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ABSTRACT

Field strengths in an oblique magnetosonic shock wave in a collisionless, finite beta plasma are studied with theory and simulations. With
the use of the warm, two-fluid model, the maximum values of the magnetic field, the transverse electric field, and the electric potential in a
shock wave are analytically obtained as functions of the shock speed. One-dimensional, electromagnetic particle simulations are then carried
out to measure the field strengths in shock waves. The theory and the simulation results are found to be consistent.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0084377

I. INTRODUCTION

In the analysis of particle acceleration in plasmas,1–4 information
about electric and magnetic fields is essential. In a magnetosonic shock
wave,4–6 proton reflection is mainly caused by the electric potential,
and we can estimate the number of reflected protons using the magni-
tude of the electric potential /.7–13 Also, as a function /, we can
express the ultrarelativistic energy of electrons accelerated by an obli-
que shock wave.14 On the other hand, the transverse electric field can
give rise to heavy-ion acceleration in a multi-ion species plasma with
protons being the main ion constituent.15 If we have a theory that gives
these field values in a shock wave as functions of the shock speed,
which can be measured even from a distance, it will enable us to quan-
titatively discuss particle motions in shock waves in laboratory and
space plasmas.

Sagdeev suggested5,6 that collisionless magnetosonic shock waves
have profiles with damped wave trains, which is qualitatively consis-
tent with simulation results.4 However, since we do not know analytic
solutions for large-amplitude shock waves, we cannot quantitatively
predict field values in shock waves even if their propagation speeds are
given. It is in contrast to small-amplitude solitary waves: we know
their analytic solutions and thus can predict their field values at any
point and time if their propagation speeds are given.4,16,17

In 2003, using a relativistic, cold, two-fluid model, Miyahara et al.
theoretically obtained the maximum field values in a magnetosonic
shock wave propagating obliquely to an external magnetic field.18 The

theory gave the maximum values of the magnetic field, the transverse
electric field, and the electric potential as functions of the shock speed.
In addition, carrying out relativistic particle simulations, they made
precise measurements of the field strengths in shock waves, confirm-
ing that the simulation results were consistent with the theory. These
studies were, however, restricted to low beta plasmas, where beta is the
ratio of the plasma to magnetic pressures. The plasma pressure was
ignored in the theory, and the beta values were much less than unity
in the simulations. In 2018, with the use of a nonrelativistic, warm,
two-fluid model, the theory was extended to finite beta plasmas. This
theory could not give the maximum field values as functions of the
shock speed, but showed relations among the maximum field values in
a shock wave.19

In this paper, we further develop the finite beta theory so that we
can express the maximum field values as functions of the shock speed.
Moreover, we perform particle simulations for shock waves and com-
pare the theory and the simulation results. In Sec. II, we first mention
the basic features of field profiles in shock waves that we have recog-
nized from past theoretical and computational studies.4–6 Next, based
on the nonrelativistic, warm, two-fluid model, we analytically obtain
the maximum values of the magnetic field, the electric potential, and
the transverse electric field in a shock wave as functions of the shock
speed by using the relations among field strengths given by Ref. 19; a
short preliminary report on this new theory was published in Ref. 20.
In the final step of the analysis, we present two distinct models to
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complete the calculation. Although the viewpoints of the two models
are contrasting, they lead to quantitatively similar results. In Sec. III,
we test the theory with particle simulations. We carry out one-
dimensional, relativistic, electromagnetic particle simulations on shock
waves and measure the maximum field strengths in these waves. The
simulation results are found to be consistent with the theory. Section
IV gives a summary of our work.

II. THEORETICAL ANALYSIS

In Sec. II, we obtain analytic expressions for the maximum values
of electric and magnetic fields in a magnetosonic shock wave. To do
this, we adopt the nonrelativistic, warm, two-fluid model in which the
equations for the number density n, velocity v, and pressure p are,
respectively, given as

@nj
@t
þr � ðnjvjÞ ¼ 0; (1)

njmj
@

@t
þ ðvj � rÞ

� �
vj ¼ njqjE þ

njqj
c
vj � B�rpj; (2)

@

@t
þ ðvj � rÞ

� �
pj ¼ �Cjpjr � vj; (3)

where the subscript j refers to ions (j¼ i) or electrons (j ¼ e); mj is the
particle mass; qj is the particle charge, taken to be qi¼ e and qe ¼ �e
with e the elementary charge; c is the speed of light; and Cj is the spe-
cific heat ratio.

