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Abstract

Field strengths in an oblique magnetosonic shock wave in a collisionless, finite beta plasma are

studied with theory and simulations. With use of the warm, two-fluid model, the maximum values

of the magnetic field, the transverse electric field, and the electric potential in a shock wave are

analytically obtained as functions of the shock speed. One-dimensional, electromagnetic particle

simulations are then carried out to measure the field strengths in shock waves. The theory and the

simulation results are found to be consistent.
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I. INTRODUCTION

In the analysis of particle acceleration in plasmas [1–4], information about electric and

magnetic fields is essential. In a magnetosonic shock wave [4–6], proton reflection is mainly

caused by the electric potential, and we can estimate the number of reflected protons using

the magnitude of the electric potential φ [7–13]. Also, as a function φ, we can express

the ultrarelativistic energy of electrons accelerated by an oblique shock wave [14]. On the

other hand, the transverse electric field can give rise to heavy-ion acceleration in a multi-

ion species plasma with protons being the main ion constituent [15]. If we have a theory

that gives these field values in a shock wave as functions of the shock speed, which can be

measured even from a distance, it will enable us to quantitatively discuss particle motions

in shock waves in laboratory and space plasmas.

Sagdeev suggested [5, 6] that collisionless magnetosonic shock waves have profiles with

damped wave trains, which is qualitatively consistent with simulation results [4]. However,

since we do not know analytic solutions for large-amplitude shock waves, we cannot quan-

titatively predict field values in shock waves even if their propagation speeds are given. It

is in contrast to small-amplitude solitary waves: We know their analytic solutions and thus

can predict their field values at any point and time if their propagation speeds are given

[4, 16, 17].

In 2003, using a relativistic, cold, two-fluid model, Miyahara et al. theoretically obtained

the maximum field values in a magnetosonic shock wave propagating obliquely to an external

magnetic field [18]. The theory gave the maximum values of the magnetic field, the transverse

electric field, and the electric potential as functions of the shock speed. In addition, carrying

out relativistic particle simulations, they made precise measurements of the field strengths in

shock waves, confirming that the simulation results were consistent with the theory. These

studies were, however, restricted to low beta plasmas, where beta is the ratio of the plasma

to magnetic pressures. The plasma pressure was ignored in the theory, and the beta values

were much less than unity in the simulations. In 2018, with use of a nonrelativistic, warm,

two-fluid model, the theory was extended to finite beta plasmas. This theory could not give

the maximum field values as functions of the shock speed, but showed relations among the

maximum field values in a shock wave [19].

In this paper, we further develop the finite beta theory so that we can express the maxi-
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mum field values as functions of the shock speed. Moreover, we perform particle simulations

for shock waves and compare the theory and the simulation results. In Sec. II, we first

mention the basic features of field profiles in shock waves that we have recognized from past

theoretical and computational studies [4–6]. Next, based on the nonrelativistic, warm, two-

fluid model, we analytically obtain the maximum values of the magnetic field, the electric

potential, and the transverse electric field in a shock wave as functions of the shock speed by

using the relations among field strengths given by Ref. [19]; a short preliminary report on

this new theory was published in Ref. [20]. In the final step of the analysis, we present two

distinct models to complete the calculation. Although the viewpoints of the two models are

contrasting, they lead to quantitatively similar results. In Sec. III, we test the theory with

particle simulations. We carry out one-dimensional, relativistic, electromagnetic particle

simulations on shock waves and measure the maximum field strengths in these waves. The

simulation results are found to be consistent with the theory. Section IV gives a summary

of our work.

II. THEORETICAL ANALYSIS

In Sec. II, we obtain analytic expressions for the maximum values of electric and magnetic

fields in a magnetosonic shock wave. To do this, we adopt the nonrelativistic, warm, two-

fluid model in which the equations for the number density n, velocity v, and pressure p are,

respectively, given as
∂nj

∂t
+∇ · (njvj) = 0, (1)

njmj

(

∂

∂t
+ (vj · ∇)

)

vj = njqjE +
njqj
c

vj ×B −∇pj , (2)

(

∂

∂t
+ (vj · ∇)

)

pj = −Γjpj∇ · vj, (3)

where the subscript j refers to ions (j = i) or electrons (j = e); mj is the particle mass; qj

is the particle charge, taken to be qi = e and qe = −e with e the elementary charge; c is the

speed of light; and Γj is the specific heat ratio.

For oblique magnetosonic waves, the left-hand side of the momentum equation (2) is

negligibly small for electrons. (It is not the case with perpendicular waves [5, 16, 17, 21].)

3



z

x

B0

θ
vsh

FIG. 1: Geometry of shock wave and magnetic field. The shock wave propagates in the x direction

with a velocity vsh in an external magnetic field B0 in the (x, z) plane. The angle between B0 and

the x axis is denoted by θ.

