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Abstract—A magnetic field is used to confine the plasma to achieve controlled fusion. Therefore, since the movement of the plasma
follows magnetic field lines, a plurality of magnetic field lines is calculated from electromagnetic field simulation results in a fusion
reactor. Because of the complicated distribution of magnetic field lines in three-dimensional (3D) space, existing analysis measures
which are mostly based on two-dimensional poloidal plasma cross-sections are unsatisfactory for domain experts. To solve this problem,
we propose a technique for reconstructing a regular scalar field from the magnetic field lines. First, on poloidal plasma cross-sections,
intersection points of magnetic field lines are used to make annotations of learning the plasma shape. Then, a deep neural network is
built to approximate the scalar field that represents the probability of the existence of magnetic field lines. Consequently, a 3D model of
plasma shape has managed to be constructed by applying the marching cubes method. The effectiveness of the proposed method is
demonstrated by comparing it with the conventional method and domain experts’ reviews.

Index Terms—Visualization, Deep learning, Plasma shape, 3D model

1 INTRODUCTION

Nuclear fusion is an ideal means to obtain clean energy by combining
two or more atomic nuclei. There are several ways to achieve controlled
nuclear fusion, among which the use of magnetic fields is the most
possible method for confining the high-density and high-temperature
plasma.

There are two basic ways to generate twisted magnetic fields con-
fining the plasma at the center of the vessel. One is the combination
of two types of magnetic fields that are respectively generated from
toroidal field coils and the poloidal field due to plasma current, such as
Tokamak [4,16]. The other way is to directly use helical coils that have
a complicated structure, such as Stellarator [8]. The Large Helical De-
vice (LHD)-type helical fusion reactor, FFHR is the second type. This
reactor designed by the National Institute for Fusion Science (NIFS)
has helical coils to generate twisted magnetic field lines [19].

1.1 FFHR structure
The schematic view of the fundamental design for an FFHR is depicted
in Fig. 1 [20]. From the plasma confinement center to the outside, are
the blankets, a pair of helical coils, supporting the structure with inner
and outer vertical field coils, and cryostat. In addition, the FFHR has a
cyclic symmetry structure. The symmetrical angle is 36 degrees of the
toroidal angle.

The poloidal cross-section of the FFHR at the horizontally elongated
plasma cross-section is shown in Fig. 2 [5]. In the limited space
between the helical coils and plasma, blanket modules will be installed
in the immediate vicinity of the plasma to achieve the most effective use
of neutron energy generated by the fusion reaction. The gap between
the two blankets is arranged for the online removal of impurities from
the plasma. These impurities are neutralized and evacuated at the
divertor so that the nuclear reactor can continue operating.
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Fig. 1. Schematic of the FFHR-d1 series fusion reactor.

1.2 Plasma shape and magnetic field lines

The plasma is confined in the magnetic trap and moves along the
magnetic field lines. Hence, the plasma shape can be obtained according
to the distribution of magnetic field lines traced in a magnetic vector
field inside the vessel of the FFHR. In general, the plasma shape is
analyzed on discrete 2D poloidal cross-sectional shapes.

The poloidal plasma cross-section is located at the center of the
poloidal cross-section of the FFHR, as shown in Fig. 2 [5]. Specifically,
a poloidal plasma cross-section is composed of intersection points of
each magnetic field line and a vertical plane at a certain toroidal angle.
These points consist of three parts: the flux surface in an ellipse with
light pink color, stochastic field lines surrounding the flux surface in
purple, and edge surface layers with the divertor legs that extend to the
divertor plates.

