burst observed at t ≈ 3.88s in the experiment are shown by points between the two columns of
subplots, accompanied by vertical errorbars indicating the minimum and maximum value among the five daughter bursts observed
in LHD shot #119729. Impact of: initial amplitude of the mother mode (a), coupling constant (b), linear drive of the daughter
mode (c), noise level (d), collisional drag (e), collisional diffusion (f), distance from linear marginality (g), and chirping rate of the
mother mode (h).

as measured by tracking perturbations in the particle
distribution), even though strongly chirping daughter
mode is allowed in the model (self-consistently, albeit
not consistently with physical assumptions). The lack
of chirping of the daughter mode validates, a posteriori,
our assumption of fixed ω1 in the frequency mismatch
θ used for computing the wave-wave coupling terms.

Furthermore, the mother/daughter phase locking,
which was discovered in Ref. [18], is qualitatively
captured by numerical simulations, as shown in
Ref. [16]. Therefore, we have shown that our model is
able to qualitatively reproduce the nonlinear evolution

of the daughter, in terms of amplitudes, timescales,
and phase locking. We do not pretend to recover
quantitatively from first principles the features of the
daughter, neither to reproduce the combined evolution
of both mother and daughter, but rather suggest
the combined fluid-kinetic subcritical instability as a
candidate mechanism for the strongest EGAM bursts
in the LHD.

In our analysis, we have prescribed the time
evolution of mother frequency ω2(t) with constant
chirping rate. As a caveat, this prescribed evolution
ends when |Z1| ∼ |Z2|. Indeed, in the experiment,
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the ratio ω2/ω1 increases very rapidly, but almost
linearly, from 1.9 to 2.0, within a 0.2ms span during the
daughter growth. The model, by its design, is unable
to recover this apparent synchronization mechanism.
However, the ratio of 2.0 is not reached before the
very end of daughter growth. This indicates that
the synchronization may not be a key aspect of the
instability mechanism, although it may be a key aspect
of the full dynamics of coupled modes. We can
speculate that, although a ratio of 2.0 may be key in
a quasi-stationary state, here the resonance condition
may be broadened due the large growth rate of the
daughter. Indeed, the daughter growth rate is γ1/ω1 ∼
1/20, therefore a ratio ω2/ω1 ∼ 1.9 (neglecting the
broadening of the mother) could allow the resonance
between mother and daughter. In other words, given
the observed phase-locking during the growth phase, it
appears that the rapid time evolution of Z1 overcomes
the finite frequency mismatch θ = ω2−2ω1 in Z∗1e

−ıθt.
The role of the GAM continuum merits to be

discussed. Unfortunately, there are large uncertainties
in the measurements of Ti (measured by a neutral
particle analyzer, integrated over a line of sight) and
Te (the uncertainty is of the order of 100% because of
the very low density). Here Te is important because
Te � Ti in this experiment. Therefore, an accurate
calculation of the GAM continuum, or even of the local
GAM frequency, is left as an open issue. However,
a rough estimation with rotational transform ι(r) =
0.35 + 0.85(r/a)3, and temperature profiles peaking
at r = 0 below 1keV for Ti (measurements indicate
a 0.5− 1keV range), and around 4keV for Te, suggests
that both daughter and mother may probably be above
the GAM continuum.

In addition to the mother and the daugther, a
weak, broad (30 − 160 kHz) signal appears in the
spectrogram at 3.87955− 3.87985s, which corresponds
to the time of daughter growth. It appears to
result from a parametric coupling of both mother
and daughter with another mode, with a frequency
in the range 10 − 15 kHz, which is present even
before the mother is destabilized. Parametric coupling
is speculated based on the relationship between
frequencies of peaks, observed in the spectrum of B̃ at
t = 3.8797s. By design, this additional physics is not
captured by the present model. Its impact on mother
and daughter may be negligible, since the amplitude
of this mode is one order-of-magnitude below the
amplitude of the daughter.

Reproducing the self-consistent coupled evolution
of both mother and daughter is a relevant challenge
that we leave for future work. This would require
either solving a more advanced model, with two kinetic
equations and two field equations, after obtaining the
coupling term between Z1 and Z2 from 3D kinetic

equations ; or another approach altogether, such as
full 3D gyrokinetic simulation. Here we focused on the
instability mechanism of the daughter mode.