We thus use the following form for the electron momentum equation:

E +
ve ×B

c
+

∇pe
ene

= 0. (4)

These equations are coupled with Maxwell equations for the magnetic field B and the

electric field E,
1

c

∂B

∂t
= −∇×E, (5)

1

c

∂E

∂t
= ∇×B −

4π

c

∑

j

njqjvj. (6)

A. Geometry, coordinate system, and basic properties of field profiles

We consider a stationary, planar, magnetosonic shock wave propagating in the x direction

(∂/∂y = ∂/∂z = 0) with a velocity vsh in a uniform external magnetic field B0 in the (x, z)

plane, i.e.,

B0 = (Bx0, 0, Bz0) = B0(cos θ, 0, sin θ), (7)

as shown in Fig. 1. Here, the subscript 0 refers to equilibrium (and thus far upstream)

quantities. For definiteness, we assume that 0 < θ ≤ 90◦. The y axis is then perpendicular

to the plane formed by the wave normal and the external magnetic field. This coordinate

system is suitable for describing shock waves and will be called the shock coordinate system.

In this coordinate system, the electric and the magnetic fields in the shock wave have the

following distinct properties: (1) Bx is constant (Bx = Bx0), which results from the equation

∇ ·B = 0, (2) Bz sharply rises in the front part of the shock wave and has a profile similar

to those of the plasma density n, the electric potential φ, and the transverse electric field
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Ey, and (3) By, Ex (= −∂φ/∂x), and Ez are proportional to ∂Bz/∂x and hence become

zero at the position x = xm at which Bz takes its maximum value (see, for instance, Section

2.4.1 in p. 159 and Fig. 24 in p. 184 in Ref. [4]).

For θ>
∼45◦, Bz is the dominant component of the magnetic field. Hence, the magnetic-field

strength B also takes its maximum value at x = xm.

Properties (2) and (3) exactly hold for small-amplitude waves such as solitary waves and

wave trains governed by the Korteweg-de Vries (KdV) equation; see, for instance, Eqs. (50a)

- (50g) in Ref. [10]. Furthermore, simulations show that these properties approximately hold

for large-amplitude shock waves; see, for instance, Fig. 24 in [4] and Fig. 2 in Sec. III B in

the present paper. It is noted, however, that in the wave frame where ∂/∂t = 0, Ey and Ez

are constant (independent of x), which we see from Faraday’s law (5).

When observing or analyzing shock waves in space, we may not know the shock coordinate

system. We briefly mention a method to obtain this coordinate system for a planar shock

wave. It is obvious that if the external magnetic field B0 and the direction of the shock

propagation are given, we can readily determine the shock coordinate system. Also, even

if B0 is not given, we can find the shock coordinate system provided that we know the

direction of the shock propagation and have observational data B(x′, y′, z′). Here, (x′, y′, z′)

is a coordinate system that the observer is using, and in general it will not coincide with

the shock coordinate system. Even if we do not know B0, we can decide the x axis; it is

along the direction of the wave propagation. As suggested by properties (1) through (3),

this axis plays an important role in the analysis of shock waves. Indeed, B depends only on

x (and t) in a planar shock wave. In addition, Bx is constant along the x axis [property (1)],

and is given as Bx0 = B · ex, where ex is the unit vector parallel to the x axis. From the

properties (2) and (3), then, we see that the magnetic field B(xm) − [B(xm) · ex]ex points

in the z direction. Since we now know the x and the z axes, we can determine the y axis in

the direction perpendicular to these two axes. In this way we can find the shock coordinate

system (x, y, z) from the direction of the shock propagation and a data set for B(x′, y′, z′).

B. Maximum value of Bz

We now calculate the maximum field values in a collisionless, oblique magnetosonic shock

wave in a finite beta plasma. Extending the theories for large-amplitude shock waves [18, 19],
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we obtain the maximum values of Bz, Ey, and φ as functions of the shock propagation speed

vsh (> 0).

In the wave frame where the time derivatives are zero, ∂/∂t = 0, the continuity equation

(1) gives

nwjvwjx = −nwj0vsh, (8)

where the subscript w refers to quantities in the wave frame. Equation (8) shows that vwjx

becomes small in magnitude at x = xm compared with the upstream speed,

|vwjx(xm)| ≪ vsh, (9)

because nwj takes its maximum value at this point and the shock amplitude is large,

nwj(xm) ≫ nwj0.