1.3 Existing problems in plasma shape analysis

From Fig. 2 [5], one can notice that the space between the inboard
blanket and edge surface layers is extremely narrow. Additionally,
paths that extend to the divertor for impurities must also be accurately
designed. Previously, the shape of the component in the reactor was
designed considering the structure of magnetic field lines in a 2D
cross-section, at each discrete toroidal angle. However, the magnetic
field line has a 3D structure, observing a poloidal cross-section of
the plasma shape and the FFHR in 2D lacks an efficient approach to
achieve a global view, in addition to being time-consuming and error-
prone. Furthermore, magnetic confinement causes gyration motion



Fig. 2. Poloidal cross-section of the FFHR at horizontally elongated
plasma cross-section.

of the plasma, which cannot be observed directly from magnetic field
lines. This spread region, also known as Larmor radius, is an existing
problem when studying the plasma shape using magnetic field lines.
Above all, operating three-dimensionally with the plasma is required to
optimize a 3D shape design of the component in the FFHR.

In summary, there are three requirements for a useful plasma shape
observation approach from a 3D space, which are as follows.

• R1. The approach should enable the expression of a plasma
existence region without any arbitrariness from the magnetic field
lines data.

• R2. The Larmor radius should be included.

• R3. The approach should enable the detection of interferences be-
tween the plasma shape and the 3D design data of the components
in the FFHR.

To meet the above requirements, a closed curved surface is considered
to represent the last closed flux surface (LCFS) of the flux surface and
edge surface layers with the divertor legs, respectively. The reasons
for this are as follows. First, to check for interferences, it is unneces-
sary to consider those magnetic field lines that are buried under other
lines. Rendering all lines in one scene will cause occlusion and cost
significant computation resources. Second, compared with separated
lines, a continuous surface can provide a clear boundary so that it be-
comes simple to inspect the interference of the plasma and components
in the FFHR. Finally, the Larmor radius can be embedded into the
preprocessing stage when generating the surface.

However, general surface construction methods are unlikely to meet
R1. Due to the helical magnetic field, magnetic field lines are twisted
and entwined with each other. Regardless of whether the connectivity
information of a line has been provided, the relative position informa-
tion between two lines is extremely complex. Therefore, it is difficult
to know which lines are contributing to surface generation.

To tackle the aforementioned challenge, we propose using a deep
neural network (DNN) to learn the representation of the plasma shape
from the magnetic field lines. We aim to reconstruct a regular scalar
field from the magnetic field lines. The intersection points on each
poloidal plasma cross-section are used to make annotations according
to the connection length of a magnetic field line to which they belong.
Afterward, these labeled points will be inputted into a DNN as training
material. Hence, the trained DNN can label each point from its new
position from the scalar field. Then, the scalar field can represent the
different parts of the plasma shape by collecting the points with the
same label. Since the scalar field has been structured, the magnetic
flux intensity at any position of this scalar field is easily obtained. The
Larmor radius then can be calculated. The representation of a Larmor
radius is then embedded in the scalar field. With the scalar field, the
marching cubes (MC) method [13] can be used to generate an isosurface
for different parts of the plasma shape.

To summarize our approach, the contributions of this research are as
follows:

• We propose a DNN to reconstruct a scalar field that is friendly for
surface generation.

• The Larmor radius is embedded in the scalar value of the scalar
field. Consequently, the spread region representing the Larmor
radius is included in the isosurface.

• Compared with topological reconstruction methods, using a DNN
is time-saving. The scale of the scalar field can be customized
according to users’ demands.

2 RELATED WORKS

2.1 Visual analysis in 3D space
2.1.1 Curve-based methods
Watanabe, T., et al. [21] studied magnetic field lines in the edge surface
layer surrounding the exterior of the LCFS. They also plotted a pair
of helical coils in one scene. All field lines terminate at footprints in
the diverter plates. The magnetic field lines are classified depending
on the connection length with different colors. The results showed that
the connection length of the magnetic field lines closely surrounds the
LCFS. However, the results are composed of thousands of streamlines
that lack recognizability.

NIFS developed a virtual reality (VR) visualization system in which
the space relationship between the plasma shape and components in
the vessel of the LHD could be analyzed by using a CAVE system. In
this VR visualization, simulation results of the equilibrium plasma in
the LHD and the objective description of the LHD vessel device are
represented simultaneously in the VR space [14]. The plasma pressure
is shown with the isosurface, whereas the magnetic field lines and
particle trajectories are displayed by curves.