For oblique magnetosonic waves, the left-hand side of the
momentum Eq. (2) is negligibly small for electrons. (It is not the case
with perpendicular waves.5,16,17,21) We thus use the following form for
the electron momentum equation:

E þ ve � B
c
þrpe

ene
¼ 0: (4)

These equations are coupled with Maxwell equations for the
magnetic field B and the electric field E,

1
c
@B
@t
¼ �r� E; (5)

1
c
@E
@t
¼ r� B� 4p

c

X
j

njqjvj: (6)

A. Geometry, coordinate system, and basic properties
of field profiles

We consider a stationary, planar, magnetosonic shock wave
propagating in the x direction (@=@y ¼ @=@z ¼ 0) with a velocity vsh
in a uniform external magnetic field B0 in the (x, z) plane, that is,

B0 ¼ ðBx0; 0;Bz0Þ ¼ B0ðcos h; 0; sin hÞ; (7)

as shown in Fig. 1. Here, the subscript 0 refers to equilibrium (and
thus far upstream) quantities. For definiteness, we assume that
0 < h � 90�. The y axis is then perpendicular to the plane formed by
the wave normal and the external magnetic field. This coordinate sys-
tem is suitable for describing shock waves and will be called the shock
coordinate system. In this coordinate system, the electric and the mag-
netic fields in the shock wave have the following distinct properties:

(1) Bx is constant (Bx ¼ Bx0), which results from the equation
r � B ¼ 0; (2) Bz sharply rises in the front part of the shock wave and
has a profile similar to those of the plasma density n, the electric
potential /, and the transverse electric field Ey; and (3) By, Ex
(¼ �@/=@x), and Ez are proportional to @Bz=@x and hence become
zero at the position x ¼ xm at which Bz takes its maximum value [see,
for instance, Sec. 2.4.1, p. 159 and Fig. 24 in Ref. 4 (p. 184)].

For h � 45�, Bz is the dominant component of the magnetic field.
Hence, the magnetic-field strength B also takes its maximum value at
x ¼ xm.

Properties (2) and (3) exactly hold for small-amplitude waves
such as solitary waves and wave trains governed by the Korteweg–de
Vries (KdV) equation; see, for instance, Eqs. (50a)–(50g) in Ref. 10.
Furthermore, simulations show that these properties approximately
hold for large-amplitude shock waves; see, for instance, Fig. 24 in
Ref. 4 and Fig. 2 in Sec. III B in the present paper. It is noted, however,
that in the wave frame where @=@t ¼ 0, Ey, and Ez are constant (inde-
pendent of x), which we see from Faraday’s law (5).

FIG. 1. Geometry of shock wave and magnetic field. The shock wave propagates
in the x direction with a velocity vsh in an external magnetic field B0 in the (x, z)
plane. The angle between B0 and the x axis is denoted by h.

FIG. 2. Field profiles in a shock wave. The fields Bz, Ey, and / have their maximum
values at xm=ðc=xpeÞ ’ 390 at xpet ¼ 5400, while ByðxmÞ ’ 0. Since the values
of By are small near xm, we have smoothed out the noises of By by spatial
averaging.
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When observing or analyzing shock waves in space, we may not
know the shock coordinate system. We briefly mention a method to
obtain this coordinate system for a planar shock wave. It is obvious
that if the external magnetic field B0 and the direction of the shock
propagation are given, we can readily determine the shock coordinate
system. Also, even if B0 is not given, we can find the shock coordinate
system provided that we know the direction of the shock propagation
and have observational data Bðx0; y0; z0Þ. Here, ðx0; y0; z0Þ is a coordi-
nate system that the observer is using, and in general, it will not coin-
cide with the shock coordinate system. Even if we do not know B0, we
can decide the x axis; it is along the direction of the wave propagation.
As suggested by properties (1)–(3), this axis plays an important role in
the analysis of shock waves. Indeed, B depends only on x (and t) in a
planar shock wave. In addition, Bx is constant along the x axis [prop-
erty (1)] and is given as Bx0 ¼ B � ex , where ex is the unit vector paral-
lel to the x axis. From the properties (2) and (3), then, we see that the
magnetic field BðxmÞ � ½BðxmÞ � ex�ex points in the z direction. Since
we now know the x and the z axes, we can determine the y axis in the
direction perpendicular to these two axes. In this way, we can find the
shock coordinate system ðx; y; zÞ from the direction of the shock
propagation and a data set for Bðx0; y0; z0Þ.

B. Maximum value of Bz

We now calculate the maximum field values in a collisionless,
oblique magnetosonic shock wave in a finite beta plasma. Extending
the theories for large-amplitude shock waves,18,19 we obtain the maxi-
mum values of Bz, Ey, and / as functions of the shock propagation
speed vsh (>0Þ.

In the wave frame where the time derivatives are zero, @=@t ¼ 0,
the continuity Eq. (1) gives

nwjvwjx ¼ �nwj0vsh; (8)

where the subscript w refers to quantities in the wave frame. Equation
(8) shows that vwjx becomes small in magnitude at x ¼ xm compared
with the upstream speed

jvwjxðxmÞj � vsh; (9)

because nwj takes its maximum value at this point and the shock
amplitude is large, nwjðxmÞ 	 nwj0.

