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By means of one-dimensional, electromagnetic, particle-in-cell simulations, we investigate

the nonlinear development of lower hybrid wave (LHW) instabilities driven by energetic

ions with a ring-like velocity distribution, paying special attention to the effects of energetic-

ion injection. We consider the LHWs propagating perpendicular to the magnetic field in a

collisionless plasma into which energetic ions with a speed smaller than the Alfvén speed are

continuously injected. We found that the LHWs excited by the energetic ions can maintain

large amplitudes for a long time because the continuous injection causes the steep gradient

of the energetic-ion velocity distribution. Furthermore, as time advances, the wavenumber

of excited modes become larger. Because of this nonlinear development of the LHWs, the

energy transfer from the energetic ions to bulk ions through the LHWs is enhanced. As the

injection speed increases, a wide wavenumber range of the modes are excited and the bulk-

ion energy change increases.

1. Introduction

Energetic ions with a ring-like velocity distribution in the velocity space perpendicular to

the magnetic field are often produced in fusion and space plasmas. In fusion plasmas, such

energetic ions can be generated by neutral beam injection for plasma heating and by nuclear

fusion reaction. In the Earth’s magnetosphere, ion ring-like velocity distributions are observed

near the bow shock1) and in the inner magnetosphere.2) The ion ring-like velocity distribution

can cause various wave instabilities,3) depending on factors such as the wave propagation

direction, the energetic-ion speed, the plasma density, and the magnetic field strength.

The ring-like energetic ions excite electromagnetic fast magnetosonic waves when the

energetic-ion ring speed is greater than the Alfvén speed. In the inner magnetosphere, the

fast magnetosonic waves are considered to contribute to the acceleration of radiation belt

electrons4–8) and cold ions.9, 10) When the energetic-ion ring speed is much smaller than the
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Alfvén speed, electrostatic lower hybrid waves (LHWs) are excited.11, 12) Here, we define the

LHWs as electrostatic waves around the lower hybrid resonance frequency ωLH, which is

given by

ω2
LH = (ΩiΩe)2

1 + ω2
pi/Ω

2
i

ω2
pe + Ω

2
e
, (1)

where Ωi and Ωe are the ion and electron cyclotron frequencies, and ωpi and ωpe are the

ion and electron plasma frequencies, respectively. The LHWs are often observed in fusion13)

and space plasmas.14) Since the LHWs can also accelerate both ions and electrons, increas-

ing attention has been paid to the LHW instabilities, for example, in association with solar

flares.15–17) In the auroral region of the Earth’s magnetosphere, the LHWs excited by precipi-

tating ions can contribute to the energization of oxygen ions.18) Nonlinear coupling between

the LHWs and other waves19–22) and mode conversion from the LHWs to other waves23, 24)

have also been important research subjects.

Particle-in-cell (PIC) simulation is a useful tool for studying the nonlinear evolution of the

LHW instabilities driven by the ring-like energetic ions. Most of the simulation studies solve

initial value problems,7, 8, 12, 15–17, 19, 21, 22) where the ring-like energetic ions are set up at the

initial time, t = 0, and the relaxation of the energetic-ion velocity distribution is simulated.

However, in the real situation, the continuous injection or loss of the energetic ions occurs

even after t = 0, which had not been considered in previous studies. For example, in the

fusion plasmas, the energetic ions are continuously generated by the neutral beam injection

for plasma heating. Interactions between the solar wind and the Earth’s magnetosphere can

cause the continuous injection of energetic ions into the inner magnetosphere.25)

The continuous injection of these energetic ions leads to the reshaping of the velocity dis-

tribution, which can significantly affect the nonlinear development of the instabilities. There-

fore, the initial value problem is not sufficient to investigate the long-time evolution of the

instabilities, and the PIC simulations including the injection and loss of the energetic ions are

required.

In this paper, we study the LHW instabilities driven by continuous energetic-ion injection

using one-dimensional, electromagnetic, PIC simulations. We show that the energetic-ion

injection significantly affects the nonlinear development of the instabilities and associated

energy transfer from energetic ions to bulk ions.