To calculate the maximum field values, we rewrite the x component of the momentum

equation (2) as

∑

j

mjnwjvwjx
dvwjx

dx
=

∑

j

qjnwj

(

Ewx +
vwjy

c
Bwz −

vwjz

c
Bwy

)

−
∑

j

dpwj

dx
, (10)

where
∑

j indicates summation over particle species. We simplify Eq. (10) using several

approximations. Since the frequency range of the magnetosonic wave under consideration is

low, we assume charge neutrality [4–6, 10, 16, 17], nw = nwi ≃ nwe, Hence, it follows from

the continuity equation (1) that vwx = vwix ≃ vwex. Furthermore, we ignore the electron

term on the left-hand side of Eq. (10) because me is small. Then, combining Eqs. (6), (8),

(10), and Gauss’s law, we obtain the following equation:

B2
wy +B2

wz − B2
wz0 − E2

wx

8π
= minw0vsh(vsh + vwix)−

∑

j

(pwj − pwj0). (11)

On account of the relation (9) and the wave properties mentioned in Sec. IIA, i.e., Bwy and

Ewx are nearly zero at xm, we can ignore B2
wy, E

2
wx, and vwix near the point xm in Eq. (11).

We thus have the equation between Bwzm and pwjm in the wave frame [19]. Since vwix is

negative [|vwix| is much smaller than vsh but finite], the omission of vwix from Eq. (11) makes

B2
wz slightly greater; i.e., this approximation can slightly overestimate the value of Bwz.

Once Bwzm is given, we can obtain the equation for Bzm in the laboratory frame. It is

because, since the present theory is non-relativistic (in particular, since vsh ≪ c), we have

the relations Bw = B, pwj = pj, and nw = n. We note that the relativistic theory also
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shows that Bwzm ≃ Bzm as long as vsh ≪ c, which is proved in Appendix A. Hence, the

equation between Bwzm and pwjm has the same form as the equation between Bzm and pjm.

We thus find the equation for Bzm in the laboratory frame as

Bzm

Bz0
=

(

1 +
2v2sh

v2A sin2 θ
−

∑

j(pjm − pj0)

B2
z0/(8π)

)1/2

, (12)

where vA is the Alfvén speed,

vA =
B0

(4πni0mi)1/2
. (13)

If we omit the pressure terms in Eq. (12), we have the low beta theory in Ref. [18]. As can

be seen from Eq. (12), the plasma pressure acts to suppress the increase in Bz. For later

use, we rewrite the pressure terms in Eq. (12) as

∑

j(pjm − pj0)

B2
z0/(8π)

=
2

v2A sin2 θ

[

v2T i

(

pim
pi0

− 1

)

+
me

mi
v2Te

(

pem
pe0

− 1

)]

, (14)

where vT i and vTe are, respectively, the ion and the electron thermal velocities, vTj =

(Tj/mj)
1/2 with Tj the temperature.

Next, we eliminate the pressure terms from Eq. (12) so that we can express Bzm/Bz0

with vsh, θ, and equilibrium quantities such as vA. We do this in two distinct ways below in

Sec. II B 1 and in Sec. II B 2.

1. Extrapolation of a relation in small-amplitude theory

To this point, we have done calculations under the assumption that the shock amplitude

is large, such that njm ≫ nj0. Here in Sec. II B 1, however, we use an equation that was

obtained in a perturbation theory.

According to the theory in Ref. [10], which derived the KdV equation for nonlinear

magnetosonic waves in finite beta plasmas, we can express the quantity [(pjm/pj0) − 1] in

terms of Bzm as
pjm
pj0

− 1 =
Γjv

2
A sin θ

(

v2p0 − c2s
)

(Bzm − Bz0)

B0

, (15)

where cs is the sound speed,

cs =

(

ni0ΓiTi0 + ne0ΓeTe0

ni0mi + ne0me

)1/2

, (16)
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and vp0 is the speed of the linear magnetosonic wave in the long-wavelength limit,

v2p0 = (1/2)
{

(v2A + c2s) +
[

(v2A + c2s)
2 − 4v2Ac

2
s cos

2 θ
]1/2

}

. (17)

Here, for simplicity, we take the specific heat ratios to be Γi = Γe = 1. Extrapolating

Eq. (15) to large-amplitude waves, we can put Eq. (14) in the form
∑

j(pjm − pj0)

B2
z0/(8π)

=
2c2s

v2p0 − c2s

(

Bzm

Bz0
− 1

)

. (18)

Substituting Eq. (18) in Eq. (12) yields the equation for Bzm/Bz0 as

(

Bzm

Bz0

)2

+
2c2s

v2p0 − c2s

(

Bzm

Bz0

)

−

(

1 +
2v2sh

v2A sin2 θ
+

2c2s
v2p0 − c2s

)

= 0, (19)

from which we find Bzm/Bz0 as a function of vsh, vA, cs, and θ,

(

Bzm

Bz0

)

= −
c2s

v2p0 − c2s
±

[

(

c2s
v2p0 − c2s

)2

+ 1 +
2v2sh

v2A sin2 θ
+

2c2s
v2p0 − c2s

]1/2

. (20)

Since we expect positive values for Bzm/Bz0, we take the upper (plus) sign here.