2.1.2 Surface-based methods
To the best of our knowledge, a few studies have outlined the plasma
shape directly using 3D data. Paul, E. J., et al. [15] obtained the surface
expression of the plasma shape with the specified winding surface
geometry of a stellarator. They focused on numerical calculation rather
than on generating surface using simulation data.

In our previous research [9], we studied the plasma shape by gen-
erating a 3D model through magnetic field lines, all of which were
directly integrated into a scalar field. The MC method was used to
detect an isosurface of this scalar field. The scalar data of each point in
this scalar field were described as the number of magnetic field lines
within a cube composed of seven other neighboring points. Further-
more, the Larmor radius was represented with a cluster of parallel lines
surrounding each original magnetic field line so that the Larmor radius
can become an integrated part of the 3D model. However, deciding the
value of a point by counting the number of magnetic field lines is not
an effective method for smoothing the generated surface. At the same
time, interpolation is used to calculate the position of a triangular mesh
so that a margin exists between the lines and generated surface. This
margin will result in errors in the final interference check.

2.2 Visual analysis supported by deep learning
With the explosive growth of modern deep learning techniques, a grow-
ing number of researchers have been investigating the capabilities of
DNNs to address different types of scientific visualization problems.

Han, Jun and his crew members [7] built a FlowNet for clustering and
selection of streamlines and stream surfaces, but each line or surface
was inputted orderly and independently. Guo, Li, et al. [6] built a
novel deep learning framework that produces coherent spatial super-
resolution of 3D vector field data. It helps on phase of data saving
and simulation. Qi, Charles R., et al. [17] built a PointNet for 3D
classification and segmentation on unordered point sets in 3D. The
segmentation result is presented using different colors for different
point groups. Mescheder, Lars, et al. [12] built occupancy networks,
which implicitly represent the 3D surface as the continuous decision



Table 1. Datasheet of a point

Parameter Value (unit) Data type
Magnetic field line index nm IntegerToroidal angle index nT

Radial coordinate R(m)

Double float

Toroidal angle φT (degrees)
X coordinate X(m)
Y coordinate Y (m)
Z coordinate Z(m)

Magnetic field line connection length Lm(m)
Radial component of magnetic field Br(T)
Axial component of magnetic field Bz(T)

Azimuthal component of magnetic field Bt (T)
Strength of magnetic field B(T)

boundary of a DNN classifier. The result proved the high performance
of DNNs on learning unstructured data.

3 PLASMA SHAPE IN 3D SPACE

In this section, first, we will introduce the source of magnetic field lines
that were used in our research. The reason why we reconstructed a
scalar field depending on DNNs is explained subsequently. Then, to
construct a dataset for DNNs, annotation, labeling, and normalization
were applied. Afterward, we will introduce the structure of the DNN,
which is built using the TensorFlow library developed by Google and
the representation of the Larmor radius. Finally, the MC method is
presented.

3.1 Magnetic field lines data
The magnetic vector field is calculated under static conditions. The
precise structure of the magnet coils, vacuum vessel, and blankets are
input to establish the 3D modeling of the inner environment of the
FFHR for finite element calculation [10]. The magnetic field tracing
code (MGTRC) [1] is used for tracing the magnetic field lines. At this
time, 799 magnetic field lines are stored. Each line is given an index.
All lines consist of almost 4.8× 106 points. A point belonging to a
magnetic field line is stored in the following format, as shown in Table
1.

