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Abstract 

Clear suppression of magnetic fluctuations associated with resistive interchange modes 

(RICs) is observed during long ELM (edge localized mode)-free phases of the H-mode plasma in an 

outward-shifted configuration of LHD, in which plasma a steep pressure gradient is generated at the 

plasma edge in the magnetic hill.  The ELM free H-phase is interrupted by large amplitude ELMs 

which are thought to be induced through nonlinear evolution of the RICs having m=1/n=1 dominant 

component (m: poloidal mode number, n: toroidal one).  The m=1/n=1 RIC amplitude is enhanced 

about 10 times compared with the H-phase level during each ELM.  In most of the H-mode shots, 

the final ELM free phase returns to L-phase by a large amplitude ELM.  In the L-phase the RIC 

amplitude is enhanced by a factor of ~ 3 compared with that in the H-phase, although the edge 

pressure gradient is reduced considerably.  Linear resistive MHD stability analysis is attempted 

using experimentally obtained equilibrium profiles.  From the numerical analysis, the distance 

between the location of the steepest pressure gradient and the main mode resonance surface, i.e., the 

rotational transform =1, is found to be important for the growth of the m=1/n=1 RIC in the H-mode 

plasma.  

 

 

1. Introduction 

MHD stability of H-mode plasmas with a steep pressure gradient in the edge 

region is crucially important for burning plasmas based on tokamak and 

stellarator/helical concepts.  Once MHD instabilities are excited in the edge transport 

barrier (ETB) or pedestal region, strong degradation of plasma performance occurs.  

As commonly observed in major toroidal confinement devices, such MHD instabilities 

often trigger large amplitude edge localized modes (ELMs) which affect seriously the 

life of divertor target plates and other plasma facing components [1, 2].  In tokamak 

plasmas, the MHD instabilities triggering the so-called type I ELMs through the 

nonlinear evolution are thought to be ballooning and/or peeling modes and their 
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combinations [3,4].  The instabilities are driven by pressure gradient and toroidal 

current density at the ETB or pedestal region.  On the other hand, ELMs are also 

observed in H-mode plasmas of stellarator/helical devices.  In contrast to tokamak 

H-modes, pressure driven modes such as resistive interchange modes are thought to be 

the likely candidates of an ELM trigger through the nonlinear evolution, as discussed in 

W7-AS and LHD H-mode plasmas [5-8].  In LHD, the soft X-ray fluctuations 

associated with the MHD instabilities in the edge of the H-mode plasmas show the 

non-ballooning character in clear contrast to the tokamak H-mode.  The MHD 

instabilities were concluded to be resistive interchange modes (RICs), since the edge 

region of the H-mode is stable for ideal interchange modes and ballooning modes [9].  

In this paper, we present experimental results on clear suppression and large growth of 

RICs in H-mode plasmas having long duration of ELM free phases achieved in an 

outward-shifted magnetic configuration of Rax=3.9m in LHD, where Rax is the magnetic 

axis position in the vacuum field.  We attempt qualitative interpretations of these 

experimental observations with the assistance of a linear resistive MHD stability 

analysis. 

This paper is organized as follows.  In Section 2, the characters of the H-mode 

in the outward-shifted configuration are presented, being focused on edge MHD 

stability.  Rapid and large growth of RICs and excitation of large amplitude ELMs 

observed in the H-modes are described in Section 3.  In Section 4, linear resistive 

MHD stability analysis is attempted for the equilibrium pressure profiles obtained in H- 

and L-phases.   In Section 5 some important issues in experimental observations and 

the numerical analysis on RICs are discussed.  The main results are summarized in 

Section 6. 

 

2. Suppression of RICs in ELM free phases of the H-mode   

In LHD, an H-mode plasma was first obtained in the so-called inward-shifted 

magnetic configuration of Rax=3.6 m [6, 7].  Although better particle confinement is 

expected in the configuration compared with the outward-shifted configuration of Rax = 

3.9 m, the MHD stability is worse due to the presence of high magnetic hill in the edge 

region and RICs are easily destabilized, in particular, in the ETB region of H-mode 

plasmas.  In the inward-shifted configuration, the most dangerous RIC is the m=2/n=3 

mode where m and n are the poloidal and toroidal mode numbers, respectively.  The 

m=2/n=3 RIC is always destabilized just after the ETB formation by the L-H transition 

where the low order resonant surface =3/2 resides in the ETB region.  Ideal 

interchange modes are stable in the ETB region of the H-modes so that RICs play an 
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important role in edge MHD stability of the H-mode plasmas in LHD.  It is known that 

