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A novel method is proposed for solving an EFG-type Saddle-Point (EFG-SP) problem. Although the null-
space method and the variable-reduction method (VRM) were developed as a solver of a saddle-point problem,
both methods are extremely time-consuming in solving an EFG-SP problem. This is attributable to the OR
decomposition that is indispensable for both methods. For the purpose of resolving this problem, the improved
Variable-Reduction Method (iVRM) is formulated without using the QR decomposition. A numerical code has
been developed for solving an EFG-SP problem with the iVRM, the VRM and the ICCG method. By means of
the code, the performance of the three methods is investigated numerically. The results of computations show
that, from the standpoint of convergence property and computational speed, the iVRM is even superior to either

of the VRM and the ICCG method.
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1. Introduction

The Element-Free Galerkin (EFG) method [1] was de-
veloped as a meshless approach for solving a boundary-
value problem. It has been widely applied to various fields
in the simulation science: electromagnetic field computa-
tion, structural analysis, fracture analysis and so on.

If the EFG method is applied to a boundary-value
problem, the following saddle-point problem [2] is ob-
tained:

e olli=[ef "

Moreover, the submatrix B is singular and sparse.
Throughout the present study, such a linear system is called
an EFG-type Saddle-Point (EFG-SP) problem.

For the purpose of solving a saddle-point problem
with a singular submatrix B, the null-space method [2, 3]
and the Variable-Reduction Method (VRM) [4, 5] have
been so far proposed. In the null-space method, the or-
thonormal basis of Ker (C”) needs to be determined. On
the other hand, in the VRM, the orthonormal basis of Im C
needs to be determined. Therefore, costly QR decomposi-
tions [6] are indispensable for both methods.

The purpose of the present study is to reformulate the
VRM without using the QR decomposition. In addition,
we numerically investigate applicability of the resulting
method to an EFG-SP problem.
author’s e-mail: kamitani@yz.yamagata-u.ac.jp
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2. EFG-Type Saddle-Point Problem

In this section, after an EFG-SP problem is mathemat-
ically defined, we investigate whether the ICCG method
can be applied to the problem or not. In the following, an
n-dimensional real vector space is denoted by R”.

If Be RVN, C e RV and ¢ € RV, d € RX are given
matrices and given vectors, respectively, a linear system
of the form (1) is generally called a saddle-point problem.
Here, u € RN and 2 € RX are both unknown vectors. Be-
sides, the coefficient matrix in (1) is called a saddle-point
matrix.

Let us consider the additional five conditions:

i) The submatrix B is symmetric and positive semidefi-

nite.

ii) The submatrix C has a full-column rank.

iii) Ker BN Ker (CT) = {0}.

iv) There exists a real number ¢ such that 0 < g < 1 and
K = O(N9).

v) The numbers of nonzero elements in B and C are
O(N) and O(K), respectively.

An EFG-SP problem is defined to be a saddle-point prob-
lem satisfying the above five conditions. Note that, when
1) and ii) are fulfilled, the condition iii) is the necessary and
sufficient condition for the saddle point matrix in (1) to be
nonsingular.

As is well known, a saddle-point problem is difficult
to solve numerically. In order to investigate this tendency,
we apply the ICCG method directly to an EFG-SP problem

© 2022 The Japan Society of Plasma
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Fig. 1 Residual histories of the ICCG method. Here, not only
the parameters of the EFG method but also the details of
a 2D Poisson problem are described in Sec. 4.

that is obtained by discretizing a two-dimensional (2D)
Poisson problem with the EFG method. In the EFG-SP
problem, N denotes the number of nodes. The resulting
residual histories' of the ICCG method are depicted in
Fig. 1. The ICCG method shows convergence both for N
= 4,225 and for N = 16,641, whereas any tendency of con-
vergence cannot be found both for N = 66,049 and for N
= 263,169. In this sense, an increase in the number N of
nodes will remarkably degrade the convergence property
of the ICCG method. This result suggests that a large-scale
EFG-SP problem cannot be solved with the ICCG method.

3. Improvement of

Variable-Reduction Method

As a method for solving a saddle-point problem sat-
isfying only the conditions, 1), ii), iii), and iv), the authors
developed the VRM. In other words, sparsity of submatri-
ces, B and C, is not taken into consideration in the VRM. In
this section, the basic idea of the VRM is briefly explained
and, subsequently, the VRM is reformulated without using
the QR decomposition.