To calculate the maximum field values, we rewrite the x compo-
nent of the momentum Eq. (2) as

X
j

mjnwjvwjx
dvwjx
dx
¼
X
j

qjnwj Ewx þ
vwjy
c

Bwz �
vwjz
c

Bwy

� �

�
X
j

dpwj
dx

; (10)

where
P

j indicates summation over particle species. We simplify Eq.
(10) using several approximations. Since the frequency range of the
magnetosonic wave under consideration is low, we assume charge
neutrality,4–6,10,16,17 nw ¼ nwi ’ nwe. Hence, it follows from the conti-
nuity Eq. (1) that vwx ¼ vwix ’ vwex. Furthermore, we ignore the elec-
tron term on the left-hand side of Eq. (10) because me is small. Then,
combining Eqs. (6), (8), (10), and Gauss’s law, we obtain the following
equation:

B2
wy þ B2

wz � B2
wz0 � E2

wx

8p
¼ minw0vshðvsh þ vwixÞ �

X
j

ðpwj � pwj0Þ:

(11)

On account of the relation (9) and the wave properties mentioned in
Sec. IIA, that is, Bwy and Ewx are nearly zero at xm, we can ignore
B2
wy; E

2
wx , and vwix near the point xm in Eq. (11). We thus have the

equation between Bwzm and pwjm in the wave frame.19 Since vwix is
negative [jvwixj is much smaller than vsh but finite], the omission of
vwix from Eq. (11) makes B2

wz slightly greater; that is, this approxima-
tion can slightly overestimate the value of Bwz .

Once Bwzm is given, we can obtain the equation for Bzm in the
laboratory frame. It is because, since the present theory is non-
relativistic (in particular, since vsh � c), we have the relations Bw

¼ B; pwj ¼ pj, and nw ¼ n. We note that the relativistic theory also
shows that Bwzm ’ Bzm as long as vsh � c, which is proved in
Appendix A. Hence, the equation between Bwzm and pwjm has the
same form as the equation between Bzm and pjm.

We thus find the equation for Bzm in the laboratory frame as

Bzm

Bz0
¼ 1þ 2v2sh

v2A sin
2h
�
P

jðpjm � pj0Þ
B2
z0=ð8pÞ

 !1=2

; (12)

where vA is the Alfv�en speed

vA ¼
B0

ð4pni0miÞ1=2
: (13)

If we omit the pressure terms in Eq. (12), we have the low beta theory
in Ref. 18. As can be seen from Eq. (12), the plasma pressure acts to
suppress the increase in Bz. For later use, we rewrite the pressure terms
in Eq. (12) asP

jðpjm � pj0Þ
B2
z0=ð8pÞ

¼ 2

v2A sin
2h

v2Ti
pim
pi0
� 1

� �
þme

mi
v2Te

pem
pe0
� 1

� �� �
;

(14)

where vTi and vTe are, respectively, the ion and the electron thermal
velocities, vTj ¼ ðTj=mjÞ1=2 with Tj the temperature.

Next, we eliminate the pressure terms from Eq. (12) so that we
can express Bzm=Bz0 with vsh, h, and equilibrium quantities such as
vA. We do this in two distinct ways below in Secs. II B 1 and IIB 2.

1. Extrapolation of a relation in small-amplitude theory

To this point, we have done calculations under the assumption that
the shock amplitude is large, such that njm 	 nj0. Here in Sec. II B 1,
however, we use an equation that was obtained in a perturbation
theory.

According to the theory in Ref. 10, which derived the KdV equa-
tion for nonlinear magnetosonic waves in finite beta plasmas, we can
express the quantity ½ðpjm=pj0Þ � 1� in terms of Bzm as

pjm
pj0
� 1 ¼ Cjv2A sin h

v2p0 � c2s
� � ðBzm � Bz0Þ

B0
; (15)

where cs is the sound speed
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cs ¼
ni0CiTi0 þ ne0CeTe0

ni0mi þ ne0me

� �1=2

; (16)

and vp0 is the speed of the linear magnetosonic wave in the long-
wavelength limit

v2p0 ¼ ð1=2Þ ðv2A þ c2s Þ þ ðv2A þ c2s Þ
2 � 4v2Ac

2
s cos

2h
h i1=2� 	

: (17)

Here, for simplicity, we take the specific heat ratios to be Ci ¼ Ce ¼ 1.
Extrapolating Eq. (15) to large-amplitude waves, we can put Eq. (14)
in the form X

j

ðpjm � pj0Þ

B2
z0=ð8pÞ

¼ 2c2s
v2p0 � c2s

Bzm

Bz0
� 1

� �
: (18)

Substituting Eq. (18) in Eq. (12) yields the equation for Bzm=Bz0 as

Bzm

Bz0

� �2

þ 2c2s
v2p0 � c2s

Bzm

Bz0

� �
� 1þ 2v2sh

v2A sin
2h
þ 2c2s

v2p0 � c2s

 !
¼ 0;

(19)

from which we find Bzm=Bz0 as a function of vsh; vA, cs, and h,

Bzm

Bz0

� �
¼� c2s

v2p0 � c2s
6

c2s
v2p0 � c2s

 !2

þ 1þ 2v2sh
v2A sin

2h
þ 2c2s

v2p0 � c2s

2
4

3
5
1=2

:

(20)

Since we expect positive values for Bzm=Bz0, we take the upper (plus)
sign here.