From the first line of content is the magnetic field line index that
indicates which magnetic field line this point belongs to. The second
parameter is the toroidal angle index. Information about a point will
be recorded for certain degrees. The third parameter is the distance
between the projection of a point onto the X−Y plane and the origin
of coordinates. This third parameter is called radial distance, and the
fifth and sixth parameters are X and Y coordinates, respectively. With
the Z coordinate, the position of a point in 3D space is established. The
eighth parameter indicates the length of a magnetic field line. The last
four parameters are three components and the strength of the magnetic
field at this point. These three components belong to an independent
simple torus coordinate. This information will be used to calculate the
Larmor radius at this point. Fig. 3 shows three magnetic field lines with
different indices in their respective colors. Fig. 4 shows all magnetic
field lines.

In Fig. 4, it illustrates why it is unsuitable to simply use the stream-
line visualization method. The critical point is to detect the interference
with the components in the reactor. This means that lines located at
the outer layer are likely required to be valued. However, as shown
in the figure, different magnetic field lines overlap another because of
the twisted magnetic field. It is difficult to distinguish the outer lines
from those relatively close to the center. This results in many more
magnetic field lines being rendered than were necessary. The situation
not only causes occlusion but also places a burden on the computation.
The representation of the Larmor radius is another difficult problem.
Since the Larmor radius is a radius of the charged particle gyromotion
centered at the magnetic field line on the plane whose normal vector
is parallel to the magnetic field line, the Larmor radius, that is, the
gyromotion, will be represented as a tube or a ring around the field
streamlines. In this case, the magnetic field line is hidden by the tube,

Fig. 3. Three magnetic field lines with different indices in respective color.
The shortest one in red with index 10, the medium one in blue with index
214, the longest one in green with index 280.

Fig. 4. Rendering of all the magnetic field lines with transparency.

and then, the visualization of the field line will incur significantly more
computing resources. This is why we attempt to use the stream surface
to represent the plasma shape.

Because a magnetic field line is traced as its 3D footprints, all
magnetic field lines can also be considered an unordered point cloud.
Since the information about magnetic flux intensity has been assigned
to each point, it can also be known as a scalar field if the association
of a point’s location information and its magnetic flux intensity are
considered. A point from this unordered scalar field can be expressed
in the following way:

P(x,y,z|Br,Bz,Bt) (1)

The next step is the ordering of this scalar field. In this way, many
classic surface generation methods that address the ordering of scalar
fields, such as the MC method, can be used with ease.

Regarding the reconstruction of a new ordered scalar field, there are
various methods based on the topological relationship between each
point from the original unordered scalar field, such as clustering and
interpolation. However, both are time-consuming when dealing with a
large number of points. In this regard, a DNN is the best candidate for
handling huge amounts of data.

3.2 Data processing
After observing the magnetic field line data, the points at the divertor
legs were found to be insufficient as learning data. Compared with
the number of points at the flux surface, the weight of these points at
the divertor legs is decreased. Eventually, the feature at the divertor
legs will be ignored or considered as noise by the DNN. The possible
solution is using congregated points from each symmetrical area. We
obtained 36 pieces of Poincare plots, each of which has 1 degree



Fig. 5. User interface of the annotation tool. A Poincare plot without flux
surface point data being uploaded to it.

shifting along the toroidal direction. To reconstruct the most basic
ordered scalar field for surface generation, these Poincare plots are
expanded to 90 degrees of the toroidal angles. The transformation rule
is as follows:

• For a point from a Poincare plot, we obtain its R and φT from
Table 1.

• Based on the toroidal angle φT of this point, new toroidal angles
are assigned as φT + 36 degrees, φT + 72 degrees. If φT + 72
degrees is greater than 90 degrees, it will be ignored.

• Calculating the new coordinates of (x1, y1), (x2, y2) (if exists)
with new toroidal angles on the X−Y plane.

We did not intend to expand the Poincare plots to 360 degrees for
three reasons. First, as the expanded area has the same symmetry
structure as the first 36 degrees, it cannot provide additional plasma
shape information. Second, not expanding the Poincare points would
save considerable time in the adjustment phase of DNN optimization.
Finally, the NIFS had been working on developing a new MGTRC,
more point data at the divertor legs will be expected. Therefore, in this
stage, we only considered the plasma shape from 0 to 90 degrees of the
toroidal angle, which is also known as a quarter of the entire plasma
shape.