3.1 VRM

In the VRM, the vector A is eliminated from a saddle-
point problem (1) by means of the following 3 steps. The
OR decomposition of submatrix C is first computed as

C = ORPT, (2)

where O € R¥X is a matrix such that QTQ = I. Here,
I denotes an identity matrix. In addition, R € R¥*K and

!Let x’ be an approximate solution of the linear system Ax = b. Then,
the vector r = b — Ax’ and its norm ||r|| are called a residual vector
and a residual norm, respectively. Especially when the linear system is
solved with an iterative method such as the ICCG method and the CG
method, dependence of a residual norm on the number of iterations is
called a residual history. In such an iterative method, the iteration pro-
cess is stopped if the termination condition, ||r||/||b]| < e, is fulfulled.
Throughout the present study, € is called a termination determinant and
the minimum number of iterations satisfying the termination condition is
called a convergent iteration number.

P € R¥*K are an upper triangular matrix and a permuta-
tion matrix, respectively. Next, by using Q, two orthogonal
projection matrices, F' and U, are determined by

F =007, 3)
U=I-F. 4)

Incidentally, matrices, F and U, express orthogonal projec-
tions onto Im C and (Im C)*, respectively. Finally, vector
A s eliminated from the saddle-point problem (1) by using
these two projection matrices. Consequently, we obtain the
following linear system:

B'u=c'. (3)
Here, B' € R¥ and ¢ € R" are defined by

B'=UTBU +F, (6)
c=U"[e-Bd+d, @)

where d is given by
d" =0R TP d. 8)

The actual calculation of the VRM is composed of the fol-
lowing two steps:

Step A Vectors, ¢ and d', are calculated.
Step B The linear system (5) is solved with the conjugate
gradient (CG) method to get u.

Step A is called an overhead, hereafter.

As is described in [4, 5], the VRM is considerably ef-
fective to a saddle-point problem with a dense submatrix B.
In contrast, it should not be applied to an EFG-SP problem
in which B and C are both sparse. The reason for this can
be explained by means of operation counts. For example,
for the case with a 2D boundary-value problem, operation
count of the QR decomposition and that of each iteration
in the CG method are estimated as O(N?) and O(N*/?), re-
spectively (see Appendix A). Hence, the VRM becomes an
inefficient N algorithm with m > 2 for this case?. This is
why the VRM cannot be recommended as a solver of an
EFG-SP problem.

3.2 Reformulation of VRM

As mentioned above, the VRM is inappropriate for a
solver of an EFG-SP problem. The main reason for this
is that the QR decomposition can be a rate-determining
step in the VRM. In order to resolve this problem, we
reformulate the VRM without using the OR decomposi-
tion. The resulting method is called the improved Variable-
Reduction Method (iVRM).

In the iVRM, the orthogonal projection matrix F' and
the vector d' are calculated by using the following equa-
tions:

F=ccToy'cT, )

2Similarly, for the case with a 3D boundary-value problem, the VRM
becomes an inefficient N"* algorithm with m > 7/3.
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d' =cc’oyla. (10)

In other words, by replacing (3) and (8) with (9) and (10),
respectively, the iVRM can be obtained. Note that any OR
decompositions are not included in the iVRM.

The actual calculation of the iVRM is composed of
the same two steps as that of the VRM. In Step B, each
iteration in the CG method contains one multiplication of
matrix B and an N-dimensional vector. In addition, the
matrix-vector multiplication requires two multiplications
of matrix F' and an N-dimensional vector. As is apparent
from (9) , the linear system:

C'cz=v, (11)

must be solved to perform the multiplication of matrix F
and an N-dimensional vector. In the present study, the CG
method is also applied to the solution of (11). In Appendix
B, we describe how the computational cost for the iVRM
is influenced by solving (11) with the CG method.

For the case with an EFG-SP problem obtained from
a 2D boundary-value problem, let us compare operation
count for the iVRM with that for the VRM. As mentioned
above, in the VRM, operation counts for the overhead
and for each iteration in the CG method are O(N?) and
O(N 31 2), respectively. On the other hand, in the iVRM, op-
eration counts for the overhead and for each iteration are
both O(N). In this sense, the computational cost for the
iVRM is considerably reduced as compared with that for
the VRM. A detailed explanation on operation counts for
the iVRM/VRM is given in Appendix A.

4. Performance Evaluation
4.1 Test problem

As a test problem for evaluating the performance of
the iVRM and the VRM, we adopt the following 2D Pois-

son problem on the domain Q bounded by a Jordan curve
0Q:

—Vzu =p in Q, (12)
u=1u on 0Q, (13)

where p and # are known functions in Q and on 0%, re-
spectively.