In Sect. 2, we describe the linear theory of the LHW instabilities driven by the ring-

like energetic ions with a ring speed much smaller than the Alfvén speed. In Sect. 3, we

present the simulation method and parameters. In Sect. 4, we show the simulation results of

2/20



J. Phys. Soc. Jpn. FULL PAPERS

an initial value problem and an injection model where the density of the energetic ions is

zero at the initial time t = 0 and then increases with time. The comparison between the two

results reveals the effects of the energetic-ion injection on the nonlinear development of the

LHW instabilities and associated energy transfer. In Sect. 5, we discuss how the nonlinear

development of the LHW instabilities depends on the energetic-ion injection speed. Section

6 gives a summary of our work.

2. Linear Theory

Before showing the simulation results, we describe the linear theory for LHW instabilities

driven by ring-like energetic ions. We consider waves propagating exactly perpendicular to

the magnetic field in a uniform plasma. The plasma consists of electrons, bulk ions, and the

energetic ions. The velocity distributions of the bulk ions and the electrons are Maxwellian,

fs0(v∥, v⊥) =
1

(2πv2
T s)3/2

exp

−v2
∥ + v2

⊥

2v2
T s

 , (2)

where the subscript s denotes ion (s = i) or electron (s = e), the subscripts ∥ and⊥ denote par-

allel and perpendicular to the background magnetic field, respectively, and vT s is the thermal

velocity. The energetic ions have a ring-like velocity distribution with a finite width,

fh0(v∥, v⊥) =
1

4π2u⊥v2
Th

exp

− (v⊥ − u⊥)2 + v2
∥

2v2
Th

 , (3)

where vTh is the thermal velocity of the energetic ions and u⊥ is the perpendicular ring speed

of the energetic ions. Note that Eq. (3) is valid when u2
⊥ ≫ v2

Th. In the limit of vTh → 0, Eq.

(3) reduces to the cold ring-like velocity distribution, fh0 ∝ δ(v⊥ − u⊥)δ(v∥).

In this situation, the longitudinal dielectric permittivity ϵL is given by3)

ϵL = 1 +
∑

s=i, j,h

ω2
ps

k2
⊥

∞∑
n=−∞

∫
d2v

nΩs

v⊥

∂ fs0

∂v⊥

J2
n(ξ)

ω − nΩs
, (4)

where n is an integer, d2v = dv∥dv⊥2πv⊥, Jn is the Bessel function of the order n, and ξ =

k⊥v⊥/Ωs. We rewrite ϵL as

ϵL = ϵmain + ϵh, (5)

where ϵmain is the term of the bulk ions and the electrons, and ϵh is the term of the energetic

ions. Using the cold approximation, we can write the main term of Eq. (5) as

ϵmain =

1 + ω2
pe

Ω2
e

 (1 − ω2
LH

ω2

)
. (6)

Since we are interested in the waves with the frequency ω ≃ ωLH ≃ nΩi, we assume that

in the summation for the energetic ions of Eq. (4), the terms other than the n-th term can be
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neglected. Therefore, the energetic-ion term of Eq. (5) is written as3)

ϵh =
ω2

ph

k2
⊥

∫
dv⊥2πv⊥

(
nΩi

v⊥

)
∂ fh⊥

∂v⊥

J2
n(ξ)

ω − nΩi
(7)

= −
ω2

ph

Ωi

2n
ω − nΩi

DIM, (8)

where fh⊥(v⊥) =
∫

fh0(v∥, v⊥)dv∥ is the perpendicular velocity distribution of the energetic

ions and DIM is defined as

DIM ≡
∫

dv⊥2πv⊥ fh⊥
Jn(ξ)J′n(ξ)
ξ

, (9)

with J′n(ξ) = dJn(ξ)/dξ.

We write the solution of ϵmain + ϵh = 0 as ω = ωr + ∆. Assuming ωr ≃ ωLH ≃ nΩi, we

derive the representation of ∆ as

∆2

Ω2
i

=
1

1 + ω2
pe/Ω

2
e

ω2
phω

2
LH

Ω4
i

DIM. (10)

This indicates that instabilities occur for DIM < 0. We define the imaginary frequency ωi of

the LHW instabilities as

ωi

Ωi
=



√
1

1 + ω2
pe/Ω

2
e

ω2
phω

2
LH

Ω4
i

(−DIM) (DIM < 0)

0 (otherwise).

(11)

Figure 1 shows the imaginary frequency ωi as a function of the wavenumber k⊥ for three

different values of vTh. The other parameters are the same as the simulation parameters shown

in Sect. 3. This figure shows that the values of ωi and k⊥ of the unstable mode depend on vTh.