RIC usually has a character of the mode localized at the mode resonance surface, and 

has an even function around the resonance surface.  If the locations of the low order 

resonant surfaces are controlled in order to be placed distant from the steep pressure 

gradient region, RIC activities would be considerably reduced to an acceptable level for 

good plasma confinement.  However, so far this scenario was not achieved in H-mode 

plasmas obtained in the Rax=3.6m configuration. 

In a specific outward-shifted configuration, i.e., the Rax=3.9m configuration of 

LHD the main low order resonance surface =1 is placed just outside the last closed flux 

surface (LCFS) defined in the vacuum field.  In this configuration, the H-modes are 

routinely obtained in hydrogen target plasmas by moderate neutral beam injection (NBI) 

power of ~ 5MW at the toroidal field strength Bt~ 1T.  The H-mode exhibits clearly 

different characters from those of the H-mode in the inward-shifted configurations.  

That is, the H-mode has ELM free phases of which durations are much longer than the 

global energy confinement time [8].  Two important features on edge MHD stability of 

the H-mode in the outward-shifted configuration are the appearance of long ELM-free 

phases and the interruption of the phases by large amplitude ELMs.  A typical 

discharge waveform of the H-mode is shown in Fig.1(a).  In Fig.1(b) time evolution of 

the root-mean-square amplitude of magnetic fluctuations with the m=1/n=1 structure is 

shown together with the volume averaged toroidal beta value measured by a 

diamagnetic loop <dia>.  Note that higher harmonic fluctuations such as m=2/n=2, 

m=3/n=3 and others are also simultaneously destabilized during the ELM.  In this shot, 

we pay attention to typical time slices in the characteristic confinement phases marked 

with “H” at t=4.533 s (H-phase) and “L” at t=4.700 s (L-phase).  The radial profiles of 

electron density ne, electron temperature Te and the electron pressure Pe in these time 

slices are compared in Fig.2.  As seen from Fig.2, an obvious ETB or pedestal having 

very steep gradient is formed in the ne-profile at t=4.533 s in the ELM-free H-phase, but 

is not formed in Te-profile.  Nevertheless, the Pe-profile has also a clear ETB structure.  

In the L phase, no ETB structure is formed in both Te- and ne-profiles, and, accordingly, 

also not in the Pe-profile.  Note that the vertical arrows in Fig.2 indicate the inferred 

locations of the =1 mode resonance surface.  As seen from the Pe-profile in Fig.2, 

appreciable Shafranov shift is observed in both phases.  Just before the H-L back 

transition at t=4.670 s, the magnetic fluctuation amplitude is in a very low level.  Just 

after the back transition triggered by a large ELM the L-phase appears enhancing the 

magnetic fluctuation amplitude by a factor of ~3, compared with that in the H-phase.  

In contrast to the H-modes in the Rax=3.9m configuration, no RIC suppression is 
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observed in H-modes in the inward-shifted configuration of Rax=3.6m.         

     

3. Large growth of RICs at the onset of a large ELM  

As seen from Fig.1, long ELM free phases are interrupted by large amplitude 

ELMs.  It is interesting to clarify the main triggering mechanism of large ELMs in the 

H-modes in LHD.  The averaged diamagnetic beta <dia> at the onset of each ELM is 

not always the same value and has a noticeable variation of ~ േ6	% in the shot shown 

in Fig.1.   This fact suggests that the important driving factor of RIC is the pressure 

gradient at the relevant mode resonance surface (in this case =1) rather than the global 

value <dia> in the H-mode plasma.  In the vacuum magnetic configuration of Rax=3.9 

m, the =1 surface locates at the normalized minor radius <rs>/<a>=s=1.02, that is, 

just outside the last closed magnetic surface (LCFS) in the vacuum configuration.  The 

MHD equilibrium of a finite beta plasma was calculated by the HINT-2 code where the 

existence of the nested magnetic surfaces is not assumed a priori [10].  It is inferred 

from the -profile calculated by the HINT-2 code that the =1 surface locates at the 

normalized minor radius <rs>/a=s ~1.08 (a: averaged minor radius) just outside the 