After discretizing the above Poisson problem by
means of the collocation EFG [7] with N nodes includ-
ing K boundary nodes, we get a saddle-point problem (1).
Here, vectors, ¢ and d, are given by

N
c= Z‘( f fg ¢i<x>p<x>d2x)e,», (14)
K

d=)" e}, (15)
k=1

whereas matrices, B and C, are given by

N N
B= Z (ff V¢z . V¢] dZX) e,-e]T-, (16)
=1 j=1 Q ’

i=

N K
C=). > see;. (17)
-

i k=1

In addition, {¢i(x)}fi , denotes shape functions of the MLS
approximation [1]. Moreover, y; is the kth boundary node.
Furthermore, the standard bases of RN and RX are denoted
by {e1,ez,--- ,en} and {e], €}, -, e}, respectively. Af-
ter a straight forward calculation, we can easily prove that
(16) and (17) satisfy all the conditions, i)-v). Hence, the
obtained saddle-point problem is an EFG-SP problem.

4.2 Numerical experiments

Let us compare the performance of the iVRM with
that of the VRM and the ICCG method. To this end, the
iVRM, the VRM and the ICCG method are implemented
to the numerical code in which the above Poisson problem
is solved with the EFG method. By using the code, we in-
vestigate the performance of the iVRM, the VRM and the
ICCG method as a solver of an EFG-SP problem. Numer-
ical experiments are carried out under the computational
environment listed in Table 1.

Throughout the present study, the domain Q is as-
sumed to be a square region (0, 1) x (0,1). In addition,
functions, p and u, are assumed so that an analytic solution
of the 2D Poisson problem may be u = exp[—(x® + y?)].

Parameters in the EFG method are assumed as fol-
lows. First, after the square region Q is equally divided in
the x- and y-directions, the resulting grid points in Q U 0Q
are assumed as nodes. Second, a linear basis function and
the exponential-type weight function are adopted in the
MLS approximation. Furthermore, the support radius R
of the shape functions is assumed as R = 1.5h, where h
is a distance between the nearest two nodes. Incidentally,
the value of the termination determinant € is assumed as
e=10""1n solving not only (5) but also (11) with the CG
method.

We first investigate the convergence property of the
ICCG method, the VRM and the iVRM. Figure 2 shows
residual histories for the three methods. We see from this
figure that, from the standpoint of convergence property,
both the iVRM and the VRM are even superior to the ICCG
method. Incidentally, the residual history for the iVRM
completely agrees with that for the VRM. This agreement
is attributable to mathematical equivalence between the
iVRM and the VRM.

Table 1 Computational Environment.

Item Description
(0N} Ubuntu ver. 16.04.7
CPU | Intel® Core'" i9-9900K CPU@3.60GHz
Memory 32GB
Compiler GNU Fortran (gfortran) ver. 5.4.0
Con.lpller _02
Options
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Fig. 2 Residual histories for the ICCG method, the VRM and
the iVRM for the case with N = 66,049.
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Fig. 3 Dependence of the CPU time 7 on the number N of nodes.

Next, we investigate the computational speed of the
ICCG method, the VRM and the iVRM. To this end, the
CPU times required for the three methods are measured.
The results of measurements are shown in Fig. 3. This fig-
ure indicates that, although the ICCG does not converge
for the case with N > 6 x 10%, both the VRM and the
iVRM show convergence for the same case. In addition,
the CPU times for the VRM and for the iVRM are roughly
proportional to N? and N'-, respectively. Hence, from the
standpoint of the computational speed, the iVRM is much
faster than the VRM and the ICCG method.

The above results indicate that the iVRM can be a
powerful tool for solving an EFG-SP problem.

5. Conclusion

We have proposed the iVRM as a solver of an EFG-
SP problem. A numerical code is developed for solving an
EFG-SP problem with either the iVRM, the VRM, or the
ICCG method. By using the code, the performance of the
iVRM is numerically evaluated as compared with not only
the VRM but also the ICCG method.

Conclusions obtained in the present study are summa-
rized as follows.

e From the viewpoint of convergence property, the

iVRM/VRM is clearly superior to the ICCG method.

e From the viewpoint of the computational speed, the
iVRM is even faster than either of the VRM and the
ICCG method.

Therefore, we can conclude that the iVRM is highly effec-
tive to the numerical solution of an EFG-SP problem.

Acknowledgment

This work was supported in part by Japan Society
for the Promotion of Science under a Grant-in-Aid for
Scientific Research (C) No.21K04016. A part of this
work was also carried out with the support and under the

auspices of the NIFS Collaboration Research program
(NIFS21KNSS163, NIFS20KNTS069, NIFS20KKGS027).