2. Heuristic, large-amplitude theory

We now take another different approach to obtain the maximum value of Bz. In Sec. II B 1,

we have extrapolated Eq. (15) derived from a perturbation theory to large-amplitude waves.

Here, instead of adopting Eq. (15), we make use of one property of large-amplitude waves:

In large-amplitude magnetosonic shock waves with θ>
∼45◦, Bz becomes the dominant com-

ponent of the magnetic field such that Bzm ≫ Bx0 even if Bz0 ∼ Bx0 [4]. In other words,

as the amplitude increases, shock properties become closer to those of perpendicular shock

waves.

We therefore use the following relation:

Bzm

Bz0
≃

njm

nj0
. (21)

We can find this approximate form from the equation

∂Bz

∂t
=

∂

∂x
(vezBx0 − vexBz), (22)

which follows from the y component of Eq. (4) and the z component of Eq. (5). As mentioned

above, Bz becomes much larger than Bx0 in a large-amplitude shock wave; consequently, the
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field profiles become closer to those in a quasi-perpendicular shock wave. Furthermore,

Eq. (9), which is the equation in the wave frame, indicates that vex(xm) is comparable to vsh

in the laboratory frame. Besides, as θ approaches 90◦, Bz increases and vez decreases [10].

For these reasons, we can ignore the term vezBx0 in Eq. (22) compared with the term vexBz

for large-amplitude shock waves with θ>
∼45◦. Equation (22) can thus be approximated as

∂Bz

∂t
+

∂

∂x
(Bzvex) ≃ 0. (23)

Equation (23) is an exact relation in perpendicular shock waves, in which Bx0 = 0 and

vez = 0. Comparison of Eqs. (1) and (23) shows that the equation for ne and that for Bz

have the same form, which leads to Eq. (21).

Then, noting the relation pj = njTj , we have

pjm
pj0

≃
Bzm

Bz0

, (24)

where we have assumed that the change in the temperature is small, i.e., the plasma is

supposed to be isothermal. [Particle acceleration and instabilities can raise plasma temper-

atures in the downstream region [4–6]. However, these kinetic effects are not included in

Eq. (3) and thus are out of the scope of the present theory.]

Substitution of Eq. (24) in Eq. (12) yields the equation for Bzm/Bz0 as

(

Bzm

Bz0

)2

+
2c2s

v2A sin2 θ

(

Bzm

Bz0

)

−

(

1 +
2(v2sh + c2s)

v2A sin2 θ

)

= 0. (25)

We thus obtain Bzm/Bz0 as

(

Bzm

Bz0

)

= −
c2s

v2A sin2 θ
±

[

(

c2s
v2A sin2 θ

)2

+ 1 +
2(v2sh + c2s)

v2A sin2 θ

]1/2

, (26)

in which we take the upper (plus) sign.

Interestingly, although the method of obtaining the relation between pjm and Bzm,

Eq. (15), in Sec. II B 1 and the method of obtaining Eq. (24) in Sec. II B 2 are contrast-

ing, their final results, Eqs. (20) and (26), are quite similar. If we replace the term (v2p0− c2s)

in Eq. (20) by v2A sin2 θ, Eq. (20) becomes identical to Eq. (26). We also note that in the

range of angles 45◦<
∼θ < 90◦, for which our approximations are valid, (v2p0 − c2s) is greater

than v2A sin2 θ and approaches v2A sin2 θ as θ goes to 90◦. Hence, at 90◦, (v2p0 − c2s) is equal to

v2A sin2 θ, and Eqs. (20) and (26) are identical.
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C. Eym and φm

Using Bzm, we can show the maximum values of the transverse electric field Ey and the

electric potential φ formed in the shock wave. By virtue of Faraday’s law (5), we find Eym

as
Eym

Bz0
=

vsh
c

(

Bzm

Bz0
− 1

)

. (27)

Moreover, after lengthy calculations outlined in Appendix B, we find φm as [18, 19]

eφm = eφB + eφp, (28)

where

eφB = miv
2
A

(

sin2 θ + sin θ cos2 θ
)

(

Bzm

Bz0
− 1

)

, (29)

and

eφp =

∫

1

ne

∂pe
∂x

dx. (30)

The electric potential φp given by Eq. (30) is due to the electron thermal pressure pe and

would be of the order of the electron temperature Te; if Te is constant, Eq. (30) gives

eφp = Te ln(nem/ne0). Substituting Eq. (21) in this equation gives

eφp = Te ln

(

Bzm

Bz0

)

. (31)

Appendix B calculates the potential under the assumption that θ>
∼45◦. For θ<

∼45◦, the

approximations in the calculations would not be accurate enough [18]. It is noted also that,

aside from the accuracy, we should restrict ourselves to the range θ>
∼45◦. As the propagation

angle θ becomes smaller than this range, the field profiles begin to look quite different from

those described in Sec. IIA. In front of the main pulse region of a shock wave, we have

large-amplitude wave trains propagating faster than the shock wave; see, for instance, Fig. 5

in Ref. [18]. The generation of such wave trains would be due to the positive dispersion

[4–6].