3.2.1 Points annotation
To detect the shape of edge surface layers and the divertor legs, some
assisting points are necessary. These assisting points are marked us-
ing a points annotation tool [2]. This procedure is completed before
expanding the Poincare plots to 90 degrees.

The user interface of the annotation tool is shown in Fig. 5. To use
this annotation tool, a Poincare plot is first transformed into an image.
After uploading an image of a Poincare plot to it, the points from the
Poincare plot will be displayed in the main area of the annotation tool.
Once a user double clicks the mouse at the main area, the location of
the mouse relative to the image of a Poincare plot will be recorded.
The assisting points are taken averagely at the vicinity outside the edge
surface layers and the divertor legs. Then, location information will be
downloaded as a comma-separated Values file. The above process was
followed for all 36 pieces of images.

3.2.2 Labeling and normalization
To find the outermost closed curved surface of the flux surface and the
edge surface layers, respectively, labeling is required to indicate which
place a point is from the Poincare plot. Points within the flux surface
are labeled as “2”. At the same time, points within the edge surface
layers but outside the flux surface are labeled as “1”, Additionally, the
assisting points taken manually from the annotation tool are labeled as
“0”. Labeling is processed soon after expanding the Poincare plots. For

each Poincare plot, it has almost 1900, 11700, and 49200 points with
labels “0”, “1” and “2”. Because the assisting points are made up of a
single layer, there are fewer of them. Additionally, there are 90 times
as many points of a Poincare plot in total. After finishing the labeling,
the sequence of the points is disrupted and stored.

With respect to data normalization, at the input side, φT has a differ-
ent unit from the other variables. However, on the output side, since an
output activation function has been tailored to the distribution of the
output variables, it is not necessary to rescale the output dataset.

3.3 Network structure
A fully connected DNN is built in this study. Specifically, we customize
the loss function. It is introduced in the next part. The structure,
selection of a loss function, and an optimizer, and other information of
this DNN are as follows:

• Structure: This DNN has five layers, with numbers of nodes 3-
512-128-16-3 along the forward direction. The first and the last
3 are the numbers of the nodes of the input and output layers,
respectively.

• Activation function: Rectified linear unit activation is used, ex-
cept for the last layer of the DNN. The last layer uses softmax
activation, which normalizes the result into a probability distribu-
tion in the interval (0,1), and the components of the result will
add up to 1.

• Loss function: The sum of a sparse categorical cross-entropy
(SCC) and a customized part.

• Optimizer: RMSProp.

• Metrics: Accuracy, which indicates the accuracy of evaluation on
the validation dataset.

• Dataset: The training and validation datasets are 90 and 10 per-
centages of points from the unordered scalar field. The test dataset
comprises uniformed points created for constructing the ordered
scalar field. Based on the scale of the plasma shape, the size of
the ordered scalar field is both 0 ∼ 24 meters on the X and Y
coordinates, and −7∼ 7 meters on the Z coordinate. The default
distance between each point on the X , Y , and Z coordinate is 0.1
meters. Note that the distance of each point could be changed
according to a user’s requirement. If a user wants a higher resolu-
tion result, he/She can set the distance of each point to be smaller
than 0.1 meters. The input dataset format is as follows:

P(x,y,z|label) (2)

The output format is

P(x1,y1,z1|p0, p1, p2) (3)

where (x1,y1,z1) is a new point from the ordered scalar field and
p0, p1, and p2 represent a probability distribution, indicating
which point group the new point probably belongs to. The sum
of this probability distribution equals 1, which is exactly how the
softmax activation works. Additionally, the highest probability
from p0, p1, and p2 is chosen and assigned to the new point.

Fig. 6 shows points with label “1” from the new ordered scalar field in
3D space.