2. Heuristic, large-amplitude theory

We now take other different approaches to obtain the maximum
value of Bz. In Sec. II B 1, we have extrapolated Eq. (15) derived from a
perturbation theory to large-amplitude waves. Here, instead of adopt-
ing Eq. (15), we make use of one property of large-amplitude waves: in
large-amplitude magnetosonic shock waves with h � 45�, Bz becomes
the dominant component of the magnetic field such that Bzm 	 Bx0

even if Bz0 
 Bx0.
4 In other words, as the amplitude increases, shock

properties become closer to those of perpendicular shock waves.
We therefore use the following relation:

Bzm

Bz0
’ njm

nj0
: (21)

We can find this approximate form from the equation

@Bz

@t
¼ @

@x
ðvezBx0 � vexBzÞ; (22)

which follows from the y component of Eq. (4) and the z component
of Eq. (5). As mentioned above, Bz becomes much larger than Bx0 in a
large-amplitude shock wave; consequently, the field profiles become
closer to those in a quasi-perpendicular shock wave. Furthermore, Eq.
(9), which is the equation in the wave frame, indicates that vexðxmÞ is
comparable to vsh in the laboratory frame. In addition, as h approaches
90�, Bz increases and vez decreases.

10 For these reasons, we can ignore

the term vezBx0 in Eq. (22) compared with the term vexBz for large-
amplitude shock waves with h � 45�. Equation (22) can thus be
approximated as

@Bz

@t
þ @

@x
ðBzvexÞ ’ 0: (23)

Equation (23) is an exact relation in perpendicular shock waves
in which Bx0 ¼ 0 and vez ¼ 0. Comparison of Eqs. (1) and (23) shows
that the equation for ne and that for Bz have the same form, which
leads to Eq. (21).

Then, noting the relation pj ¼ njTj, we have

pjm
pj0
’ Bzm

Bz0
; (24)

where we have assumed that the change in the temperature is small;
that is, the plasma is supposed to be isothermal. [Particle acceleration
and instabilities can raise plasma temperatures in the downstream
region.4–6 However, these kinetic effects are not included in Eq. (3)
and thus are out of the scope of the present theory.]

Substitution of Eq. (24) in Eq. (12) yields the equation for
Bzm=Bz0 as

Bzm

Bz0

� �2

þ 2c2s
v2A sin

2h
Bzm

Bz0

� �
� 1þ 2ðv2sh þ c2s Þ

v2A sin
2h

 !
¼ 0: (25)

We thus obtain Bzm=Bz0 as

Bzm

Bz0

� �
¼ � c2s

v2A sin
2h

6
c2s

v2A sin
2h

 !2

þ 1þ 2ðv2sh þ c2s Þ
v2A sin

2h

2
4

3
5
1=2

(26)

in which we take the upper (plus) sign.
Interestingly, although the method of obtaining the relation

between pjm and Bzm, Eq. (15), in Sec. II B 1 and the method of obtain-
ing Eq. (24) in Sec. II B 2 are contrasting, their final results, Eqs. (20)
and (26), are quite similar. If we replace the term ðv2p0 � c2s Þ in

Eq. (20) by v2A sin
2h, Eq. (20) becomes identical to Eq. (26). We also

note that in the range of angles 45�� h < 90�, for which our approxi-
mations are valid, ðv2p0 � c2s Þ is greater than v2A sin

2h and approaches

v2A sin
2h as h goes to 90�. Hence, at 90�; ðv2p0 � c2s Þ is equal to

v2A sin
2h, and Eqs. (20) and (26) are identical.

