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Line emissions from both silicon (Si) and boron (B) impurity ions introduced by a single tracer-encapsulated
solid pellet (TESPEL) containing silicon hexaboride (SiB6) powders were successfully observed using the ex-
treme ultraviolet (EUV) spectrometer and charge-exchange spectroscopy (CXS) technique in the Large Helical
Device. The CXS diagnostic shows clearly that a hollow radial profile of fully ionized B impurities was created
immediately after the TESPEL injection, and such a hollow profile was relaxed with time. At the same time,
Li-like emissions from the highly ionized Si impurities were also observed with the EUV spectrometer, SOX-
MOS. Therefore, the decay times of these impurities could be estimated under the same plasma conditions. The
estimated decay time of the Si impurities, τSi = 0.12 ± 0.01 s, was found to be slightly longer than that of the B
impurities, τB = 0.09 ± 0.01 s.
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The study of the atomic number (Z) dependence of the
impurity transport in magnetically confined fusion plas-
mas is necessary to understand whether turbulent or neo-
classical transport is dominant in plasmas. In general, the
turbulent-dominant impurity transport does not exhibit a
Z-dependence [1]. On the other hand, the neoclassical im-
purity transport does exhibit such a Z-dependence. An out-
standing example of the contribution of the neoclassical
transport is the impurity accumulation [2]. Recently, we
demonstrated the applicability of the tracer-encapsulated
solid pellet (TESPEL) [3] containing a compound tracer
for a simultaneous study of the behaviors of different im-
purities [4]. Following this applicability demonstration, we
report here that the simultaneous observation of behav-
iors of different impurities, which were locally deposited
in the core region of the plasma under the same plasma
conditions, has been achieved in the Large Helical Device
(LHD).

Figure 1 shows the LHD discharge (#169088) wave-
form summary for this study. The TESPEL (with an outer
diameter of 900 µm and a polystyrene (–CH(C6H5)CH2–)
shell thickness of 120 µm) containing silicon hexaboride
(SiB6) powders was injected at the time of ∼ 3.875 s, as in-
dicated by the black vertical dashed line. The target plasma
was predominantly heated by tangential NBIs (NBI#2
and NBI#3) but also by perpendicular NBIs (NBI#4 and
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Fig. 1 Temporal evolutions of (a) the plasma radiation power
and the tangential NBI power, (b) the perpendicular
NBI#4 power, (c) the perpendicular NBI#5 power, (d) the
line-averaged electron density, and (e) the central electron
temperature. The TESPEL injection time, about 3.875 s,
is indicated by a black vertical dashed line.
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NBI#5). Here, the modulated (180 ms on and 20 ms off)
NBI#5 was used as a probe beam for the charge-exchange
spectroscopy (CXS) diagnostic for the boron (B) mea-
surement. As shown in Fig. 1, the line-averaged electron
density, ne bar, which was about 2 × 1019 m−3 before the
TESPEL injection, was increased by the TESPEL injec-
tion. Subsequently, the increased ne bar was decreased

Fig. 2 Radial profiles of (a) the electron density and temperature
just before the TESPEL injection, (b) the electron temper-
ature variation, (c) the electron density variation, (d) the
CX B V intensity, (e) the B5+ ion density, and (f) the nor-
malized TESPEL ablation emissions. The TESPEL in-
jection time is about 3.875 s. A typical error bar is shown
in panels (b) and (c).

slightly, without anyhow recovering its pre-injection level.
The central electron temperature, Te0, also seemed to be
increased by the TESPEL injection. However, since the
increment of Te was observed over a wide range (see
Fig. 2 (b). The baseline ne and Te profiles, which were
measured with a Thomson scattering system [5], are shown
in Fig. 2 (a)), this can be explained in terms of the addition
of NBI#4 and NBI#5, which were added almost at the same
time as the TESPEL injection. The radial profile of the
light emissions from the ablating SiB6-TESPEL is shown
in Fig. 2 (f). The dark green line shows the emissions mea-
sured with a photomultiplier tube (PMT) through an op-
tical filter with a central wavelength, λcenter, of 657.2 nm
and a full width half maximum (FWHM) of 1.2 nm; these
provide information about Hα (λ = 656.3 nm) from the
CH shell. Additionally, the magenta line shows the emis-
sions measured with the PMT through an optical filter
with λcenter = 412.3 nm and FWHM = 1.1 nm; these pro-
vide information about Si II (λ = 413.09 nm) and B II
(λ = 412.19 nm) from the SiB6 tracer. The CH shell ab-
lation was observed in the reff/a99 range from 0.66 to 1.0
(the signal in the reff/a99 range from 0.48 to 0.66 can be
considered as the contribution of the continuum radiation).
Here, reff is the averaged minor radius on a magnetic flux
surface and a99 is the effective minor radius in which 99%
of the plasma kinetic energy is confined, which is 0.63 m
in this discharge. Furthermore, the emissions from the
SiB6 tracer were observed in the reff/a99 range from 0.48
to 0.74. The difference in the ablation region between the
CH shell and the SiB6 tracer reflects the TESPEL config-
uration. In this work, reff/a99 = 0 and 1 are considered as
the plasma center and boundary, respectively. As shown
in Fig. 2 (e), the very high-density region of the B5+ ions
that appears immediately after the SiB6-TESPEL injection
is in good agreement with the possible deposition region of

Fig. 3 Decay time estimated for (a) the spatially integrated B5+

ion density and (b) the Si XII Li-like emission intensity.
The error bars for the data shown are within the size of
each symbol.
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the SiB6 tracer. It should be noted here that the pellet ab-
lation profile is not the same as the pellet mass deposition
profile. Here, the B5+ ion density, nB

5+, was derived from
the charge-exchange line of B V (λ = 494.5 nm, shown in
Fig. 2 (d)) and the beam density profile calculated using a
beam attenuation code based on the measured ne and Te

profiles. The hollow profile of nB
5+ relaxes with time, and

the B5+ ions eventually disappear from the plasma. The
peak position of the nB

5+ profile seems to move slightly
inward. The ne profile was also changed due to the SiB6-
TESPEL injection (see Fig. 2 (c)). The decay trend of the
nB

5+ profile is a little similar to that of the ne profile. How-
ever, it should be noted here that the ne increment, espe-
cially inside the region with reff/a99 = 0.6, was affected
also by NBI fueling. At the same time, Li-like emissions
(Si XII, 49.94 nm) from the highly ionized silicon (Si) im-
purities were also observed with the EUV spectrometer,
SOXMOS [6]. Thus, we could estimate the decay times
of those impurities under the same plasma conditions. As
shown in Fig. 3, the estimated global decay time of the Si
impurities, τSi = 0.12±0.01 s is slightly longer than that of

the B impurities, τB = 0.09±0.01 s. Here, small variations
in the temporal behavior of the spatially integrated nB

5+

in response to the modulation of the perpendicular NBIs
are observed. This can be explained in terms of the resid-
ual boron resulting from the boronization, etc., but it has a
negligible impact on the global decay trend of nB

5+. These
results indicate that the behaviors of impurities with dif-
ferent Z values (Z = 5 and 14) that were locally deposited
in the core region of the plasma under the same plasma
conditions were successfully obtained.
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