As vTh becomes large, the imaginary frequency decreases and the wavenumber region of

the unstable mode becomes wider. When vTh = 0.1u⊥, all the modes of k⊥vA/Ωi > 20 are

unstable, which is different from when vTh = 0.01u⊥ and 0.05u⊥.

We can roughly estimate the wavenumber of the most unstable mode, which we call km,

from the perpendicular velocity distribution fh⊥ as follows. First, we define the velocity where

∂ fh⊥/∂v⊥ is maximum as Vgm. From Eq. (7), we see that the particles with v⊥ ≃ Vgm contribute

most significantly to the instabilities. Therefore, we can roughly represent ϵh as

ϵh ∝
∂ fh

∂v⊥

∣∣∣∣∣
v⊥=Vgm

J2
n

(
k⊥Vgm

Ωi

)
, (12)

where we take only the velocities near v⊥ ≃ Vgm into account in the integration in Eq. (7).

Because J2
n(ξ) is the maximum for ξ ∼ n, ϵh becomes the maximum for k⊥Vgm/Ωi ∼ n. Thus,
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Fig. 1. (Color online) Imaginary frequency given by Eq. (11) as a function of the wavenumber k⊥. The three

cases for the different thermal velocities of energetic ions, vTh = 0.01u⊥ (dotted line), vTh = 0.05u⊥ (dashed

line), and vTh = 0.1u⊥ (red solid line), are plotted, where u⊥ is the ring speed of the energetic ions. Other

parameters will be shown in the next section.

we can estimate the wavenumber of the most unstable mode as

km ∼ n
Ωi

Vgm
≃ ωLH

Vgm
. (13)

Using the parameters for Fig. 1, we obtain Vgm = 0.9u⊥ and km ≃ 16Ωi/u⊥ when vTh = 0.1u⊥.

This value of km is in good agreement with the wavenumber of the most unstable mode in

Fig. 1.

3. Simulation Method and Parameters

We study the LHW instabilities by using the one-dimensional (one space and three veloc-

ity components) version of the PASTEL code,26) which self-consistently calculates the full

dynamics of electrons and ions and full Maxwell equations. The simulation domain is peri-

odic in the x-direction with the length Lx = 4096∆, where ∆ is the grid separation equivalent

to the Debye length. The total number of computational particles is on the order of 107. The

plasma consists of three components: electrons, bulk ions, and energetic ions.

The ion-to-electron mass ratio is mi/me = 1000, and the ratio of the electron plasma

frequency to the electron cyclotron frequency is ωpe/Ωe = 0.5. For these values, the lower

hybrid resonance frequency defined by Eq. (1) is ωLH ≃ 14.2Ωi. The plasma beta is β ≃ 1.0×
10−2. The velocity distributions of the bulk ions and the electrons are Maxwellian with their

temperature ratio of Ti/Te = 0.2. The energetic ions have the ring-like velocity distribution

given by Eq. (3). The perpendicular ring speed of the energetic ions is u⊥ = 0.3vA ≃ 10vTh,

where vA is the Alfvén speed, and vTh is the thermal velocity of the energetic ions. We set vTh

5/20



J. Phys. Soc. Jpn. FULL PAPERS

equal to the bulk-ion thermal speed.

In this paper, we investigate the long-time evolution of the instabilities up to the time

Ωit ≃ 80 with the time step Ωe∆t = 0.125. We compare the simulation results of an initial

value problem and an injection model. In the initial value problem, the density ratio of the

energetic ions to the bulk ions is constant, nh/ni ≃ 0.02, throughout the simulation. On the

other hand, in the injection model, the energetic-ion density is zero at Ωit = 0 and then

increases with time. The energetic-ion density at the final time (Ωit ≃ 80) is nh/ni ≃ 0.04,

which is twice as large as that in the initial value problem; the time-averaged density is the

same between the two models. In the injection model, additional electrons are also injected

to maintain the charge neutrality. Both the positions and phases of the energetic ions and the

additional electrons are given at random.

We simulate the waves propagating exactly perpendicular to the magnetic field, setting

the background magnetic field as B = (0, 0, B0) and the wavenumber vector as k = (kx, 0, 0).

Landau damping and cyclotron damping of the waves do not occur.

For the simulation parameters, the energy loss time of the energetic ions owing to colli-

sions with the bulk ions or the electrons obtained by the formula in Ref. 27). about 104 times

as long as the ion cyclotron period. Therefore, the collisional effects can be neglected in our

simulations for the period up to Ωit ≃ 80.