3.4 Customized loss function
A customized loss function is composed of an SCC and an average
of dot product results. We reference the loss error strategy proposed
by Raissi, M., et al. [18] in their physics-informed neural network to
replace the mean squared error. Considering a point, along with its
Cartesian coordinate, the partial derivatives of this point are obtained
from the DNN. Then, we calculate the dot product between the mag-
netic flux vector and partial derivatives. The average of all dot products



Fig. 6. Points with label “1” from the ordered scalar field have been
selected and rendered in blue.

should be close to 0. The DNN is trained to follow a forward direction
for each magnetic field line. The customized loss function is as follows:

Loss = LSCC +
1
n

n

∑
i

∣∣∣∣( ∂ f
∂xi

,
∂ f
∂yi

,
∂ f
∂ zi

) · (Bxi ,Byi ,Bzi)

∣∣∣∣ (4)

where, n represents the number of input points and f represents the
DNN.

3.5 Larmor radius representation
The Larmor radius would improve precision when predicting the in-
terferences of the plasma shape and the components in the FFHR. A
charged particle performs gyration motion along the magnetic field
lines. The radius of the gyration motion depends on the velocity of
the particle and the strength of the magnetic field. Assume that v⊥ is a
velocity that is perpendicular to the magnetic field. it can be calculated
as follows:

v⊥ = vth =

√
2kT
m

(5)

where vth, k, T , and m represent the thermal velocity, the Boltzmann
constant, the temperature and the mass of a charged particle, respec-
tively. In our research, kT is the energy with 3.5 MeV. In this case, the
particle moving to the divertor legs will collide with the vessel and lose
its energy. Hence, 3.5 MeV is considered the least energy that a particle
should keep. The particle is an alpha particle produced in the process of
nuclear fusion, which has a mass four times of a proton, 6.645×10−27

kg. Consequently, the Larmor radius, denoted by rL, can be calculated
as follows:

rL =
mv⊥
qB

(6)

where q and B represent the electric charge of the alpha particle, which
is twice that of a proton, 3.204× 10−19 C, and the intensity of the
magnetic field at that point, respectively.

Since we only focus on the Larmor radius of points at the outline,
we choose points with label “1”. Subsequently, the Larmor radius of
all points with label “1” is calculated. Afterward, the distance between
this point and surrounded points will be reordered as an updated scalar
value. The surrounded points are found by judging whether a point is
inside the sphere with the center of this point and radius equal to this
point’s Larmor radius. The judgment equation is as follows:

V = rL−
√

i2 + j2 + k2 (7)

where V represents the updated scalar value of a surrounded point,
and i, j, and k represent integer multiples with positive or negative
of the default distance, either 0. The integer is also defined as the
loops start from 1. The maximum integer is determined at a certain
loop, all updated scalar values of surrounded points are smaller than 0.
For example, in loop one, with the default as 0.1 meters, the relative

Fig. 7. The training time and accuracy on an average of different hidden
layer settings. The blue lines show the time(s) difference. The orange
lines show the training accuracy.

coordinates of a candidate point are the combination of the i, j, and
k from the list “-0.1, 0, 0.1”. If a V is larger than 0, it means this
candidate point is in the sphere, which also means that it needs to enter
loop two. In loop two, the relative coordinates of a candidate point
will be the combination of the i, j, and k from the list “-0.2, -0.1, 0,
0.1, 0.2”. If in this loop, all updated scalar values are smaller than
0. The Larmor radius calculation will be stopped. Then, the absolute
coordinates and scalar value of a surrounded point within the Larmor
radius can be decided as:

P(x2,y2,z2|V ),

 x2 = x1 + i
y2 = y1 + j
z2 = z1 + k

for i, j,k in a list (8)

Since a point will be involved in multiple spheres, the largest of all
scalar values calculated at such a point is retained. In this way, the
sphere boundary generated on the basis of the largest value of this point
can hold any other sphere boundary.