Appendix A. Operation Counts for
iVRM and VRM

In this appendix, we estimate operation counts for the
iVRM and for the VRM. In the following, operation count
for an algebraic operation a,yp is denoted by c(aop).

Let us first estimate operation count for the VRM. As
is apparent from (2), (7), and (8), operation count for the
overhead is dominated by the following three operations:
OR decomposition of C, UT[¢ — Bd'], and QR TPT d.
On the other hand, operation counts for the three opera-
tions are given by ¢(QR decomposition of C) = O(N?¢*1),
c(UT[e - Bd']) = O(N"*"), and c(QR™T P d) = O(N4*").
Since operation count for the overhead is a sum of the three
operations, it can be written as c(overhead) = O(N%¢*!).
Similarly, operation count for each iteration in the CG
method is determined as c(each iteration) = O(N9*").

Although operation count for the iVRM can be also
estimated in the similar way, it contains the convergent
iteration number m¢ for solving (11). According to the
theory on the Krylov space method, m¢ generally satisfies
me = O(K"), where 0 < r < 1. Hence, operation counts
for the overhead and for each iteration in the CG method
are both given by Q(N™[a0+D.11,

Especially for the case where an EFG-SP problem is
obtained from a 2D boundary-value problem, ¢ = 1/2 is
fulfilled. In addition, the results of computations show that
r = 0 is approximately satisfied for this case. Hence, in the
VRM, operation counts for the overhead and for each iter-
ation in the CG method are given by O(N?) and O(N*/?),
respectively. Furthermore, in the iVRM, operation counts
for the overhead and for each iteration are both O(N).

Appendix B. Influence of (11) on
Computational Cost for iVRM

The computational cost for each iteration in the iVRM
is almost occupied with the computational costs for the fol-
lowing two operations: (i) solution of (11) with the CG
method and (ii) matrix-vector multiplication Bu. In this
appendix, we investigate how the computational cost for
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Fig. Bl Dependence of the convergence iteration number m¢ on
the sequential number of subroutine call for the case
with N = 1,050,625.

the iVRM is affected by solving (11) with the CG method.

First, we investigate how a convergent iteration num-
ber m¢ changes for each solution of (11). To this end, m is
determined as a function of the sequential number of sub-
routine call and the results of computations are depicted
in Fig. B1. This figure indicates that m¢ varies from 68 to
102 with an average of 81.1. Thus, the convergent iteration
number does not change drastically. In this sense, the com-
putational cost for the solution of (11) with the CG method
can be characterized by the average (mc) of the convergent
iteration number.

Next, dependence of the averaged convergent itera-
tion number (m¢) on the number of nodes is numerically
determined and the results of computations are depicted
in Fig. B2. We see from this figure that (m¢) remains al-
most constant for the case with N > 4 x 10°. This result
means that, for this case, operation count for solving (11)
with the CG method is given by O(K) = O(N 172y On the
other hand, operation count for the matrix-vector multipli-
cation Bu is given by O(N). Therefore, an increase in N
will weaken the influence of the solution of (11) with the
CG method on the computational cost for the iVRM.

Finally, we quantitatively investigate the influence of
the solution of (11) with the CG method on the computa-
tional cost for the iVRM. As a measure of the influence, we
adopt the CPU-time ratio Rcpy defined by Repy = 7(11)/7.

100 T T T T

(%)
g

CPU
T
4

CPU-Time Ratio, R
<

0 1 1 1 1
10> 100 10* 10° 10° 107
Number of Nodes, N

o
S
T
w N
S =
(Jw) JOqUINN UOTBISN JUSSIOAUO)) PISBIOAY

Fig. B2 The CPU-time ratio Rcpy and the averaged convergent
iteration number (m¢) as functions of the number N of
nodes. Here, the symbols, ¥ and A, indicate the values
of Repy and (mc), respectively.

Here, 7(11y denotes the accumulated CPU time for solving
(11) with the CG method, whereas 7 is the total CPU time
for solving (5) with the iVRM. Dependence of the CPU-
time ratio Rcpy on the number of nodes is numerically de-
termined and it is also depicted in Fig. B2. The CPU-time
ratio Rcpy decreases monotonously with an increase in N
until it amounts down to 25% for N = 1,050, 625. Thus,
with an increase in N, the solution of (11) with the CG
method have weaker effect on the computational cost for
the iVRM. Therefore, we can conclude that the iVRM is
suitable for a large-sized EFG-SP problem.
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