4. Simulation Results

4.1 Initial value problem

First, we show the simulation results of the initial value problem. Figure 2 shows the

amplitudes of the magnetic field fluctuations (left panels) and the electric field fluctuations

(right panels) as functions of the wavenumber kx and the frequency ω. Because we use the

Gaussian cgs unit in this paper, the magnetic and electric fields normalized by the background

magnetic field are both dimensionless quantities. The upper panels are obtained from the data

for the period 0 ≤ Ωit ≤ 20. We see that the waves with ω ≃ ωLH in the wavenumber region

of 50 < kxvA/Ωi < 90 have large amplitudes. These waves are LHWs excited by the ring-

like energetic ions, and their electric field fluctuations are much stronger than their magnetic

field fluctuations. The LHW amplitudes in the lower panels for the period 60 ≤ Ωit ≤ 80 are

smaller than those in the upper panels for 0 ≤ Ωit ≤ 20.

Figure 3(a) shows the time evolution of the electric field fluctuations for four wavenum-

bers kxvA/Ωi = 58, 60, 67, and 80. The two modes with kxvA/Ωi = 58 (black line) and 60

(red line) grow rapidly at the initial stage. They become saturated at Ωit ≃ 12 and are then
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Fig. 2. (Color online) Amplitudes of the magnetic field (left panels) and electric field (right panels) fluc-

tuations as functions of the wavenumber kx and the frequency ω. The color indicates the amplitudes of the

fluctuations. Because we use the Gaussian cgs unit in this paper, the magnetic and electric fields normalized by

the background magnetic field are both dimensionless quantities. The horizontal axis kx and the vertical axis ω

are normalized by Ωi/vA and Ωi, respectively. The upper and lower panels are for the periods 0 ≤ Ωit ≤ 20 and

60 ≤ Ωit ≤ 80, respectively.
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Fig. 3. (Color online) Time evolution of the electric field fluctuations for four wavenumbers kxvA/Ωi =

58, 60, 67, and 80 (a) and the intensity of the LHWs integrated over the wavenumber region 0 < kxvA/Ωi < 115

(b) in the initial value problem.

gradually damped. Compared with these two modes, the modes with kxvA/Ωi = 67 (green

line) and 80 (blue line) grow slower and become saturated at later times. Although there are

such differences, all the four modes are gradually damped after the saturation. Figure 3(b)
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shows the intensity of the LHWs integrated over the wavenumber, which is defined as

δELHW ≡
∫ kmax

0
dk

∫ 1.1ωLH

0.9ωLH

dωEx(k, ω), (14)

where the maximum wavenumber is kmaxvA/Ωi = 115. The peak time of δELHW at Ωit ≃ 12 is

in good agreement with those of the most unstable modes kxvA/Ωi = 58 and 60, and δELHW

is also gradually damped after the saturation.

The time variations of the electric field fluctuations can be roughly explained by the be-

havior of the energetic-ion velocity distribution and the linear theory presented in Sect. 2.

Figure 4 shows snapshots of the energetic-ion perpendicular velocity distribution (left panel)

and the imaginary frequency ωi of the LHWs given by Eq. (11) (right panel) at Ωit ≃ 1.3, 10,

and 40. Here, the imaginary frequency is calculated by substituting the fh⊥ values observed

in the simulation into Eq. (11). At almost the initial time Ωit ≃ 1.3, the gradient of fh⊥ is very

large, and the modes of the wavenumber region 50 ≤ kxvA/Ωi ≤ 60 are strongly unstable.

In Fig. 3, the initial growth rates of the modes kxvA/Ωi = 58 and 60 are both γ ≃ 0.35Ωi,

which is about one-third of the imaginary frequency of these modes, ωi ≃ 1.0Ωi, in Fig. 4. At

Ωit ≃ 12, the ωi values of these modes become smaller, and the larger wavenumber modes in

the region 70 ≤ kxvA/Ωi ≤ 85 become more unstable, which is consistent with the mode evo-

lution shown in Fig. 3(a). At Ωit ≃ 40, even the larger wavenumber modes have smaller but

positive ωi. This indicates that the larger wavenumber modes can grow even after Ωit ≃ 40,

which is different from the mode evolution in Fig. 3(a) where all the modes are gradually

damped. The reason for this inconsistency will be discussed in Sect. 4.3.

