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Two types of acceleration techniques,H-matrix arithmetics and anH-matrix-based variable preconditioning
(VP), as well as their combination are applied to a linear-system solver in the shielding current analysis of a
cracked high-temperature superconducting film. Although the combination seems to be the most effective of three
types of the acceleration techniques, the results of computations show that, from the standpoint of the acceleration
performance, neither theH-matrix-based VP nor the combination is superior toH-matrix arithmetics. The reason
for this unexpected result is explained from the standpoint of operation counts.

c© 2021 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: computer simulation, finite element method, high-temperature superconducting film, Krylov space
method, Newton method, power law

DOI: 10.1585/pfr.16.2405005

1. Introduction
A large-area high-temperature superconducting

(HTS) film has been recently fabricated for various
engineering applications such as electromagnets, energy
storage, device sensor, and power cable. However, for
the case where an HTS film contains cracks in it, its
physical property is significantly deteriorated. Hence,
contactless methods have been desired for detecting
cracks in an HTS film. In order to conceptually design the
contactless methods, the shielding current density must
be accurately evaluated in a cracked HTS film. For this
reason, the authors have developed numerical methods for
analyzing the shielding current density on the basis of the
current-vector-potential method [1–3].

After temporally discretized with the implicit method,
an initial-boundary-value problem for the current-vector
potential reduces to a nonlinear boundary-value problem
at each time step. Especially for the case with a cracked
HTS film, application of the Newton method to the nonlin-
ear problem yields a linear system of special type at each
iteration cycle of the Newton method. The linear system
is known as a difficult problem to numerically solve and is
called a saddle-point problem. In fact, even if the Krylov-
space method such as GMRES is applied to the linear sys-
tem, its residual history shows a degraded convergence
property. In order to resolve this problem, the authors de-
veloped the variable-reduction method (VRM) [2, 3]. As a
result, it is found that the VRM is effective in speeding up
the shielding current analysis of a cracked HTS film.
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The purpose of the present study is to propose accel-
eration techniques for the VRM. In addition, after imple-
menting the proposed techniques to the shielding current
analysis, we clarify which technique shows the highest per-
formance.

2. Shielding Current Analysis
In the present study, the shielding current analy-

sis is applied to the scanning permanent-magnet method
(SPMM) [2, 4] that is one of contactless methods for mea-
suring the spatial distribution of the critical current den-
sity in an HTS film. A schematic view of the SPMM is
shown in Fig. 1. In the SPMM, while a cylindrical perma-
nent magnet of height HPM and radius RPM is moved along
the film surface at a constant speed v, an electromagnetic
force acting on the film is measured. In the present study,
we assume that an HTS film contains a single crack and
that its cross section is a rectangle of length l and width
w. In addition, the crack is assumed to have the same geo-
metric center as the film and its direction is assumed to be
parallel to the longitudinal direction of the film. Besides,
the permanent magnet is assumed to move on a straight

Fig. 1 A schematic view of the SPMM.
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line that passes through the geometric center of the film
and is along the longitudinal direction of the film.

In the following, J and E are a shielding current den-
sity and an electric field, respectively, and B is a magnetic
flux density generated by the permanent magnet. Besides,
Ω is a rectangular cross section of the film and n denotes
an outward normal unit vector on the boundary ∂Ω of Ω.
Moreover, ez is a unit vector along the thickness direction.
Also, x and x′ are position vectors of two points in the xy
plane.

Under the thin-plate approximation, there exists a
scalar function T (x, t) such that J = (2/b)∇ × (Tez), and
its time evolution is governed by the following integro-
differential equation [1–3]:

μ0
∂

∂t
(ŴT ) + (∇ × E) · ez = − ∂

∂t
〈B · ez〉, (1)

where μ0 is a permeability of vacuum and b is the film
thickness. Also, 〈 〉 denotes an average operator over the
thickness and the operator Ŵ is given by

ŴT ≡ 2T (x, t)
b

+

�
Ω

Q(|x − x′|) T (x′, t) d2x′, (2)

where Q(r) = −(πb2)−1[r−1 − (r2 + b2)−1/2].
The initial and boundary conditions to (1) are assumed

as follows: T = 0 at t = 0 and J · n = 0 on ∂Ω. For the J-E
constitutive relation, the following power law [1–3, 5, 6] is
assumed:

E = E(|J |) J
|J | , E(J) = EC

(
J
JC

)N

, (3)

where EC and JC are the critical electric field and the crit-
ical current density, respectively, and N is a positive con-
stant. By solving (1) together with the initial and boundary
conditions, we can analyze the time evolution of J.