In Sec. III, we examine the validity of our analytical results, Eqs. (20) and Eqs. (26)

through (31), with particle simulations. We do this because the present theory is based on

several assumptions and approximations. For instance, the shock wave was assumed to be

stationary; thus, the time derivatives in the field equations (1) - (6) were set to be zero,

∂/∂t = 0, in the wave frame. However, shock waves are not perfectly stationary. They
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always have some fluctuations even in the absence of instabilities. In addition, the theory

is based on the fluid model and does not take into account kinetic effects such as proton

reflection, which can give rise to amplitude oscillations [26]. When a shock wave reflects a

bunch of protons forward at the shock front, the shock wave temporarily loses some energy

and the maximum field values decrease. As the reflected protons return to and enter the

shock wave, however, the field profiles recover and a new reflection process begins again; in

this way, Bzm(t) and the other maximum field values oscillate with time t. The period of the

amplitude oscillation [26] is of the order of half of the proton gyroperiod, ∼ π/Ωi. Particle

simulations enable us to study shock phenomena including these effects in a self-consistent

manner.

III. NUMERICAL STUDY OF FIELD STRENGTHS

In 1985, Ohsawa [25] studied shock waves and particle acceleration with particle sim-

ulations, using a two-dimensional, fully kinetic, particle simulation code. That code was

supposed to deal with current-driven instabilities that might grow in the shock wave. How-

ever, while those simulations showed strong proton acceleration in the shock wave, noticeable

instabilities were not observed. Then, in 1987, Tokar et al. [11] carried out simulations with

a code similar to that in Ref. [25]; i.e., a two-dimensional, fully kinetic code. They reported

that “shock parameters are chosen to maximize the growth rates of the current driven ion

acoustic instability in the shock” and that “However, the amount of resistive electron heat-

ing was small and ion reflection provides the major source of dissipation.” This conclusion

is basically in accord with that of Ref. [25].

These results indicate that it is worth while to study planar shock waves with one-

dimensional codes, even though they cannot treat current-driven instabilities. Indeed, by

use of one-dimensional codes, various shock phenomena have been found and analyzed [4].

A. Simulation model and parameters

We use a one-dimensional (one spatial coordinate and three velocity components), rela-

tivistic, electromagnetic, particle simulation code with full ion and electron dynamics [22, 23]

to study the evolution of shock waves and measure the field strengths in these waves. The
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code adopts the bounded plasma model [24], in which the plasma is isolated with vacuum

outside. The initial plasma density near the left boundary of the plasma region is set to

be high compared with the background density. The particles in the high density region

initially have, on average, a finite velocity v0, which is perpendicular to B0 and is in the

(x, z) plane with its x component being positive; thus these particles act as a piston to create

a shock wave by pushing neighboring particles. More detailed descriptions related to this

shock simulation model can be found in Refs. [14, 25].

The simulation parameters are as follows: The total grid size is Lx = 214∆g, where ∆g is

the grid spacing. The left and the right boundaries of the plasma region are, respectively,

xL = 800∆g and xR = 15584∆g. The width of the initial high-density region is 600∆g,

with its plasma density three times as high as the background density. The numbers of

simulation particles are Ni = Ne ≃ 6.29×106; the ion-to-electron mass ratio ismi/me = 400;

and the speed of light is c/(ωpe∆g) = 10.0, where ωpe is the electron plasma frequency,

ωpe = (4πne2/me)
1/2 with n being the electron density averaged over the plasma region.

We take the ratio of the electron gyrofrequency |Ωe| [= eB0/(mec)] to the electron plasma

frequency to be |Ωe|/ωpe = 0.3, which is 1/10 of the value |Ωe|/ωpe = 3 used in the simulations

for low beta plasmas in Ref. [18]. With these parameters, the Alfvén speed is determined as

vA/(ωpe∆g) = (me/mi)
1/2[c/(ωpe∆g)](|Ωe|/ωpe) = 0.15. The ion thermal velocity is fixed to

be vT i/(ωpe∆g) = 0.005.