C. Eym and /m

Using Bzm, we can show the maximum values of the transverse
electric field Ey and the electric potential / formed in the shock wave.
By virtue of Faraday’s law (5), we find Eym as

Eym
Bz0
¼ vsh

c
Bzm

Bz0
� 1

� �
: (27)

Moreover, after lengthy calculations outlined in Appendix B, we find
/m as18,19

e/m ¼ e/B þ e/p; (28)

where
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e/B ¼ miv
2
A sin2hþ sin h cos2hð Þ Bzm

Bz0
� 1

� �
; (29)

and

e/p ¼
ð
1
ne

@pe
@x

dx: (30)

The electric potential /p given by Eq. (30) is due to the electron ther-
mal pressure pe and would be of the order of the electron temperature
Te; if Te is constant, Eq. (30) gives e/p ¼ Te ln ðnem=ne0Þ. Substituting
Eq. (21) in this equation gives

e/p ¼ Te ln
Bzm

Bz0

� �
: (31)

Appendix B calculates the potential under the assumption that
h � 45�. For h � 45�, the approximations in the calculations would
not be accurate enough.18 It is also noted that, aside from the accuracy,
we should restrict ourselves to the range h � 45�. As the propagation
angle h becomes smaller than this range, the field profiles begin to
look different from those described in Sec. IIA. In front of the main
pulse region of a shock wave, we have large-amplitude wave trains
propagating faster than the shock wave; see, for instance, Fig. 5 in Ref.
18. The generation of such wave trains would be due to the positive
dispersion.4–6

In Sec. III, we examine the validity of our analytical results, Eqs.
(20) and (26)–(31), with particle simulations. We do this because the
present theory is based on several assumptions and approximations.
For instance, the shock wave was assumed to be stationary; thus, the
time derivatives in the field Eqs. (1)–(6) were set to be zero, @=@t ¼ 0,
in the wave frame. However, shock waves are not perfectly stationary.
They always have some fluctuations even in the absence of instabilities.
In addition, the theory is based on the fluid model and does not take
into account kinetic effects such as proton reflection, which can give
rise to amplitude oscillations.26 When a shock wave reflects a bunch of
protons forward at the shock front, the shock wave temporarily loses
some energy and the maximum field values decrease. As the reflected
protons return to and enter the shock wave, however, the field profiles
recover and a new reflection process begins again; in this way, BzmðtÞ
and the other maximum field values oscillate with time t. The period
of the amplitude oscillation26 is of the order of half of the proton gyro-
period,
p=Xi. Particle simulations enable us to study shock phenom-
ena including these effects in a self-consistent manner.

III. NUMERICAL STUDY OF FIELD STRENGTHS

In 1985, Ohsawa25 studied shock waves and particle acceleration
with particle simulations, using a two-dimensional, fully kinetic, parti-
cle simulation code. That code was supposed to deal with current-
driven instabilities that might grow in the shock wave. However, while
those simulations showed strong proton acceleration in the shock
wave, noticeable instabilities were not observed. Then, in 1987, Tokar
et al.11 carried out simulations with a code similar to that in Ref. 25,
that is, a two-dimensional, fully kinetic code. They reported that
“shock parameters are chosen to maximize the growth rates of the cur-
rent driven ion acoustic instability in the shock” and that “however,
the amount of resistive electron heating was small and ion reflection
provides the major source of dissipation.” This conclusion is basically
in accord with that of Ref. 25.

These results indicate that it is worthwhile to study planar shock
waves with one-dimensional codes, even though they cannot treat
current-driven instabilities. Indeed, by the use of one-dimensional
codes, various shock phenomena have been found and analyzed.4

A. Simulation model and parameters

We use a one-dimensional (one spatial coordinate and three
velocity components), relativistic, electromagnetic, particle simulation
code with full ion and electron dynamics22,23 to study the evolution of
shock waves and measure the field strengths in these waves. The code
adopts the bounded plasma model24 in which the plasma is isolated
with vacuum outside. The initial plasma density near the left boundary
of the plasma region is set to be high compared with the background
density. The particles in the high density region initially have, on aver-
age, a finite velocity v0, which is perpendicular to B0 and is in the
ðx; zÞ plane with its x component being positive; thus, these particles
act as a piston to create a shock wave by pushing neighboring particles.
More detailed descriptions related to this shock simulation model can
be found in Refs. 14 and 25.

The simulation parameters are as follows: the total grid size is
Lx ¼ 214Dg, where Dg is the grid spacing. The left and the right
boundaries of the plasma region are xL ¼ 800Dg and xR ¼ 15 584Dg,
respectively. The width of the initial high-density region is 600Dg, with
its plasma density three times as high as the background density. The
numbers of simulation particles are Ni ¼ Ne ’ 6:29� 106; the ion-
to-electron mass ratio is mi=me ¼ 400; and the speed of light is
c=ðxpeDgÞ ¼ 10:0, where xpe is the electron plasma frequency, xpe

¼ ð4pne2=meÞ1=2 with n being the electron density averaged over
the plasma region. We take the ratio of the electron gyrofrequency
jXej [¼ eB0=ðmecÞ] to the electron plasma frequency to be jXej=xpe

¼ 0:3, which is 1/10 of the value jXej=xpe ¼ 3 used in the simulations
for low beta plasmas in Ref. 18. With these parameters, the Alfv�en
speed is determined as vA=ðxpeDgÞ ¼ ðme=miÞ1=2½c=ðxpeDgÞ�ðjXej=
xpeÞ ¼ 0:15. The ion thermal velocity is fixed to be vTi=ðxpeDgÞ
¼ 0:005.