Here, we mention that the waves with ω ∼ 2ωLH and small amplitudes are also excited

(see the wavenumber region kxvA/Ωi ≃ 110 in Fig. 2). They are seemingly the second har-

monics of the LHWs. Although the similar waves were observed in the previous simulation

studies,7, 19, 20, 28) we do not discuss the harmonics of the LHWs in this paper. Energetic-ion

injection effects on the harmonics of the LHWs will be our future work.

4.2 Injection model

In this subsection, we show the simulation results of the injection model. We found that

the development of the LHWs excited by the ring-like energetic ions in the injection model

is quite different from that in the initial value problem. Figure 5 shows the amplitudes of

the electric field and the magnetic field fluctuations in the injection model for the periods

0 < Ωit < 20, 20 < Ωit < 40, and 40 < Ωit < 60. Comparing the top panels of Fig. 5 and of

Fig. 2, we see that the initial excitation of the LHWs is localized in the narrow wavenumber
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Fig. 4. (Color online) Snapshots of the perpendicular velocity distributions at Ωit ≃ 1.3 (black line), 12 (red

line), and 40 (green line) (left panel) and the corresponding values of the imaginary frequency defined by Eq.

(11) (right panel) in the initial value problem.
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Fig. 5. (Color online) Amplitudes of the magnetic and electric field fluctuations in the injection model (same

format as in Fig. 2).

region near kxvA/Ωi = 60 in the injection model. This is because the limited modes can grow

owing to the lack of the energetic ions in the initial stage. However, in the later periods shown

in the middle and bottom panels of Fig. 5, the larger wavenumber modes are excited.

The time variations of the typical four modes are shown in Fig. 6(a). Unlike in the ini-

tial value problem where all the modes are gradually damped after the saturation, the mode

development in the injection model strongly depends on the wavenumber kx. The mode

kxvA/Ωi = 60 (red line) is damped after Ωit ≃ 26. However, the mode kxvA/Ωi = 58 (black

line) maintains its large amplitude even after this time. The modes kxvA/Ωi = 67 (green) and

80 (blue) continue to grow for a long period, although they are excited later than the modes

kxvA/Ωi = 58 and 60. Figure 6(b) shows that the LHW intensity δELHW given by Eq. (14)

continues to gradually increase even after Ωit ≃ 26, although there is a small fluctuation.
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Fig. 6. (Color online) Time evolution of the electric field fluctuations (same format as in Fig. 3).

This is quite different from the initial value problem where δELHW gradually decreases after

its saturation. These results indicate that the energetic-ion injection plays an essential role in

destabilizing the LHW modes.

Figure 7 shows snapshots of the energetic-ion perpendicular velocity distribution fh⊥ in

the injection model (red line) at four different times. For comparison, fh⊥ in the initial value

problem (black line) is plotted. At almost the initial time Ωit ≃ 1.3, fh⊥ of the injection model

is almost equal to that of the initial value problem, although the total number of energetic

ions in the injection model is quite small. The fh⊥ of the injection model maintains its shape

at Ωit ≃ 12 around which the LHWs begin to grow (see Fig. 6). The shape of fh⊥ collapses

by Ωit ≃ 26, as shown in the lower panels where the maximum value for the vertical axis is

about 5% of that of the upper panels. This time is in good agreement with the time when the

rapid increase in δELHW ends [see Fig. 6(b)]. At this time and Ωit ≃ 40, fh⊥ of the injection

model has the steeper gradient than fh⊥ of the initial value problem. Both in the initial value

problem and in the injection model, the values of Vgm, where ∂ fh⊥/∂v⊥ becomes maximum,

decreases with time through wave-particle interactions. The vertical dashed lines in Fig. 7

represent Vgm in the injection model, and the values of Vgm/u⊥ at Ωit ≃ 12, 26, and 40 are

0.89, 0.70, and 0.58, respectively. Owing to the decrease in Vgm with time, the wavenumber

of the most unstable mode, km, becomes large, as expected from Eq. (13). Moreover, note that

the energetic-ion injection can make ∂ fh⊥/∂v⊥ greater and prevent excited waves from being

damped, which is different from the initial value problem. As a result, broadband LHWs can

be excited in the injection model, as shown in Fig. 6.
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Fig. 8. (Color online) Time evolution of the imaginary frequency in the injection model. In the upper panel,

the horizontal and vertical axes indicate the simulation time and the wavenumber, respectively, and the color

indicates the value of the imaginary frequency ωi of the LHWs given by Eq. (11). Lines labeled (a)–(d) indicate

the wavenumbers of the modes shown in Fig. 6, kxvA/Ωi = 58, 60, 67, and 80. The imaginary frequencies of

each mode are plotted in the lower panel.