We change the beta value by changing the electron thermal velocity in the range from

vTe/(ωpe∆g) = 0.5 to 2.0, with the other parameters kept unchanged. The beta value,

(niTi+neTe)/(B
2
0/8π) = 2(me/mi)v

2
Te/v

2
A+2v2T i/v

2
A, is given as β = 0.06 for vTe/(ωpe∆g) =

0.5 and β = 0.89 for vTe/(ωpe∆g) = 2.0. For these vT i and vTe, the ion temperature is much

lower than the electron temperatures. As a result, Γi has little effect on Eqs. (20) and (26);

we see that the term ni0ΓiTi0 can be ignored in the equation for cs, Eq. (16), if Ti ≪ Te.

B. Simulation results

Figure 2 shows snapshots of field profiles of a shock wave with θ = 75◦ in a plasma

with vTe/(ωpe∆g) = 0.5; thus β = 0.06 and vp0/(ωpe∆g) = 0.152. The shock speed is

vsh = 2.90vp0, which is sufficiently lower than the speed of light, vsh/c = 0.044. These are

the profiles in the laboratory frame where the plasma is at rest in the upstream region. The
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FIG. 2: Field profiles in a shock wave. The fields Bz, Ey, and φ have their maximum values at

xm/(c/ωpe) ≃ 390 at ωpet = 5400, while By(xm) ≃ 0. Since the values of By are small near xm, we

have smoothed out the noises of By by spatial averaging.

fields are divided into two groups: Ey and φ as well as Bz take their maximum values near

the position x = xm, while By(xm) is nearly zero (Ex and Ez, which are not shown here, are

also nearly zero there). These features are consistent with the shock properties described in

Sec. IIA.

Performing such simulations, we have measured the maximum field values in various

shock waves. The left panels in Fig. 3 display the maximum values of Bz, Ey, and φ in

shock waves with θ = 75◦ as functions of the Mach number, vsh/vp0, for vTe/(ωpe∆g) = 0.5

(β = 0.06), while the right panels are for vTe/(ωpe∆g) = 1.0 (β = 0.224). Also, the

left and the right panels in Fig. 4 show the cases with vTe/(ωpe∆g) = 1.5 (β = 0.502)

and with vTe/(ωpe∆g) = 2.0 (β = 0.891), respectively. The closed and the open circles

represent our simulation results. Take Bzm in the top panels for example; we have depicted

both Bzm(tlg) and Bzm(tsm) for each Mach number, where tlg and tsm are, respectively, the

times at which Bzm(t) takes its largest and smallest values in one period of the amplitude

oscillation. The solid lines show our theory. For Bzm, we used the theory adopting the
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FIG. 3: Maximum field values versus Mach number vsh/vp0 for β = 0.06 (left panels) and for

β = 0.224 (right panels). The closed and the open circles, respectively, show the peak field values

at t = tlg and at t = tsm observed in the simulations. The solid lines show the theory.

heuristic, large-amplitude approximation, Eq. (26). The theory containing the extrapolation

for Bzm, Eq. (20), is not depicted here because Eqs. (20) and (26) give quite close values;

even for the high-beta case, vTe/(ωpe∆g) = 2.0, their difference is less than 1 percent for our

simulation parameters. For Eym and φm, Eqs. (27)-(29) and (31) were used. The magnitude

of φp, Eq. (31), is considerably smaller than φB, Eq. (29); approximately 1 percent for the

case vTe/(ωpe∆g) = 0.5 and 15 percent for vTe/(ωpe∆g) = 2.0.

We first look at the magnetic field Bzm depicted in the top panels in Figs. 3 and 4. The

theory lines are closer to the closed circles representing Bzm(tlg) than to the open circles

representing Bzm(tsm). It is understandable because in the large-amplitude phase (t ≃ tlg)

in the amplitude oscillation, Bz(x) has a dominant pulse rising sharply in the front part

as shown in Fig. 2, which was supposed in our theory, while in the small-amplitude phase

(t ≃ tsm), Bz(x) has several pulses with similar peak values. In Appendix C, we show an

example of such field profiles in the small-amplitude phase and explain how we measured
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FIG. 4: Maximum field values versus Mach number vsh/vp0 for β = 0.502 (left panels) and for

β = 0.891 (right panels). The closed and the open circles, respectively, show the peak field values

at t = tlg and at t = tsm observed in the simulations. The solid lines show the theory.

those field values. We mainly compare the theory with the data in the large-amplitude phase

(closed circles) below.

The theory and the simulations give the same order of magnitude in both the lower beta

plasmas shown in Fig. 3 and the higher beta plasmas in Fig. 4. The differences between the

theory lines and the simulation values (closed circles) are within 30 percent.