We change the beta value by changing the electron thermal
velocity in the range from vTe=ðxpeDgÞ ¼ 0:5 to 2.0, with the other
parameters kept unchanged. The beta value, ðniTi þ neTeÞ=
ðB2

0=8pÞ ¼ 2ðme=miÞv2Te=v2A þ 2v2Ti=v
2
A, is given as b ¼ 0:06 for

vTe=ðxpeDgÞ ¼ 0:5 and b ¼ 0:89 for vTe=ðxpeDgÞ ¼ 2:0. For these vTi
and vTe, the ion temperature is much lower than the electron tempera-
tures. As a result, Ci has little effect on Eqs. (20) and (26); we see that
the term ni0CiTi0 can be ignored in the equation for cs, Eq. (16), if
Ti � Te.

B. Simulation results

Figure 2 shows snapshots of field profiles of a shock wave with
h ¼ 75� in a plasma with vTe=ðxpeDgÞ ¼ 0:5; thus, b ¼ 0:06 and
vp0=ðxpeDgÞ ¼ 0:152. The shock speed is vsh ¼ 2:90vp0, which is suf-
ficiently lower than the speed of light, vsh=c ¼ 0:044. These are the
profiles in the laboratory frame where the plasma is at rest in the
upstream region. The fields are divided into two groups: Ey and /, and
Bz take their maximum values near the position x ¼ xm, while ByðxmÞ
is nearly zero (Ex and Ez, which are not shown here, are also nearly
zero there). These features are consistent with the shock properties
described in Sec. IIA.
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Performing such simulations, we have measured the maximum
field values in various shock waves. The left panels in Fig. 3 display the
maximum values of Bz, Ey, and / in shock waves with h ¼ 75� as
functions of the Mach number, vsh=vp0, for vTe=ðxpeDgÞ ¼ 0:5
(b ¼ 0:06), while the right panels are for vTe=ðxpeDgÞ ¼ 1:0
(b ¼ 0:224). Also, the left and the right panels in Fig. 4 show the cases
with vTe=ðxpeDgÞ ¼ 1:5 (b ¼ 0:502) and with vTe=ðxpeDgÞ ¼ 2:0
(b ¼ 0:891), respectively. The closed and the open circles represent
our simulation results. Take Bzm in the top panels for example; we
have depicted both BzmðtlgÞ and BzmðtsmÞ for each Mach number,
where tlg and tsm are, respectively, the times at which BzmðtÞ takes its
largest and smallest values in one period of the amplitude oscillation.
The solid lines show our theory. For Bzm, we used the theory adopting
the heuristic, large-amplitude approximation, Eq. (26). The theory
containing the extrapolation for Bzm, Eq. (20), is not depicted here
because Eqs. (20) and (26) give close values; even for the high-beta
case, vTe=ðxpeDgÞ ¼ 2:0, their difference is less than 1% for our simu-
lation parameters. For Eym and /m, Eqs. (27)–(29) and (31) were used.
The magnitude of /p, Eq. (31), is considerably smaller than /B,
Eq. (29), that is, approximately 1% for the case vTe=ðxpeDgÞ ¼ 0:5
and 15% for the case vTe=ðxpeDgÞ ¼ 2:0.

We first look at the magnetic field Bzm depicted in the top panels
in Figs. 3 and 4. The theory lines are closer to the closed circles repre-
senting BzmðtlgÞ than to the open circles representing BzmðtsmÞ. It is
understandable because in the large-amplitude phase (t ’ tlg) in the
amplitude oscillation, BzðxÞ has a dominant pulse rising sharply in the

front part as shown in Fig. 2, which was supposed in our theory, while
in the small-amplitude phase (t ’ tsm), BzðxÞ has several pulses with
similar peak values. In Appendix C, we show an example of such field
profiles in the small-amplitude phase and explain how we measured
those field values. We mainly compare the theory with the data in the
large-amplitude phase (closed circles) below.

The theory and the simulations give the same order of magnitude
in both the lower beta plasmas shown in Fig. 3 and the higher beta
plasmas in Fig. 4. The differences between the theory lines and the
simulation values (closed circles) are within 30%.

For Mach numbers vsh=vp0 � 4, the theoretical values of Bzm are
slightly greater than the observed ones in Figs. 3 and 4. This is consis-
tent with the statement below Eq. (11) that the theory would slightly
overestimate the value of Bzm because of the omission of vwix from
Eq. (11).

We also find that the simulation values increase with increasing
Mach number slightly more than the theoretical ones do. This phe-
nomenon is believed to arise from the amplitude oscillation. As the
Mach number goes up, the magnitude of the amplitude oscillation,
which may be given as BzmðtlgÞ � BzmðtsmÞ, grows larger, which
pushes up the field values in the large-amplitude phase (t ’ tlg).