Throughout the present study, the physical and geo-
metric parameters are fixed as follows: JC = 1 MA/cm2,
EC = 1 mV/m, N = 20, w = 12 mm, l = 11w, b = 1 µm,
HPM = 2 mm, RPM = 0.8 mm, and v = 10 mm/s.

3. Convergence-Property
Improvement for Linear System
Solver

3.1 Linear system of special type
By applying the complete implicit scheme to the

initial-boundary-value problem of (1), we get a nonlin-
ear boundary-value problem at each time step that can be
solved by means of the Newton method. In other words, a
solution of the nonlinear problem is iteratively determined
by solving a linear boundary-value problem at each itera-
tion cycle of the Newton method.

If the linear boundary-value problem is discretized by
using shape functions {ψi}ni=1 of the finite element method
(FEM), we get the following linear system [2, 3]:[

A C
DT O

] [
δT
δλ

]
=

[
b
c

]
. (4)

Here, δT ∈ Rn and δλ ∈ Rk are unknown vectors, whereas
b ∈ Rn and c ∈ Rk are given ones. Furthermore, A ∈ Rn×n

and C,D ∈ Rn×k are given matrices. Here, 2(k−1) and n de-
note the number of elements adjacent to crack surfaces and
the number of nodes, respectively. Throughout the present
study, k is called the number of constraints and it is as-
sumed to satisfy n 
 k.

Specifically, A in (4) is determined by

A = W + δEN, (5)

where the (i, j) entries of W and δEN are given by

(W)i j = μ0(ψi, Ŵψ j)Ω,

(δEN)i j =
2Δt
b

(1, (∇ψi × ez) · ←→J (J) · (∇ψ j × ez))Ω.

Here, Δt denotes a time step size and an inner product is de-
fined by ( f , g)Ω ≡

�
Ω

f (x)g(x) d2x. In addition, the 2nd-

order tensor
←→
J (J) is given by

←→
J (J) =

d
dJ

[
E(J)

J

]
J ⊗ J

J
+

E(J)
J
←→
1 ,

and
←→
1 is a 2nd-order identity tensor. As is apparent from

(5), the matrix A is calculated from an FEM matrix W. In
other words, A is a function of W, i.e. A = A(W). Hence,
if an approximate matrix H is used instead of W, A in (4)
is replaced with A(H).

3.2 Variable-reduction method
If GMRES is applied to (4), its convergence property

becomes degraded remarkably with an increase in k [2, 3].
For the purpose of improving such an unfavorable conver-
gence property, the authors developed the VRM.

In the VRM, the QR factorizations [7] of C and D are
first computed as follows: C = QCRC PT

C , D = QDRDPT
D,

where QC ,QD ∈ Rn×k are matrices such that QT
C QC = I and

QT
DQD = I. Here, I denotes an identity matrix. Besides,

RC ,RD ∈ Rk×k and PC , PD ∈ Rk×k denote upper triangular
matrices and permutation matrices, respectively. By us-
ing QC and QD, we get the following projection matrices:
UC ≡ I − QC QT

C , F ≡ QC QT
D and U ≡ I − F.

Next, by using UC , F and U, δλ can be eliminated
from (4). As a result, (4) is equivalent to the following two
linear systems :

A† δT = b†, (6)

δλ = PCR−1
C QT

C (b − A δT). (7)

Here, for ∀B ∈ Rn×n and ∀ f ∈ Rn, B† and f † are defined
by B† ≡ UT

C B U + F and f † ≡ UT
C [ f − B c∗] + c∗, where

c∗ = QCR−T
D PT

D c.
After (6) is numerically solved for δT by means of

GMRES, δT is substituted into (7) to get δλ. Throughout
the present study, this method is called the VRM.
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4. H-Matrix-Based Acceleration
In order to speed up the VRM, we employ two nu-

merical techniques, H-matrix arithmetics and H-matrix-
based variable preconditioning, that are both based on an
H-matrix of the FEM matrix W.

4.1 Determination ofH-matrix
After a cluster tree is generated on the basis of

the information on node positions, W is transformed
to an H-matrix by using the tree [8, 9]. Specifically,
for a cluster pair of σ and ω on the same level in
the tree, we check whether the admissibility condition,
min[diam(σ), diam(ω)] ≤ η dist(σ,ω), is satisfied or not.
Here, diam(σ) denotes a diameter of σ, whereas dist(σ,ω)
is a distance between σ and ω. In addition, η is an admis-
sibility parameter.

If the cluster pair, σ and ω, satisfies the admissibility
condition, the submatrix W(σ,ω), which corresponds to the
cluster pair, is approximated as W(σ,ω) �

∑r
i=1 uivT

i (≡ WA).
Otherwise, the condition is checked again for four pairs,
each of which is composed of child clusters of σ and ω.
Incidentally, WA is called a low-rank submatrix.