For Mach numbers vsh/vp0
<
∼4, the theoretical values of Bzm are slightly greater than the

observed ones in Figs. 3 and 4. This is consistent with the statement below Eq. (11) that

the theory would slightly overestimate the value of Bzm because of the omission of vwix from

Eq. (11).

We also find that the simulation values increase with increasing Mach number slightly

more than the theoretical ones do. This phenomenon is believed to arise from the amplitude

oscillation. As the Mach number goes up, the magnitude of the amplitude oscillation, which

may be given as Bzm(tlg) − Bzm(tsm), grows larger, which pushes up the field values in the
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large-amplitude phase (t ≃ tlg).

The theory and the simulations for the transverse electric field Eym are depicted in the

second panels in Figs. 3 and 4. As expected from the straightforward derivation of Eq. (27),

Eym behaves similarly to Bzm.

The electric potential shown in the bottom panels in Figs. 3 and 4 exhibits behavior

qualitatively similar to that of Bzm and Eym. However, the differences between the theo-

retical and the simulation values become fairly large in high Mach numbers. Although the

differences between the theory and the simulation values are less than 20 percent for Mach

numbers vsh/vp0
<
∼4, the simulation values can be twice as large as the theoretical ones for

vsh/vp0
>
∼4.

In the second data from the left (vsh/vp0 = 3.09) for β = 0.89, the closed circle is slightly

under the open circle; i.e., φm(tlg) < φm(tsm). It can take place because we defined tlg and

tsm, respectively, as the times when Bzm(t) takes its largest and smallest values; therefore,

tlg is not necessarily the time when φm takes its largest value. If the amplitude oscillation is

small and thus the shock amplitude does not change much in time, φm(tlg) can occasionally

become smaller than φm(tsm) as a result of the field fluctuations unrelated to the amplitude

oscillation.

Although the phenomenon that the simulation values increase more steeply with the

Mach number than the theory was also seen in Bzm and Eym, this tendency is enhanced in

the electric potential; that is, the effect of the amplitude oscillation is more significant in

the electric potential. It occurs because φ is determined by and thus sensitive to the spatial

distribution of charged particles. The change in the distribution of charged particles arising

from the proton reflection at the shock front directly affects the profile and the magnitude

of φ [26].

We should note the possibility, however, that the shock waves in our simulations might

have greater amplitude oscillations than shock waves in space. The magnitude of the am-

plitude oscillation would depend on the scale lengths of time and space of the processes

of shock formation, as well as on the Mach number. In our simulation model, a localized,

high density plasma starts pushing the neighboring plasma suddenly at t = 0 and creates a

shock wave. Obviously, the length of the high density region, which is only 60c/ωpe, is much

smaller than those in explosions in space such as solar flares and supernovae. This would

enhance the nonstationarity of shock waves in our simulations.
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IV. SUMMARY

We have theoretically studied the field strengths in an oblique magnetosonic shock wave

in a finite beta plasma using the two-fluid model. Furthermore, we have carried out particle

simulations of shock waves to test the theory.

First, by extending the previous cold plasma theory [18, 19] to the warm plasma theory,

we have analytically obtained the maximum values of the magnetic field Bz, the transverse

electric field Ey, and the electric potential φ in a shock wave in a finite beta plasma as

functions of the shock speed vsh. We calculated these values in two different ways, and these

two calculations gave results similar to each other.

We then examined our theory with one-dimensional, electromagnetic particle simulations.

We observed the evolution of shock waves with the propagation angle θ = 75◦ and showed

the maximum field strengths in these waves as functions of the Mach number vsh/vp0 for

four different beta values ranging from β = 0.06 to 0.89. The simulation results are found

to be consistent with the theory.

As mentioned in Sec. I, information about field strengths is essential for the investigation

of particle motions. The present work enables us to estimate the field strengths in shock

waves in laboratory and space plasmas with use of measured shock speeds without detailed

observational data of fields in shock waves and thus will help us make quantitative analyses

of particle motions in those waves.

Appendix A: Relation between Bwzm and Bzm in the relativistic theory

In the relativistic theory, Bz is related to Bwz through

Bz = γsh(Bwz + vshEwy0/c), (A1)

where γsh is the Lorentz factor corresponding to the shock speed, γsh = (1 − v2sh/c
2)−1/2.

Since

Ewy = Ewy0 = −(vsh/c)Bwz0, (A2)

in the wave frame, the magnitude of the second term on the right-hand side of Eq. (A1) is

|vshEwy0/c| ∼ (v2sh/c
2)Bwz0

<
∼(v2sh/c

2)Bwz. (A3)
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Because vsh ≪ c is assumed, we can ignore the term vshEwy0/c compared with the term Bwz

in Eq. (A1), which results in the relation Bwzm ≃ Bzm. (If the terms of the order of ∼ v2sh/c
2

are ignored, γsh becomes unity.)