The theory and the simulations for the transverse electric field
Eym are depicted in the second panels in Figs. 3 and 4. As expected
from the straightforward derivation of Eq. (27), Eym behaves similarly
to Bzm.

FIG. 3. Maximum field values vs Mach number vsh=vp0 for b ¼ 0:06 (left panels)
and for b ¼ 0:224 (right panels). The closed and the open circles, respectively,
show the peak field values at t ¼ tlg and at t ¼ tsm observed in the simulations.
The solid lines show the theory.

FIG. 4. Maximum field values vs Mach number vsh=vp0 for b ¼ 0:502 (left panels)
and for b ¼ 0:891 (right panels). The closed and the open circles, respectively,
show the peak field values at t ¼ tlg and at t ¼ tsm observed in the simulations.
The solid lines show the theory.
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The electric potential shown in the bottom panels in Figs. 3 and 4
exhibits behavior qualitatively similar to that of Bzm and Eym.
However, the differences between the theoretical and the simulation
values become fairly large in high Mach numbers. Although the differ-
ences between the theory and the simulation values are less than 20%
for Mach numbers vsh=vp0 � 4, the simulation values can be twice as
large as the theoretical ones for vsh=vp0 � 4.

In the second data from the left (vsh=vp0 ¼ 3:09) for b ¼ 0:89,
the closed circle is slightly under the open circle, that is, /mðtlgÞ
< /mðtsmÞ. It can take place because we defined tlg and tsm, respec-
tively, as the times when BzmðtÞ takes its largest and smallest values;
therefore, tlg is not necessarily the time when /m takes its largest value.
If the amplitude oscillation is small and thus the shock amplitude does
not change much in time, /mðtlgÞ can occasionally become smaller
than /mðtsmÞ as a result of the field fluctuations unrelated to the
amplitude oscillation.

Although the phenomenon that the simulation values increase
more steeply with the Mach number than the theory was also seen in
Bzm and Eym, this tendency is enhanced in the electric potential; that
is, the effect of the amplitude oscillation is more significant in the elec-
tric potential. It occurs because / is determined by and thus sensitive
to the spatial distribution of charged particles. The change in the distri-
bution of charged particles arising from the proton reflection at the
shock front directly affects the profile and the magnitude of /.26

We should note the possibility, however, that the shock waves in
our simulations might have greater amplitude oscillations than shock
waves in space. The magnitude of the amplitude oscillation would
depend on the scale lengths of time and space of the processes of shock
formation, as well as on the Mach number. In our simulation model, a
localized, high-density plasma starts pushing the neighboring plasma
suddenly at t¼ 0 and creates a shock wave. Obviously, the length of
the high-density region, which is only 60c=xpe, is much smaller than
those in explosions in space such as solar flares and supernovae. This
would enhance the nonstationarity of shock waves in our simulations.

IV. SUMMARY

We have theoretically studied the field strengths in an oblique
magnetosonic shock wave in a finite beta plasma using the two-fluid
model. Furthermore, we have carried out particle simulations of shock
waves to test the theory.

First, by extending the previous cold plasma theory18,19 to the
warm plasma theory, we have analytically obtained the maximum val-
ues of the magnetic field Bz, the transverse electric field Ey, and the
electric potential / in a shock wave in a finite beta plasma as functions
of the shock speed vsh. We calculated these values in two different
ways, and these two calculations gave results similar to each other.

We then examined our theory with one-dimensional, electro-
magnetic particle simulations. We observed the evolution of shock
waves with the propagation angle h ¼ 75� and showed the maximum
field strengths in these waves as functions of the Mach number vsh=vp0
for four different beta values ranging from b ¼ 0:06 to 0.89. The sim-
ulation results are found to be consistent with the theory.

As mentioned in Sec. I, information about field strengths is essen-
tial for the investigation of particle motions. The present work enables
us to estimate the field strengths in shock waves in laboratory and
space plasmas with the use of measured shock speeds without detailed

observational data of fields in shock waves and thus will help us make
quantitative analyses of particle motions in those waves.
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APPENDIX A: RELATION BETWEEN Bwzm AND Bzm

IN THE RELATIVISTIC THEORY

In the relativistic theory, Bz is related to Bwz through

Bz ¼ cshðBwz þ vshEwy0=cÞ; (A1)

where csh is the Lorentz factor corresponding to the shock speed,
csh ¼ ð1� v2sh=c

2Þ�1=2. Since

Ewy ¼ Ewy0 ¼ �ðvsh=cÞBwz0; (A2)

in the wave frame, the magnitude of the second term on the right-
hand side of Eq. (A1) is

jvshEwy0=cj 
 ðv2sh=c2ÞBwz0 � ðv2sh=c2ÞBwz: (A3)

Because vsh � c is assumed, we can ignore the term vshEwy0=c com-
pared with the term Bwz in Eq. (A1), which results in the relation
Bwzm ’ Bzm. (If the terms of the order of 
v2sh=c

2 are ignored, csh
becomes unity.)