By starting the above check for a pair of two root clus-
ters, we can obtain anH-matrix H for W.

4.2 Acceleration byH-matrix arithmetics
Since matrix-vector multiplications are the most time-

consuming at each iteration of GMRES, the VRM can
be accelerated by high-speed matrix-vector multiplications
A†v. On the other hand, the operation count for Wv fills a
large portion of that for A†v. Hence, the VRM can be ac-
celerated by using fast matrix-vector multiplications Wv.

In the present study, fast matrix-vector multiplications
Wv are realized by means ofH-matrix arithmetics [8].

4.3 Acceleration by variable
preconditioning

For the purpose of accelerating the VRM, the variable
preconditioning (VP) [10] is implemented to the VRM.
As is well known, z ≡ (A†)−1v is approximately calcu-
lated in the VP. In the present study, the VP is carried
out by roughly solving the linear system, A†H0 z = v, with
GMRES. Here, an approximate matrix AH0 is defined by
AH0 ≡ A(H0). Also, H0 is a matrix obtained by substitut-
ing zero matrices into all low-rank submatrices of H.

In the present study, the above method is called an
H-matrix-based VP and the iteration in solving A†H0 z = v
with GMRES is called an inner loop. Also, the maximum
number of iterations in the inner loop is denoted by Ns.

5. Numerical Results
As is apparent from Sec.3, the linear system (6)

changes depending both on the iteration cycle of the New-
ton method and on time. Therefore, throughout Sec.5, ac-
celeration techniques are applied to (6) for the 17th iter-

ation cycle at t = l/(1200v) and their performances are
assessed. As the measure of the speedup effect of an accel-
erated VRM (A-VRM), we adopt the speedup ratio τ/τA,
where τ and τA denote CPU times required for the VRM
and for the A-VRM, respectively. Throughout Sec.5, val-
ues of n and k are fixed as n = 11649 and k = 61, respec-
tively.

In the present section, only the speedup effect of A-
VRMs is investigated. This is mainly because their accu-
racy is hardly affected by H-matrix-based accelerations.
The details of their accuracy are discussed in Appendix A.

5.1 H-matrix arithmetics
Let us first investigate the influence ofH-matrix arith-

metics on matrix-vector multiplications. As the measure
of speed for matrix-vector multiplications, the accelera-
tion rate S H is defined by S H ≡ τ∗/τ∗H, where τ∗H and τ∗

are CPU times for matrix-vector multiplications with and
without H-matrix arithmetics, respectively. Moreover, as
the measure of accuracy forH-matrix arithmetics, the rel-
ative error eH is defined by eH ≡ ‖Wv−Hv‖/‖Wv‖. The ac-
celeration rate and the relative error are calculated as func-
tions of the admissibility parameter η and they are depicted
in Fig. 2. Both the acceleration rate and the relative error
increase monotonously with η. For the purpose of ensur-
ing both speed and accuracy of H-matrix arithmetics, the
value of η is fixed as η = 2, hereafter.

Next, we investigate how the A-VRM is affected by
H-matrix arithmetics. For this purpose, the speedup ra-
tio is measured and is shown in Table 1. For the A-VRM
in which only H-matrix arithmetics are implemented, the
speedup ratio τ/τA amounts up to 9.52. This result indi-
cates the speedup effect due to fast matrix-vector multi-
plications. Hence, the implementation of H-matrix arith-
metics is extremely effective to acceleration of the VRM.

5.2 H-matrix-based VP
First, we investigate the convergence property of the

A-VRM in which an H-matrix-based VP is implemented.

Fig. 2 Dependence of the acceleration rate S H and the relative
error eH on the admissibility parameter η. Here, the sym-
bols, and , indicate the values of S H and eH, respec-
tively.
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Table 1 Speedup ratio τ/τA for two types of A-VRM.

acceleration technique τ/τA

H-matrix arithmetics 9.52
combination method (Ns = 20) 4.83

Fig. 3 The reduction rate δ of convergent iteration numbers and
the upper limit of S ∗H of acceleration rate as functions of
the maximum number Ns of iterations in the inner loop.

Fig. 4 Dependence of the speedup ratio τ/τA on the maximum
number Ns of iterations.

As the measure of the convergence property, the reduc-
tion rate δ of convergent iteration numbers is defined by
δ ≡ Nwith/Nwithout. Here, Nwith and Nwithout are iteration
numbers required for the convergence of GMRES with and
without an H-matrix-based VP, respectively. The depen-
dence of δ on Ns is shown in Fig. 3. We see from this figure
that the reduction rate δ decreases monotonously with Ns

until to reach around 0.13 for Ns � 20. In other words, the
convergence property of the A-VRM is improved with an
increase in Ns.