Similarly, from the relation

Bwz = γsh(Bz − vshEy/c), (A4)

we can prove that Bwzm ≃ Bzm. Indeed, with the help of the equation for the transverse

electric field Eym, i.e., Eq. (27), we can estimate the magnitude of the second term on the

right-hand side of Eq. (A4) as vshEy/c ∼ (v2sh/c
2)Bz, which shows that the second term is

negligibly small.

Appendix B: Maximum value of electric potential

Here we outline the calculations in Ref. [19] to derive the maximum value of the electric

potential. As in Sec. II, the shock wave is supposed to steadily propagate in the x direction

with a speed vsh in an external magnetic field given by Eq. (7).

If the maximum magnetic field Bzm is known, we can calculate the maximum electric

potential as a function of Bzm, with the help of Ampère’s law (6). To estimate the currents

in Eq. (6), we need fluid velocities. By virtue of Eqs. (4) and (A2), we find the x, y, and z

components of the fluid electron velocity as

vwex =
cEwy0Bwz

B2
w

+
vwe‖Bwx0

Bw

, (B1)

vwey = −
cEwxBwz

B2
w

+
vwe‖Bwy

Bw

−
cBwz

enweB2
w

∂pe
∂x

, (B2)

vwez =
c(EwxBwy − Ewy0Bwx0)

B2
w

+
vwe‖Bwz

Bw

+
cBwy

enweB2
w

∂pe
∂x

, (B3)

where the subscript ‖ indicates the component parallel to the magnetic field. The electron

fluid velocity consists of the E × B drift, which is represented by the first terms on the

right-hand side of Eqs. (B1) - (B3), the flow along the magnetic field represented by the

second terms proportional to vwe‖, and the diamagnetic drift represented by the third terms

proportional to ∂pe/∂x.

Substituting Eq. (B2) in the y component of Eq. (6) yields

dBwz

dx
= −

4πnwievwiy

c
+

4πnwee

c

(

−
cEwxBwz

B2
w

+
vwe‖Bwy

Bw

−
cBwz

enweB2
w

∂pwe
∂x

)

. (B4)
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FIG. 5: Profiles of Bz and φ in small-amplitude phase. There are several pulses with their peak

values comparable to each other, which differs from the field profiles in a large-amplitude phase

shown in Fig. 2.

We eliminate the electron density nwe using Eq. (8). Then, with the help of Eqs. (A2) and

(B1), we have the longitudinal electric field (Ewx = −∂φw/∂x) as

∂φw

∂x
=

(

Bwz0 −
vwe‖
vsh

Bwx0Bw

Bwz

)(

1

4πnwe0e

dBwz

dx
+

nwivwiy

nwe0c

)

−
vwe‖
c

BwyBw

Bwz
+

1

enwe

∂pwe
∂x

.

(B5)

By integrating Eq. (B5), we obtain, after some algebra, the electric potential, Eqs. (28) -

(30) [18, 19]. The potential φp, Eq. (30), stems from the last term proportional to ∂pwe/∂x

in Eq. (B5), while φB given by Eq. (29) arises from the other terms. These calculations have

been made under the assumption that θ>
∼45◦. We also note that, as in the case of Bz, since

vsh ≪ c, the electric potential φ in the laboratory frame is nearly the same as φ in the wave

frame.

Appendix C: Field profiles in small-amplitude phase

We here discuss the field profiles in a small-amplitude phase and explain how we measured

those field values.

Figure 5 displays the profiles of Bz and φ at ωpet = 5200 in a shock wave with vsh/vp0 =

3.76 in a plasma with β = 0.06. This shock wave is in a small-amplitude phase at this

moment.

Unlike the field profiles in the large-amplitude phase shown in Fig. 2, Bz(x) has several
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peaks with the same order of magnitude, with the highest peak at x = x4(t); x4 has been xm

to this point. The peak Bz(x4) is now decreasing with time and is fading out. On the other

hand, the peak Bz(x2) in the front part is growing; it will soon exceed Bz(x4) and become

the highest peak. In the amplitude oscillation, such process is repeated (more detailed time

variations of field profiles are shown in Ref. [26]). The amplitude oscillation can be viewed

as an example of the strong stability of shock waves [27].

The electric potential in the lower panel sharply rises in two regions; in x1 < x < x2 in the

front pulse and in x3 < x < x4 in the highest pulse. We recorded the jump φ(x4)− φ(x3) as

the magnitude of the electric potential at this moment; i.e., the other jumps such as the one

in the front part, φ(x2)− φ(x1), are not included in the present definition of the maximum

value of the electric potential.
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