LCFS defined by the boundary of the nested magnetic surface region in the finite beta 

H-mode plasma.  Of course, the =1 surface may be determined experimentally, for 

instance, by soft X-ray (SX-) fluctuation signals due to the m=1/n=1 mode in the 

H-mode.  However, the SX-fluctuations are too weak to determine the =1 location, 

because the resonance surface location is in very low Te region.  Instead, an array of 

H emission detectors with high time response clearly detected the H fluctuations of 

the m=1/n=1 mode in the L-phase because of relatively high neutral density outside the 

LCFS [11].   Figure 3 shows the profile of the H fluctuation amplitude associated 

with the m=1/n=1 mode (I: open triangles) and the coherence with magnetic probe 

signals (H-MP: open circles) as a function of the normalized vertical coordinate Z/Za in 

the horizontally elongated section of the plasma, where Za defines the LCFS in the 

vertical direction.  The peaks of these quantities are found at Z/Za~s~1.05 just outside 

the LCFS.  The correlation analysis is applied to the time window from t=4.70s to 

4.75s including the L-phase.  The observed frequency of the m=1/n=1 mode 

propagating in the electron diamagnetic drift direction (fobs ) is ~4.5 kHz, of which 

frequency is determined by the sum of the mode frequency in the plasma frame freal and 

the Doppler frequency due to ExB plasma flows fdop.  The frequency freal of the low n 

RICs was confirmed to be nearly equal to the electron diamagnetic drift frequency ∗݂௘ 

in various plasma conditions of LHD [12].  The frequency ∗݂௘ evaluated at the 

inferred =1 surface is estimated to be ~ 0.4 kHz for the L-phase equilibrium profile.  It 
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will become small further if the local flattening of the electron pressure profile at the 

=1 surface occurs due to the growth of RICs.  Accordingly, the observed mode 

frequency (fobs~4.5 kHz) is thought to be dominantly determined by the Doppler 

frequency corresponding to the ExB plasma flow in the electron diamagnetic drift 

direction.  This means that the negative radial electric field Er of ~10 kV/m is inferred 

at the =1 surface even in the L-phase.  However, the experimental data of the Er 

around the resonance surface are not available in the L-phase because electron 

temperature in the edge region is too low to obtain sufficient spectral emissions for 

charge exchange recombination spectroscopy.  

A quiescent H-phase RICs are strongly suppressed is interrupted by a large 

amplitude ELM, as seen from Fig. 1.  To clarify strong interaction between the 

m=1/n=1 RIC and the ELM, two ELM events are expanded in time in Fig.4, showing 

the temporal behaviors of poloidal magnetic fluctuation signal (b) together with the 

edge line-electron-density (neLedge) and the H emission signal.  As seen from the 

figure, the weak m=1/n=1 mode fluctuations b in the ELM free phase begin to grow 

rapidly about 1ms before the onset of an ELM of which signature is the small crash in 

neLedge.  The H emission rises rapidly ~0.1 ms after the small neLedge crash.  The 

rapid growth of the m=1/n=1 RIC induces an ELM event, and in turn ELM enhances the 

RIC further.  The magnetic fluctuation amplitude during the ELM is enhanced by a 

factor of ~10 higher than the ELM-free H-phase level and ~3 times higher than the 

L-phase level.  It should be noted that magnetic fluctuations b of the m=1/n=1 RIC 

growing rapidly just prior to the ELM could trigger the ELM, at even low amplitude of 

b.  Immediately after the small crash, strong and complex coupling between RIC and 

ELM takes place and leads to further increasing the RIC amplitude and full 

development of an ELM crash.  Finally, the coupled ELM and RIC reduces the 

pressure gradient around the =1 surface substantially, and then the RIC together with 

ELM is suppressed as in the previous ELM free phase.  In addition to the 

above-mentioned dynamic behaviors of the ELM event, it should be noted that the 

mode frequency fobs is fairly low (~0.5 kHz) in the ELM free H-phase and then 

increases noticeably during the ELM, as seen from Fig.4.  Although the b waveform 

is considerably deformed during the ELM, the frequency of the dominant m=1/n=1 

component is fobs~ 2-3 kHz.  Since the mode frequency in the plasma frame estimated 

with f*e is ~ 3 kHz in the H-phase and ~0.4 kHz during the ELM using the equilibrium 

pressure and density profiles in the H-phase and the L-phase in which the profiles are 

nearly same as those during the ELM [8], the frequency fobs is dominantly determined 

by the Doppler frequency fdop due to the ExB plasma flow.  The frequency fdop is 
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thought to be determined by the flow in the ion diamagnetic drift direction in the 

H-phase and by the flow in the electron diamagnetic drift direction during the ELM.  