Similarly, from the relation

Bwz ¼ cshðBz � vshEy=cÞ; (A4)

we can prove that Bwzm ’ Bzm. Indeed, with the help of the equa-
tion for the transverse electric field Eym, that is, Eq. (27), we can
estimate the magnitude of the second term on the right-hand side
of Eq. (A4) as vshEy=c 
 ðv2sh=c2ÞBz , which shows that the second
term is negligibly small.

APPENDIX B: MAXIMUM VALUE OF ELECTRIC
POTENTIAL

Here, we outline the calculations in Ref. 19 to derive the maxi-
mum value of the electric potential. As in Sec. II, the shock wave is
supposed to steadily propagate in the x direction with a speed vsh in
an external magnetic field given by Eq. (7).

If the maximum magnetic field Bzm is known, we can calculate
the maximum electric potential as a function of Bzm, with the help
of Ampère’s law (6). To estimate the currents in Eq. (6), we need
fluid velocities. By virtue of Eqs. (4) and (A2), we find the x, y, and
z components of the fluid electron velocity as

vwex ¼
cEwy0Bwz

B2
w
þ

vwekBwx0

Bw
; (B1)

vwey ¼ �
cEwxBwz

B2
w
þ

vwekBwy

Bw
� cBwz

enweB2
w

@pe
@x

; (B2)
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vwez ¼
cðEwxBwy � Ewy0Bwx0Þ

B2
w

þ
vwekBwz

Bw
þ

cBwy

enweB2
w

@pe
@x

; (B3)

where the subscript k indicates the component parallel to the mag-
netic field. The electron fluid velocity consists of the E � B drift,
which is represented by the first terms on the right-hand side of
Eqs. (B1)–(B3), the flow along the magnetic field represented by the
second terms proportional to vwek, and the diamagnetic drift repre-
sented by the third terms proportional to @pe=@x.

Substituting Eq. (B2) in the y component of Eq. (6) yields

dBwz

dx
¼ �

4pnwievwiy
c

þ 4pnwee
c

� cEwxBwz

B2
w
þ

vwekBwy

Bw
� cBwz

enweB2
w

@pwe
@x

� �
: (B4)

We eliminate the electron density nwe using Eq. (8). Then, with the
help of Eqs. (A2) and (B1), we have the longitudinal electric field
(Ewx ¼ �@/w=@x) as

@/w

@x
¼ Bwz0 �

vwek
vsh

Bwx0Bw

Bwz

� �
1

4pnwe0e
dBwz

dx
þ nwivwiy

nwe0c

� �

�
vwek
c

BwyBw

Bwz
þ 1
enwe

@pwe
@x

: (B5)

By integrating Eq. (B5), we obtain, after some algebra, the electric
potential, Eqs. (28)–(30).18,19 The potential /p, Eq. (30), stems from
the last term proportional to @pwe=@x in Eq. (B5), while /B given
by Eq. (29) arises from the other terms. These calculations have
been made under the assumption that h � 45�. We also note that,
as in the case of Bz, since vsh � c, the electric potential / in the lab-
oratory frame is nearly the same as / in the wave frame.

APPENDIX C: FIELD PROFILES IN SMALL-AMPLITUDE
PHASE

We here discuss the field profiles in a small-amplitude phase
and explain how we measured those field values.

Figure 5 displays the profiles of Bz and / at xpet ¼ 5200 in a
shock wave with vsh=vp0 ¼ 3:76 in a plasma with b ¼ 0:06. This
shock wave is in a small-amplitude phase at this moment.

Unlike the field profiles in the large-amplitude phase shown in
Fig. 2, BzðxÞ has several peaks with the same order of magnitude,
with the highest peak at x ¼ x4ðtÞ; x4 has been xm to this point. The
peak Bzðx4Þ is now decreasing with time and is fading out. On the
other hand, the peak Bzðx2Þ in the front part is growing; it will soon
exceed Bzðx4Þ and become the highest peak. In the amplitude oscil-
lation, such process is repeated (more detailed time variations of
field profiles are shown in Ref. 26). The amplitude oscillation can be
viewed as an example of the strong stability of shock waves.27

The electric potential in the lower panel sharply rises in two
regions; in x1 < x < x2 in the front pulse and in x3 < x < x4 in the
highest pulse. We recorded the jump /ðx4Þ � /ðx3Þ as the magni-
tude of the electric potential at this moment; that is, the other jumps

such as the one in the front part, /ðx2Þ � /ðx1Þ, are not included in
the present definition of the maximum value of the electric
potential.
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