Next, we investigate the speedup effect by an H-
matrix-based VP. For this purpose, the speedup ratio is
measured as a function of Ns and is depicted in Fig. 4. This
figure indicates that τ/τA takes a maximum at Ns � 20.
Moreover, the maximum is about 2.6.

The above results indicate that, although anH-matrix-
based VP improves the convergence property of the VRM,

its speedup effect is not remarkable as compared with H-
matrix arithmetics.

5.3 Combined acceleration techniques
In order to further accelerate the A-VRM with an H-

matrix-based VP, H-matrix arithmetics are also applied
to matrix-vector multiplications. We first compare the
speedup effect by the combination of an H-matrix-based
VP and H-matrix arithmetics with that by an H-matrix-
based VP only. To this end, the speedup ratio of the com-
bination method is measured as a function of Ns and is
also plotted in Fig. 4. We see from this figure that, by im-
plementingH-matrix arithmetics, the A-VRM with anH-
matrix-based VP can be sped up by a factor of 1.7 - 2.8.

Next, we compare acceleration by the combination
method with that by H-matrix arithmetics only. The
speedup ratio of the combination method is determined and
is also shown in Table 1. Apparently, the acceleration per-
formance by the combination method is much inferior to
that byH-matrix arithmetics only.

Let us explain the reason for such an unexpected
result. From a straightforward calculation of operation
counts, the speedup ratio for the A-VRM with H-matrix
arithmetics only and that for the combination method are
roughly estimated as τ/τA ∼ S H and τ/τA � S H/[δ(1 +
γNsS H], respectively. Here, γ denotes a ratio of the num-
ber of elements in the full-rank block to that of all elements
in the H-matrix. Hence, if the inequality S H < S ∗H(≡
(1/δ − 1)/(γNs)) is satisfied, acceleration by the combi-
nation method is superior to that by H-matrix arithmetics
only. In other words, S ∗H is an upper limit of S H above
which the combination method shows more effective accel-
eration than H-matrix arithmetics only. The dependence
of S ∗H on Ns is also shown in Fig. 3. On the other hand, we
get S H = 12.9 for η = 2 (see Fig. 2). Therefore, the above
inequality is not fulfilled at all. This is why the combina-
tion method is slower than the the A-VRM withH-matrix
arithmetics only.

From the above results, we can conclude that the im-
plementation of H-matrix arithmetics only is the most ef-
fective to acceleration of the VRM.

6. Conclusion
We have investigated acceleration techniques for the

VRM that is a linear-system solver in the shielding cur-
rent analysis of a cracked HTS film. Not only two types
of acceleration techniques, H-matrix arithmetics and H-
matrix-based VP, but also the combination of both tech-
niques is applied to the VRM and their performances are
assessed.

Conclusions obtained in the present study are summa-
rized as follows. H-matrix arithmetics show the most ef-
fective performance of three types of the acceleration tech-
niques. This is mainly because there must exist an upper
limit S ∗H of the acceleration rate S H for the combination

2405005-4



Plasma and Fusion Research: Regular Articles Volume 16, 2405005 (2021)

method to show a higher performance thanH-matrix arith-
metics. However, speed of matrix-vector multiplications
by H-matrix arithmetics is so fast that S H can easily ex-
ceed S ∗H.
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Appendix A Influence ofH-Matrix-
Based Accelerations on Accuracy

In this appendix, we investigate how accuracy of A-
VRMs is influenced by H-matrix-based accelerations. As
the measure of accuracy, we use the relative error defined
by eA ≡ ‖vN − vA‖/‖vA‖. Here, vA ∈ Rn is a random vector
whose components are determined by the random number
generator. Besides, vN ∈ Rn is a numerical solution ob-
tained by solving the linear system, A†v = br, either with
or without acceleration techniques. Here, br is determined
by br = A†vA.

The relative errors are calculated not only for the
VRM without any acceleration but also for three types
of A-VRMs, and the results of computations are listed in
Table A1. We see from this table that accuracy is not at all
affected byH-matrix arithmetics. In contrast, it is slightly
influenced by the H-matrix-based VP. These results indi-

Table A1 Influence of H-matrix arithmetics and the H-matrix-
based VP on the relative error eA. Here, Ns is assumed
as Ns = 20 in the H-matrix-based VP. In addition, the
symbols, © and ×, represent the case with and without
the acceleration techniques, respectively.

H-matrix arithmetics H-matrix-based VP eA

× × 0.99×10−6

© × 0.99×10−6

× © 1.33×10−6

© © 1.33×10−6

cate that accuracy of A-VRMs is hardly affected by H-
matrix-based accelerations.
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