However, the experimental data of Er are not available at the =1 surface both in the 

H-phase and during ELM.    

Focused on the time derivative of the stored energy derived from a diamagnetic 

loop dWp/dt just before each ELM in the H-mode, it increases appreciably with positive 

sign from about 30 ms prior to the ELM event, which suggests a small increase in Wp.  

Since Te- and ne-profiles are measured every 20 ms to 33 ms by Thomson scattering in 

the H-mode shots, it is difficult to capture the profile changes about 1 ms prior to an 

ELM event.  In the H-mode shot, the profiles are occasionally obtained 6 ms prior to a 

large ELM.  The comparison of the profiles with those measured 23 ms prior to the 

ELM shows that the edge pressure gradient is maintained nearly the same until 6 ms 

prior to the ELM, while the Wp increases slightly.  From the observations, the slow 

increase in Wp under the condition of unchanged pressure gradient in the edge suggests 

a small expansion of the radius of the steepest pressure gradient layer in the ETB.  The 

expansion leads to a sudden increase in the pressure gradient at the =1 surface in the 

high magnetic hill region, so that the rapid growth rate of RICs may be inferred.  

However, it is a big challenge to confirm this possibility experimentally by monitoring 

the time evolution of the pressure gradient at the =1 surface with the available plasma 

diagnostics in LHD.  Instead of the direct measurements, in the next Section 4, we 

investigate the possibility using linear stability analysis of m=1/n=1 RIC for the 

equilibrium data of the H-mode shown in Fig.2.   

 

4. Stability analysis with a linear resistive MHD stability theory 

In this section, the stability of RICs is analyzed for the equilibrium pressure 

profiles obtained experimentally, using a linear resistive MHD stability code which is 

applicable to a cylindrical plasma on a fixed boundary condition [13].  As the first step, 

the pressure profiles of the H-mode plasma are reconstructed using the normalized 

minor radius x=<r>/a, instead of the major radius R as in Fig.2.  The pressure profiles 

Peq(x) in the H- and L-phases are fitted with the following analytic form:  

 

Peq(x)=
ଵ

ଶ
PETB[1-tanh((x-xo))]+(Po-PETB)[1-xg0]g1                   (1),  

 

where PETB, Po, , xo, g0 and g1 are positive constants.  The first term in the right-hand 

side of eq.(1) mainly determine the shape of the pressure profile in the plasma edge 
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region.  The second term is used to reconstruct the pressure profile in the core region.  

The parameters PETB and Po are the ETB or pedestal height of the pressure and the 

pressure on the magnetic axis, respectively.  The parameter  characterizes the 

steepness of the pressure gradient in the ETB or pedestal, and xo determines the radial 

location of the steepest pressure gradient layer.  The scale length of the pressure 

gradient normalized by the minor radius Lp/a is expressed as Lp/a ≅ 	1/ሺ2ሻ at x=xo.  

For large  (≫1), eq.(1) expresses the pressure profile with the ETB or pedestal very 

well.  For small  in the order of unity, eq.(1) can also express the profile without the 

ETB or pedestal, as in the L-phase.  The data points and the fitted curve of the pressure 

profiles in H- and L-phases with eq.(1) are shown in Fig.5, where the averaged minor 

radius a is adopted as a=0.466 m.  The best-fitted curve in Fig.5 is expressed with 

eq.(1) having a parameter set of PETB=3.2 kJ/m3, Po=5.3 kJ/m3, =17.5, xo=0.88, g0=2.0 

and g1=3.5 for the H-phase, and a set of PETB=4.0 kJ/m3, Po=5.3 kJ/m3, =3.0, xo=0.62, 

g0=2.0 and g1=12.0 for the L-phase.  Here, the =1 surface location is inferred to be at 

xs=<r>/a ~ 1.05 to 1.08 as discussed in Section 3.    