3.6 The MC method
In the MC algorithm [11], the threshold is set as 0 and 1.5, respectively.
To prevent the effect of updated scalar values of Larmor radius, we
apply the MC method twice with different point groups. When the
threshold is 0, it generates triangular elements at the exact position
of the boundary of any sphere. When the threshold is 1.5, triangular
elements are generated between the edge surface layers and LCFS.

4 EXPERIMENT

In this section, we first discuss the selection of hyperparameters of the
DNN. Then, we compare the results using an SCC and a customized
loss function. The final part presents the visualization result of the
plasma shape. The program is compiled with Python version 3.6. The
part of deep learning is run on a GPU for mobile, which mode is “RTX
2070 MAX-Q”.

4.1 Selection of hyperparameters
We first evaluate the model performance of different hidden layers. The
number of hidden layers ranges from 2 to 4, and a layer has nodes of
powers of 2. The training time and accuracy in average are shown in
Fig. 7. The training time increases gradually with the complexity of
hidden layers, where accuracy remains constant when the first hidden
layer is greater than 1024. Given the calculation time of the partial
derivatives, which is proportional to the number of nodes and accounts
for approximately half of the training time, it was decided to use hidden
layers in 512-128-16.

We then evaluate a suite of different batch sizes from 500 to 3000 in
steps of 500. For each batch size, we also change the number of epochs
from 10 to 40 in steps of 10. Hence, we have a total of 24 results. The
comparison of different batch sizes and training epochs is shown in Fig.



Fig. 8. Heatmap with different combinations of batch sizes and epochs.
The color of block indicates the accuracy under certain combinations.
The darker the color, the better the effect of the combination.

Fig. 9. Training loss and training accuracy of the DNN with an SCC loss
function (a) and a customized loss function (b), respectively. In (b), it also
records the changing of cross-entropy and dot product loss individually.

8 with the heatmap. The density of the color denotes accuracy. The
darker the color, the better the effect of the combination.

It can be seen from Fig. 8 that when the epoch is 10, accuracy
decreases gradually from 500. When the epoch is 20, the result is
unstable. For epochs 30 and 40, the accuracy remains at an average
high level. Additionally, we can see that the batch size has little effect
on accuracy at line 40. Considering time efficiency, we adopt the
combination of 30 epochs and 2000 batch size.

4.2 Loss function performance
Based on the above setting, the DNN is trained with an SCC loss
function and a customized loss function as a comparison. Fig. 9 shows
the training processes. Both loss functions decrease gradually and are
nearly identical. After rendering two plasma 3D models, as shown in
Fig. 10, it demonstrates that the customized loss function can bring a
complete structure.

4.3 Visualization of plasma shape
The rendering of the plasma shape model uses an open-source graphing
library called “Plotly” [3]. We used “Plotly” to check the plasma shape
model developed with the proposed method. The visualization result is
shown in Fig. 11. The arrangement of the figures is at a viewpoint of
X−Y −Z, X−Y , Y −Z, X−Z respectively, from the top left following
a clockwise direction.

The model accurately reproduces the complicated plasma shape
structure. Compared with rendering using line objects, it clearly dis-
tinguished the two areas. Furthermore, because of the surface repre-
sentation, it is possible to check the interferences directly between the

Fig. 10. Rendering of plasma 3D models. (a) For an SCC loss function.
(b) For a customized loss function. The red frames show the difference
in models. It proves that (b) is more complete.

Fig. 11. Visualization result of a quarter of the plasma shape. It is
rendered with Plotly, a graphing library. The surface represents the edge
surface layers and part magnetic field lines inside it, which are in blue,
and the LCFS and part magnetic field lines inside it are in green. From
the top left in a clockwise direction, are the viewpoints at X−Y −Z, X−Y ,
Y −Z, X−Z.

plasma shape and 3D design data of components in the FFHR. The
rendering result of the plasma model and the fusion reactor model is
shown in Fig. 12.