We investigate the relationship between the evolution of the electric field fluctuations

and the LHW imaginary frequency ωi given by the linear theory. Figure 8 shows ωi as a

function of the simulation time and the wavenumber, where we obtained ωi by substituting
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fh⊥ observed in the simulation into Eq. (11). The color shows the value of ωi. Focusing on

the region colored red, we see that the wavenumber region of the most unstable modes is

50 < kvA/Ωi < 60 in the initial stage 0 < Ωit < 26. After Ωit ≃ 26, the region of the

most unstable mode shifts to the larger wavenumber region over time. This is qualitatively

consistent with the evolution of the electric field fluctuations shown in Figs. 5 and 6.

We compare in detail the time evolution of the four modes in Fig. 6(a) with that in Fig.

8 where the four mode wavenumbers are shown by the white dashed lines labeled (a)–(d).

The development of the instabilities in the injection model cannot be completely explained

by ωi given by Eq. (11) where the time development of fh⊥ and the density variation of the

energetic ions are not considered. For example, the ωi values are much larger than the mode

growth rates observed in the simulation, and some modes do not grow even if their ωi values

are positive. However, we find that Eq. (11) is still useful to qualitatively understand the

differences between the modes.

We first consider modes (a) and (b). In Fig. 6, these modes start to grow rapidly atΩit ≃ 10

and become saturated at Ωit ≃ 26. The growth rates of modes (a) and (b) in this period are

γ ≃ 0.23Ωi and 0.20Ωi, respectively. On the other hand, the time-averaged ωi values of

these modes in Fig. 8 are 1.1Ωi and 0.8Ωi, respectively. Although there is a quantitative gap

between the simulation and theory, they have the common fact that the growth rate of mode

(a) is larger than that of mode (b). After Ωit ≃ 26, the two modes become almost zero in ωi in

Fig. 8 and decrease in amplitude in Fig. 6. After Ωit ≃ 40 in Fig. 8, the ωi value of the mode

(a) continues to increase and is larger than that of mode (b). This can be responsible for the

fact that mode (a) maintains its amplitude whereas mode (b) is gradually damped in Fig. 6.

We next consider modes (c) and (d). According to Fig. 8, the ωi values of modes (c) and (d)

become large at Ωit ≃ 15 and 25, respectively. These times are almost equal to the time when

modes (c) and (d) begin to grow, respectively, as shown in Fig. 6(a). As time advances, the

values of ωi gradually decrease and the growth rates of modes (c) and (d) become lower.

Thus, we have confirmed that the development of the LHW modes is closely related to

the evolution of the velocity distribution of the energetic ions continuously injected into the

plasma. However, we find that the LHW development cannot be completely explained by the

linear theory. For example, mode (a) does not grow when the period Ωit > 40 [see Fig. 6(a)],

although ωi for this period is positive (Fig. 8). This indicates that nonlinear effects become

important, which we discuss below.
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periods of instability development (see Fig. 10).
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Fig. 10. (Color online) Illustration of instability development. The direction and size of arrows indicate the

direction and level of energy transfer. In the initial value problem, Periods I and II are observed. However, in

the injection model, Periods I to IV can be observed owing to the continuous injection of the energetic ions.

4.3 Energy transfer

In this subsection, we investigate energy transfer among the electric field, the bulk ions,

and the energetic ions in association with the development of the LHW instabilities. We

found that the energetic-ion injection can significantly enhance the energy transfer from the

energetic ions to the bulk ions.

Figure 9 shows the time evolution of total energies for bulk ions, electric fields (upper

panels) and energetic ions (lower panels). Here, the changes from their initial values are

plotted. The energy changes in the initial value problem are shown in Figs. 9(a) and 9(b) and
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those in the injection model are shown in Figs. 9(c) and 9(d) where the net energy change of

the energetic ions is plotted. The net change means the difference between the total energetic-

ion energy at a given time t and the total injected energy of energetic ions by the time t.

The energy changes of the electron and the magnetic field are not plotted because they are

negligibly small compared with the energy changes of the bulk ion and the electric field.

Therefore, the sum of the bulk-ion energy, the electric field energy, and the net energy change

of the energetic ions is almost constant.