The present version of the resistive MHD stability code is not straightforwardly 

applied to the equilibrium profiles shown in Fig.5.  To overcome this difficulty, the 

averaged minor plasma radius a is expanded to include the =1 surface inside the LCFS 

as xs < 1, instead of the situation such as xs ~ 1.05.  For the following stability analysis, 

the =1 location is placed at xs =0.945 based on the rotational transform profile 

calculated by the HINT-2 code, when the averaged minor radius a is expanded to 

a=0.52 m by a factor of =1.05/0.945=1.11.  Using the normalized radial coordinates 

with the expanded a, the position of the steepest pressure gradient layer xo corresponds 

to xo=0.788 for the H-phase profile shown in Fig.5 and xo=0.560 in the L-phase profile, 

respectively.   

The linear stability analysis code is applied to the profiles obtained in the 

H-mode, because the analysis may be helpful for qualitative understanding of the MHD 

mode stability.  The distance |xo - xs| between the =1 location xs and the steepest 

pressure gradient location xo is a key parameter for the stability of m=1/n=1 RIC.  In 

the ETB and the =1 resonance surface regions of the H-mode, the magnetic Reynold 

number S is in the range of 105 to 106.  In the stability analysis, we employ the toroidal 

beta eq(x) profiles derived from the Peq(x) profiles scanning the xo-value, where Bt=0.9 

T.  The distance |xo - xs| is scanned by increasing xo from xo=0.788, where the profile 

with xo=0.788 is constructed from the H-phase profile obtained in the experiment 

(Fig.5(a)).  It should be noted that the location of the =1 mode resonance surface is 

fixed as xs=0.945 throughout the xo scan.  In the L-phase, xo is scanned in the narrow 
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range from xo=0.540 to 0.62, since the eq(x) profile does not have an ETB structure.  

The profile with xo=0.560 is constructed from the experimental profile shown in 

Fig.5(b).  The increase in xo simulates the radial expansion of the steepest pressure 

gradient layer in the ETB, and pushes the gradient layer to the =1 surface.  The largest 

growth rates 1 calculated by the linear resistive code [13] are plotted as a function of xo 

for both H and L-phases, in Fig.6(a) with linear-scale and in Fig.6(b) with log scale.  

Here, 1 is normalized with VA/a (=a/R, VA is Alfvén speed, and a and R are 

respectively the averaged minor and major radii of the plasma) and the value of S=105 

and 106 are adopted.  For the H-phase, the growth rates are also calculated for much 

higher S value, i.e., S=108.  In the H-mode plasma discussed in this paper, the 

normalization factor VA/a is in the range of ~1x106 (1/s) near the edge region.  In the 

H-phase the growth rates increase quickly with decrease of the distance |xo-xs|, while the 

values in the L-phase show a weak dependence on xo.  

 In Fig.7(a), the radial profile of eq(x) with xo=0.788 corresponding to the ELM 

free phase is shown as a function of the normalized minor radius x, together with the 

(x) profile.  The m=1/n=1 mode eigenfunctions of the scalar potential 1 and pressure 

perturbation p1 are shown in Figs.7(b), where S=105.  The eigenfunctions of the 

poloidal flux 1 and the radial displacement r are shown in Fig.7 (c).  The radial 

displacement r is evaluated as r =-
௠

ఊభ

థభ
௫

.  Although the gradient of eq(x) is very 

small at the =1 surface in this profile, the largest growth rate 1 does not vanish as 

1.546E-3 for S=105 as seen from Fig.6.  The eigenfunction 1 has a strongly localized 

character even for low mode number m=1 and n=1, exhibiting a typical interchange 

mode feature.  It should be noted that the peak of 1 is x=0.941 and is slightly shifted 

toward the steep pressure gradient region inward the =1 mode resonance surface.  The 

small tail of 1 extends into the steep pressure gradient region, while 1 has a large peak 

at the mode resonance surface.  The eigenfunction p1 has a double peak.  The large 

peak corresponds to non-resonant component caused by the steep pressure gradient 

region and the small peak to the resonant component, because the relation p1∝
థభ
௫

ௗఉ೐೜
ௗ௫

 

is satisfied.  The eigenfunctions 1 and r calculated at S=105 become more localized at 

the =1 surface in the cases of S=106 and 108.   