5 EVALUATION

In this section, the performance of the 3D model is evaluated by slicing
the model along the toroidal direction. Furthermore, we would like to
share the feedback from domain experts at the NIFS.

5.1 Three-dimensioal model performance
To evaluate the accuracy of the 3D model, we chose to return to the 2D
space by slicing the model along the toroidal direction. Then, original
magnetic field lines at the same toroidal angle with the Larmor radius
were added on those slices. Finally, we plot these slices to evaluate the
performance of the plasma 3D model. The slices are shown in Fig. 13.
From the left to right are the slices at 0 degree, 10 degrees, 30 degrees.
The blue points represent the cross-section of the magnetic field lines,
including the Larmor radius. The green points represent the outlines
of the 3D model, which are also the boundary of the two areas of the
plasma shape.

In Fig. 13, it can notice that one or two circles are neglected by the
DNN when learning the representation of the plasma shape. This is
because there are no other circles around the circles. It means that a
few magnetic field lines pass at this place. Thus, the points labeled as
“1” are few and assisting points labeled as “0” have taken advantage of
this place. When new points with coordinates similar to these isolated
points are obtained from the ordered scalar field and are to be labeled,
the trained DNN will produce a label of “0” rather than “1” according



Fig. 12. Rendering result of the plasma model and the fusion reactor
model created with graphics software Fusion360.

Fig. 13. Slices at (a) 0, (b) 10 and (c) 30 degrees, respectively. The
green points indicate the slice of the model. The blue circles represent
points from magnetic field lines with their Larmor radius.

to the probability distribution of point labels at this place. Despite the
above issue, the good processing ability to the non-linear information
makes DNN a good candidate for analyzing complex plasma shapes.

Compared with the approach in our previous paper [9], the DNN
approach solves the existing integrity and margin problem. The DNN
approach has fewer processing procedures on the Larmor radius. Fur-
thermore, the DNN approach has less data volume than before but
achieves high performance when describing the plasma shape, costing
MC method less time.

5.2 Feedback from the domain experts
The result and relative data were sent to the domain experts at the NIFS
for feedback. Since fusion reactor design is a long and complex process,
obtaining a comprehensive and precise evaluation takes a long time. In
this stage, we would like to share their perspectives and suggestions
toward our approach.

The different areas of the plasma shape are divided according to the
connecting lengths of magnetic field lines. To achieve high precision,
the frequency of tracing should be increased. Additionally, to obtain
a global view of the plasma shape, traced magnetic field lines are
expected to have an even distribution. Consequently, the location of the
starting points is set and changed frequently. After applying the DNNs,
with only limited numbers of magnetic field lines, the representation of
the plasma shape can be accurately described.

The surface-based method compensates for the shortcomings of the
traditional method. With information regarding surface meshes, the
detection of the interference can be easily accessed with a computer-
aided design software application.

6 CONCLUSION AND FUTURE WORK

In this research, we studied the visualization method of the plasma
shape in the FFHR. Because of the helical coils in this reactor, the sim-
ulation result of the magnetic field lines shows a complex structure. As
existing methods are either inefficient or counterintuitive, we propose

the introduction of deep learning technology into the visualization of
the plasma shape in 3D space. The distribution of magnetic field lines
is fed to a DNN to learn the representation of the plasma shape. Then,
a new ordered scalar field is reconstructed. The Larmor radius has also
been integrated into the ordered scalar field. Finally, the MC method
is used to discover the isosurface of this scalar field. This isosurface
accurately represents the plasma shape with its Larmor radius.

In future work, we would like to explore new structures of the DNN
that are specialized in plasma shape visualization. Instead of using
the MC method, we would like to discover a possible way to generate
the surface mesh directly from the DNN or a function that can fully
describe the plasma shape. Furthermore, we would like to extend the
application of DNN to other complex surface generations. We believe
that the non-linear processing ability of the DNN will achieve great
success in these fields.
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