6.2. Impact of input parameters

The model includes a priori 8 input parameters
(assuming that the chirping rate dθ/dt for the mother
mode around the onset of daughter is a constant). Here
we describe the sensitivity, and the experimental and
theoretical basis for these parameters.

We have conducted a sensitivity analysis, where
we vary each input parameter, everything else being
equal, and measure the impact on the time evolution
of the daughter mode. Fig. 10 shows the impact of each
parameter. The fourth column (Range) of Table 2 lists
for each parameter the range (everything else being
equal) where the simulation is in qualitative agreement
with the experiment. Note that the evolution of the
daughter is mostly sensitive to γL0, νd, V , Z2,0 and
dω2/dt.

The fifth column of Table 2 lists estimations from
independent methods when available. Two of the five
sensitive parameters, Z2,0, dω2/dt, as well as Znoise,
are input from experimental data. another sensitive
parameter, νd, as well as νf , can be obtained from
experimental measurements, by projecting the Fokker-
Planck collision operator on the resonance surface of
the daughter [25, 26], including the significant impact
of impurities [23]. We use the local plasma parameters
around the radial location of the daughter as given
above, and a magnetic shear S = 0.2. In addition, we
assume carbon impurities with TC = Ti and Zeff = 2.
We obtain νf/γL0 ≈ 0.068 and νd/γL0 ≈ 0.44, which
are 1% and 17%, respectively, below the parameters of
the simulation shown in Fig. 5(b).

There remain two parameters with significant
impacts: 1. the slope of energetic particle distribution,
parametrized by γL0, and 2. the coupling coefficient
V . For 1., it was shown that the order of magnitude
γL0/ω1 ∼ 0.1 is relevant for linearly unstable EGAMs
on similar LHD plasmas [30], which suggests that
0.03 is relevant for linearly stable EGAMs. For 2.,
substituting the parameters of the experiment into
Eq. (35) of Ref. [29] yields an estimate Z0V/ω

2
1 ∼

10−2−102 which is sensitive to the radial wave number
of the GAM, but not inconsistent with our simulation.
Thus, V is a key parameter, with a finite range that
reproduces the experiment, but with poor theoretical
guide. Therefore, quantitative deduction of V from
first principles is encouraged.

6.3. Predictions

The model provides the following predictions, which
are open to future experimental test.
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Figure 11. Correlations between scalar measures of daughter
evolution. The parameters are the same as used in Fig. 5.

1. The ratio between the mother and the daughter
mode can become much larger, |Z1|/|Z2| � 1, and
the daughter mode exhibit strong chirping, ∆ω1 ∼
ω1, if the regime of successive fluid-kinetic subcritical
instability is reached.

2. Since the best limit for driving a subcritical
instability is dω2/dt→ 0, and in this case, we observed
no nonlinear instability for γd > 2γL0, we predict
that there won’t appear any subcritical instability with
γd � γL0.

To make further predictions, it would be necessary
to link the input parameters of the model with
measurables such as equilibrium plasma profiles and
energetic particle distribution. Unfortunately, an
explicit connection would require to derive the reduced
model, including mode-mode coupling, from first
principles, such as gyrokinetic equations. This is out
of the scope of this paper.

Fortunately, it is possible to make other predic-
tions, which can be straightforwardly tested in experi-
ments, by looking for correlations, not between inputs
and outputs as before, but between several outputs.
For this, we take advantage of the variability of output,
which originates from random noise. Fig. 11 shows cor-
relations between growth rate and peak amplitude (a) ;
between frequency ratio and peak amplitude (b) ; and
between frequency ratio and burst duration (c). Each
point corresponds to a simulation among an ensemble
of 48 simulations, with identical input parameters (the
same as those used in Fig. 5).

7. Summary

We have developed a reduced model for energetic
particle-driven, nonlinear excitation of subcritical
instabilities in toroidal plasma. The model combines a
1D kinetic equation with equations for period doubling.
The kinetic equation approximately describes wave-
particle interactions between fast ions and a single
MHD mode in a toroidal plasma, such as an EGAM,
or a toroidal Alfvén eigenmode.