For the eq(x) profile with xo=0.858 shown in Fig.8(a) aiming at simulating a 

radially expanded profile at the onset of an ELM, the growth rate (1=1.482E-2) is 

enhanced by a factor of ~10 compared to the ELM free case with xo=0.788 at S=105, as 

seen from Fig.6.  Moreover, the eigenfunction 1 expands considerably inside the =1 
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surface.  The 1 peak locates at x=0.924 and clearly deviates from the resonant surface, 

as seen from Fig.8(b).  The reason why the peak of 1 deviates from the =1 surface is 

caused by overlapping the non-resonant part caused by the steep pressure gradient 

region on the resonant part.  The eigenfunction 1 deviates noticeably from a pure 

interchange type which has a localized nature at the mode resonance surface having an 

even function.  Nevertheless, the eigenmodes calculated here are the m=1/n=1 RIC 

modes.  Of course, the linear code does not find any eigenmode solutions of the ELM 

because it should be excited as a result of the nonlinear evolution of linearly unstable 

RICs in LHD plasmas.  The eigenfunction p1 has a large single peak just inside the =1 

surface, as shown in Fig.8(b).  The eigenfunction of r also exhibits a similar character 

with 1, as shown in Fig.8(c).  From the comparison of eigenfunctions shown in Figs. 

7 and 8 together with Fig.6, the slight radial expansion which is inferred from the 

experimental data may trigger the large growth of the m=1/n=1 RIC, and accordingly 

induce a large amplitude ELM through nonlinear evolution of the RIC.  These radially 

extended eigenfunctions may lead to a radially extended collapse of the ETB, as 

observed experimentally [8].   Strongly coupled RIC and ELMs play a critical role in 

the full destruction of the ETB or pedestal in the LHD H-mode, as seen from Figs. 1 and 

4.   It should be noted that the beta value <dia> shown in Fig.1 increases at most 

about 25 % from the beginning to the end of each ELM free phase.  If the pressure 

gradient would increase with the same increase rate in  <dia>  without the radial 

expansion, the calculated growth rate 1 increases 1.6 times for the fixed xo=0.788.  It 

is not significant, compared with the increase in 1 in the order of magnitude with the 

radial expansion from xo=0.788 to 0.858.  Moreover, the width of the eigenfunction of 

1 or r is about half of that calculated for the radially expanded case of xo=0.858, so 

that the spatial impact of the mode on the ETB may not be significant as observed 

experimentally in the ELM.  Although the radial expansion scenario seems to be likely 

compared with the above-mentioned increasing pressure gradient scenario based on the 

linear stability analysis, nonlinear simulations validated with the experimental results 

are needed to draw the definite conclusion. 

On the other hand, in the L-phase the eq(x) profile with xo=0.560 has no steep 

pressure gradient, as shown in Fig.9(a).  For the profile, the growth rate is 1=3.822E-3 

and is by a factor of ~2.5 larger than that for the ELM-free H-phase profile with 

xo=0.788.  The eigenfunctions of 1, p1 and r in the L-phase are shown in Figs.9(b) 

and (c).  These eigenfunctions clearly localize at the =1 surface having an even 

function at the resonance surface, and indicates a typical RIC.   

In all 1 eigenfunctions shown in Figs.7(c), 8(c) and 9(c), 1 does not vanish at 
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the =1 surface.  This means that finite radial magnetic field br would be generated at 

the mode resonance surface, because ܾ௥ ൌ െ ௜௠

௔௫
ψଵ.  When the amplitude of the RIC 

grows nonlinearly to a certain level, the enhanced br would generate a magnetic island 

at the resonance surface.  This process may play an important role in the ELM 

dynamics through such island formation.  

  

5. Discussion     

In Section 4, the dependence of the growth rates and eigenfunctions on the 

distance between xo and xs was analyzed.  The linear MHD stability analysis suggests 

that if the pressure gradient at the resonance surface is maintained to be sufficiently low, 

edge stability against RICs will be improved even in the LHD configuration of which 

edge region is in the magnetic hill.  The improved stability will bring about good 

plasma confinement of H-mode.  A key factor of this favorable scenario is the ETB 

formation.  That is, an ETB formation contributes to substantial reduction of heat and 

particle fluxes to the outside region where the main resonance surface =1 exists in the 

specific configuration of LHD, and prevents the increase of the pressure gradient at the 

=1 surface in the magnetic hill. 

In actual experimental conditions, the distance |xo-xs| will be more sensitively 

changed by the change of the =1 location xs, because it is changed easily and 

appreciably by generation of even small co-flowing toroidal current and Shafranov shift.  

Co-flowing current of ~10 kA at Bt=0.9T is observed in the H-mode.  It is roughly 

estimated that this current moves the resonance surface inward by x~0.03.  This 

corresponds to the increase of xo by ~0.03.  On the other hand, the increase of the 

Shafranov shift due to the increase in <dia> and the increase of the peaking factor of 

the pressure profile move the =1 surface outward through a decrease of the rotational 

transform in the edge region and an increase in the core region.      

In Section 4, the dependences of the growth rates and eigenfunctions on the 

distance |xo-xs| are studied using a linear resistive MHD code only including plasma 

resistivity [13].  The results provide insight into qualitative understanding of clear 

suppression and large growth of m=1/n=1 RIC observed in the H-mode in an 

outward-shifted configuration.  Nevertheless, it is necessary to investigate whether or 

not diamagnetic effects may substantially change the dependence of growth rates and 

eigenfunctions on the distance |xs-xo|, because the diamagnetic drifts in H-mode become 

significant in the edge region.  The relative position of the peak diamagnetic drifts to 

the =1 surface changes obviously by the scan of xo discussed in Section 4.  The 
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diamagnetic effects on the growth rates and eigenfunctions for the H-phase profiles in 

Section 4 are studied by using a newly developed eigenvalue code including resistivity 

and diamagnetic drifts [14].  For both profiles with xo=0.788 and 0.858, the 

diamagnetic effects are fairly small, i.e., less than ~5 %, although the diamagnetic 

effects reduce the growth rate appreciably, i.e., up to 23 % in the profile with xo ~ 0.82.  

In conclusion, the diamagnetic effects are weak even in the H-mode profiles 

corresponding to those in the ELM free phase (i.e., xo=0.788) and at the onset of an 

ELM (xo=0.858).   A large non-resonant part inside the mode resonance surface in p1 

seen in Fig. 7(b) is appreciably suppressed by the diamagnetic effects, but the resonant 

part is appreciably enhanced.  Detailed analyses are left for future study aiming at 

better understanding of RIC stability in the LHD H-mode plasmas.       

 The other interesting topic is to investigate the |xo-xs| dependence of the 

growth rates in H-phase for further increased S that is expected in future high 

temperature H-mode plasmas on LHD.  The xo-dependence of the growth rates in 

H-phase is investigated for S=108 as shown in Fig.6.  The growth rates in the range of 

xo=0.788 to 0.858 follows the S-1/3 dependence expected for RICs [15].  However, the 

peak growth rates around xo~0.90-0.95 show much weaker S dependence than S-1/3.  At 

S=108, the growth rates increase more quickly toward the peak from the very low levels, 

as seen from Fig.6.   This tendency is explained as follows.  With the increase of S, 

the eigenfunction such as 1 becomes narrower and narrower.  For the eigenfunction 

strongly localized at the mode resonance surface, the interaction of the eigenfunction 

with the steepest pressure gradient region will be suddenly enhanced when xo is 

increased much closer to the location of the mode resonance surface at xs=0.945.  The 

peak growth rates at S=108 become insensitive with S in the range of xo=0.90 to 0.93, 

indicating a character of ideal interchange mode.  It will be necessary to control the 

steepest pressure gradient location more finely for the major mode resonance surface 

such as =1 for the suppression of large amplitude ELMs in high temperature H-modes 

with S=108 ~109 on future stellarator/helical devices.  