Two regimes have been investigated. In a first
regime, of successive fluid then kinetic growth, the
dormant subcritical mode is first triggered by fluid
coupling to the supercritical mode, which allows it
to reach amplitudes of the same order of magnitude
as the supercritical mode. This amplitude is above
the threshold for the conventional kinetic subcritical
instability [12, 14]. Then, the amplitude can keep
growing by momentum exchange between the wave and
phase-space structure(s), accompanied by significant
chirping. In a second regime, of collaborative fluid-
kinetic growth, the subcritical growth is due to an
uninterrupted collaboration between fluid and kinetic
nonlinearities. This is a new kind of instability
mechanism, where fluid and kinetic nonlinearities have
similar (in amplitude) contributions to the mode
growth. Contrarily to the mechanism developed in
earlier theories [12, 14], the growth occurs much
below the amplitude threshold, and without chirping.
Typically, the ratio νf/νd selects one or the other
regime. The first regime is obtained for νf/νd ∼
1 and above. In this case, the amplitude of
the subcritical mode can grow orders-of-magnitude
above the amplitude of the supercritical mode. In
ITER, νf/νd is predicted to be above unity [26], in
contrast with currently operating devices. However, no
EGAMs are expected to be unstable in the standard
ITER scenarios with on-axis safety factor q0 ∼
1 − 2. Therefore, the theoretical and experimental
investigation should be extended to n 6= 0 modes before
we could reasonably speculate on large-amplitude
subcritical modes in ITER.

We have shown that the model can reproduce key
aspects of the experimental observation of Ref. [18].
It interprets the daughter mode as a manifestation
of the collaborative fluid-kinetic subcritical instability.
In contrast with previously-known kinetic subcritical
instabilities, the amplitude stays below the kinetic
threshold, and chirping seems to be limited by a
quasi-phase-matching condition with the mother mode.
These results imply a new channel of mode excitation,
which modifies the flow of energy in the system.
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Appendix A.

It is possible to approximate the problem of wave-
particle interactions between an EGAM and fast ions
by a simple harmonic oscillator. This requires to
expand the perturbed Hamiltonian around a resonant
phase-space surface. This reduction from 3D to 1D is
developed here for tokamak geometry.

For far-passing particles, the resonance condition
is Ω = ωEGAM, where

Ω = l ωθ, (A.1)

where ωθ = v‖/qR0 is the frequency of poloidal
motion, and l is a non-zero integer. If we assume that
resonant interactions are dominated by a population
corresponding l = 1, we can simplify following
discussions.

The gyrokinetic equation, can be put in Hamilto-
nian form,

∂f

∂t
− {H, f} =

df

dt

∣∣∣∣
coll.

, (A.2)

where H is the Hamiltonian, and {} are Poisson
brackets. In Ref. [33], the Hamiltonian is obtained
in action-angle variables, (α, J), where α = (ξ, ζ, θ),
and J = (Jξ, Jζ , Jθ), in arbitrary tokamak geometry.
The canonical angles θ and ζ reduce to the geometric
poloidal and toroidal angles if we neglect finite aspect
ratio effects. The canonical angle ξ corresponds to
the gyrokinetic angle. The unperturbed part of the
Hamiltonian, H0(J), which is integrable, yields the 3D,
unperturbed particle trajectories.

The electric potential perturbation of an EGAM
is dominated by a zonal (n = 0, m = 0) component
φ0, with coupling to n = 0, m = 1, 2, . . . components
[34], φ1, φ2... The amplitude of φm+1, relative to the
φm, is of the order of krρiTe/Ti, which may be of the
order of 10−1 in the LHD experiment where Te/Ti ∼
10 (the radial wave number kr is not measured, but
typically, krρi ∼ ρi/a ∼ 10−2 for an EGAM). The

zonal component cannot extract free energy from the
energy gradient of energetic particle population (this
can be seen from the linear gyrokinetic equation in,
e.g., Ref. [35]). Therefore, to model resonant wave-
particle interactions, φ1 plays a crucial role, as the
lowest order relevant component. It is the perturbation
to particle trajectories induced by φ1 that we aim to
model, on a timescale much shorter than the timescale
of evolution of H0. In other words, we assume fixed 3D
plasma equilibrium, 3D eigenmode spatial structure,
and 3D unperturbed orbits.