  

6. Summary 

In a specific magnetic configuration of LHD where the =1 surface is placed 

just outside the LCFS of the vacuum field, H-modes have been observed having long 

ELM free H-phases where RICs are clearly suppressed to an acceptable level for good 

plasma confinement.  The H-mode character exhibits a clear contrast to that observed 

in the so-called inward-shifted configuration of LHD, where RICs are immediately 

enhanced by the ETB formation.  Each long ELM free phase is interrupted by a large 
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amplitude ELM.  The ELM is thought to be triggered by nonlinear growth of RIC and 

also enhances the RIC further through strong and complex coupling between RICs and 

ELMs.  The H-L back transition is triggered by a large amplitude ELM.  The 

numerical results obtained by two linear resistive MHD codes on the assumption of a 

cylindrical plasma have enabled a qualitative understanding of suppression and large 

growth of m=1/n=1 resistive interchange modes observed in the H-modes in the 

outward-shifted configuration.  Nonlinear simulations of the RIC modes in the realistic 

LHD configuration are of great importance for better understanding of the nonlinear 

growth of RIC, ELM trigger and the strong coupling between RICs and ELMs in 

stellator/helical plasmas.   
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Figure Captions 

 

Fig.1 (a) Typical waveforms of an H-mode with long ELM free phases and large 

amplitude ELMs in the outward-shifted magnetic configuration of Rax=3.9m, 

where Wp, <ne> and H are the plasma stored energy measured by a diamagnetic 

loop, line averaged electron density and H emission, respectively.  (b) Time 

evolution of the root-mean-square amplitude of magnetic fluctuations associated 

with the m=1/n=1 mode together with the volume-averaged toroidal beta <dia> 

evaluated from Wp.  

 

Fig.2 Radial profiles of electron temperature (Te), electron density (ne) and electron 

pressure (Pe) obtained from the Thomson scattering in the characteristic phases, 

“H” and “L” in the H-mode plasma, which are shown as a function of major 

radius R in the horizontally elongated section. The vertical arrows indicate the 

inferred location of the =1 mode resonance surface. 

 

Fig.3 The radial profiles of the H emission intensity (open triangles) and the coherence 

between H and magnetic fluctuations induced by the m=1/n=1 mode (open 

circles), as a function of the normalized vertical coordinate Z/Za, where Za is the 

plasma boundary in the vertical direction. The vertical line indicates the 

expected location of the =1 surface. 

 

Fig.4 (a) and (b) Zoomed waveforms of two typical large ELMs in the H-mode shot 

shown in Fig.1, where the signal of poloidal magnetic field fluctuations (b), H 

emission signal and line electron density just outside the ETB boundary (neLedge) 

are shown. The vertical line indicates the onset time of the small crash in neLedge 

as a signature of an ELM. 

 

Fig.5 (a) Experimental data points of the total bulk plasma pressure Peq(x) in the 

H-phase (t=4.533 s) and the best-fitted curve with eq.(1).  (b) Experimental data 

points of Peq(x) in the L-phase (t=4.700s) and the best-fitted curve.  For the radial 

coordinate x=<r>/a with a=0.466 m, the =1 surface location is inferred to be 
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x=1.05-1.08.   

 

Fig.6 Dependence of the largest normalized growth rates of the m=1/n=1 RICs on the 

location of the steepest pressure gradient xo in the H- and L-phase profiles for 

S=105 and 106.  The growth rates in the H-phase are also given for S=108.  The 

growth rates are shown in linear and log-scales in (a) and (b), respectively.  Two 

arrows on H-phase profiles indicate the profiles in the ELM free phase (xo=0.788) 

and at an onset of an ELM (xo=0.858).  The arrow on the L-phase profiles 

indicates the profile observed experimentally. 

  

Fig.7 (a) Peq(x) profile with xo=0.788 to simulate an ELM free H-phase and the 

rotational transform profile (x). (b) m=1/n=1 eigenfunctions of the scalar potential 

1 and pressure perturbation p1. (c) Eigenfunctions of poloidal flux 1 and radial 

displacement r, where S=105.  The vertical line in all three figures indicates the 

location of the =1 surface, and also in Figs.8 and 9. 

 

Fig.8 The m=1/n=1 eigenfunctions of 1 and p1 (b), and 1 and r (c), calculated for the 

Peq(x) profile with xo=0.858 to simulate the onset phase of a large ELM (a), where 

S=105.   

 

Fig.9 The m=1/n=1 eigenfunctions of 1 and p1 (b), and 1 and r (c), calculated for the 

Peq(x) profile with xo=0.560 to simulate the L-phase, where S=105.   
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