The n = 0, m = 1 component of the EGAM can
be described by a perturbation to the Hamiltonian,

H1 = eφ1. (A.3)

Writing φ1 = φ̂1 exp ı(θ+ kr(r− r0)−ωt) + c.c., yields

H1 = C(J)eı(θ−ωt) + c.c., (A.4)

with C = eφ̂1 exp ı[kr(r − r0)].
The resonance condition, ω = ωθ(J), where

ωθ ≡ ∂H0

∂Jθ
, is satisfied on a resonant phase-space

surface. Formally, the resonant phase-space surface,

J =
{
JR such that JRθ = F (JRξ , J

R
ζ )
}

, is defined by a

function F .
Once the perturbed Hamiltonian has been put in

the form of Eq. (A.4), we can reduce the problem to one
action and one angle [36, 37], by performing a canonical
transformation J · dα−Hdt = I · dψ−H ′dt+dS with
the generating function

S = −I ·ψ + Iθ(θ − ωt)

+ Iξξ + Iζζ + F (Iξ, Iζ)θ. (A.5)

This procedure yields the new actions Iξ = Jξ, Iζ = Jζ ,
Iθ = Jθ−F (Iξ, Iζ), new angles ψξ = ξ+θ ∂F/∂Iξ, ψζ =
ζ+θ ∂F/∂Iζ , ψθ = θ−ωt, and H = H ′ + ω Iθ. Thus,
near the resonant phase-space surface, Jθ = JRθ + Iθ,
and we can expand the new Hamiltonian around this
surface,

H ′(ψ, I) = H0(JRξ , J
R
ζ , J

R
θ + Iθ)

− Iθ ω + C(J)eı(θ−ωt) + c.c. (A.6)

= H0(JR) + Iθ

(
ωθ(J

R) − ω
)

+
1

2
D I2

θ + C(J)eıψθ + c.c., (A.7)

with D(JR) ≡ ∂2H0/∂J
2
θ (JR) = ∂ωθ/∂Jθ ∼

1/(miq
2R2

0), where mi is the mass of resonating ions.
If the variations of H(J) are small around JR, we

can replace C(J) by C(JR) in the latter expression.
Assuming, further, that φ1 peaks at the resonant
surface, C(JR) = eφ̂1. Then, we obtain the new
Hamiltonian H ′ = H0(JR) + H1,JR(ψθ, Iθ), with

H1,JR(ψ, I) ≡ 1

2
D I2 + eφ̂1e

ıψ + c.c.. (A.8)
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Thus, the problem has been reduced to a 1D
Hamiltonian problem for the angle-action variables (ψ,
I)≡(ψθ, Iθ). The new angle is ψ = θ−ωt, and the new
action is I = Jθ−JRθ . For passing particles, and to the
zeroth order in ρ∗,

Jθ = eφT +

∮
miv‖B

2πB ·∇θdθ, (A.9)

where φT is the toroidal magnetic flux normalized by
2π. Therefore, I is roughly proportional to ∼ v‖ − vR‖ .
We have shown that, in the neighborhood of the
resonant surface, H1, which yields the EGAM-induced
perturbation to unperturbed 3D orbits, is essentially
1D.

On the other hand, the Hamiltonian for a single
sine wave (k, ω) in a 1D plasma, expressed in a frame
moving at the wave phase velocity vR = ω/k, can also
be expressed in angle-action variables,

h =
k2

2mi
I2
1D + eφ̂ eıψ1D + c.c., (A.10)

where ψ1D ≡ kx − ωt and I1D ≡ mi(v − vR)/k. The
form of the Hamiltonian is shared with the Harmonic
oscillator, as well as the approximate Hamiltonian of
the EGAM, Eq. (A.8). In this sense, the model of
resonant interactions between fast ions and a single
electrostatic wave in a 1D plasma, is isomorphic to a
whole class of reduced models of interactions between
fast ions and a single MHD mode in a toroidal plasma,
such as an EGAM, or a toroidal Alfvén eigenmode as
well [22].
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