In the initial value problem in Figs. 9(a) and 9(b), the time evolution of the bulk-ion energy

is quite similar to that of the electric field energy, indicating that the bulk ions oscillate in the

LHWs excited by the energetic ions. This is the case for the injection model for the period

0 < Ωit < 60 in Figs. 9(c) and 9(d). However, after Ωit ≃ 60, the time evolution of bulk-ion

energy is different from that of the electric field energy, and the energy is transferred from the

electric field to the bulk ions. This indicates that the bulk ions are effectively accelerated by

the LHWs.

We now consider the time variations in detail. We found that the nonlinear development

of the instabilities can be illustrated as shown in Fig. 10. Figure 9 shows that in the initial

stage Ωit < 12 of the initial value problem, the energy is transferred from the energetic ions

to the electric field and the bulk ions by the excitation of LHWs. We call this stage Period I,

as shown in Fig. 10. After Ωit > 12, the energetic-ion energy increases whereas the bulk-ion

and the electric field energies decrease. This indicates that the energy is transferred from the

LHWs to the energetic ions. Because of this energy transfer, all the wavenumber modes in

Fig. 3 are damped, although these modes have the positive ωi based on the linear theory in

Fig. 4. We call this nonlinear stage Period II. Although the time evolution cannot be explained

by the linear theory, we find that the relationship between the energies of the bulk ions and

the electric field can be described by the linear theory based on the two-fluid model,

1
2

nimiV2
x =

(
ωpi

ωLH

)2 E2
x

8π
, (15)

where ni is the bulk-ion density, Vx is the bulk-ion fluid speed, and ω2
pi/ω

2
LH ≃ 1.25 for the

simulation parameters. Therefore, we see that the bulk ions are oscillating in the LHWs even

in Period II.

Regarding the injection model, Periods I and II correspond to the periods 0 < Ωit < 26

and 26 < Ωit < 40, respectively. Furthermore, in the injection model, other stages appear,

which we call Periods III and IV. In Period III, which corresponds to 40 < Ωit < 65, the

amount of energy transfer from the energetic ions to the LHWs is greater than that of the
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reverse energy transfer. Therefore, the energetic-ion energy decreases and the LHW energy

increases. As shown in Fig. 6, the broadband wavenumber modes are growing in Period III.

In Period IV (Ωit > 65), the amount of energy transfer from the energetic ions to the LHWs

is almost equal to that of the reverse energy transfer. Moreover, we note that the bulk-ion

energy increases as the electric field energy decreases, which is not observed in Period I, II,

or III. This indicates that the energy is transferred from the electric field to the bulk ions in

Period IV. This bulk-ion acceleration mechanism is not due to Landau damping or cyclotron

damping because we consider the waves propagating exactly perpendicular to the magnetic

field. In the next subsection, we discuss the bulk-ion acceleration mechanism in Period IV.

5. Dependence of Energy Transfer on the Energetic-ion Injection Speed

In this section, we discuss how the nonlinear development of the instabilities depends

on the energetic-ion injection speed. Figure 11 shows the time evolution of total bulk-ion

energy and total electric field energy for the two different energetic ion speeds S in j = 0.5

and 2.0, where S in j = 1.0 is the injection speed described in Sect. 3 and used in Sect. 4.2.

For S in j = 2.0 and 0.5, the energetic ions are injected twice and half as fast as in the case of

S in j = 1.0, respectively. For S in j = 0.5, Periods I, II, and III are observed, but we cannot see

Period IV in this case. The energy increase of the bulk ions for S in j = 0.5 is smaller than that

for S in j = 1.0. On the other hand, in the case of S in j = 2.0, Period IV begins at Ωit ≃ 50,

which is faster than the start time of Period IV in the case of S in j = 1.0. The energy increase

of the bulk ions in Period IV for S in j = 2.0 is about twice that for S in j = 1.0. We find that the

bulk-ion acceleration is enhanced as the energetic-ion injection speed increases.

Figure 12 shows wavenumber spectra of the electric field fluctuations for S in j = 0.5 (blue

line), S in j = 1.0 (black line), and S in j = 2.0 (red line). These electric field fluctuations are

excited by the ring-like energetic ions continuously injected into the plasma, as described in

Sect. 4.2. The upper panel (a) shows the amplitudes at the end time of Period II for the cases

of S in j = 0.5, 1.0, and 2.0. We see that as S in j becomes larger, the amplitudes become slightly

larger over a wide wavenumber region.

The lower panel (b) shows the amplitudes of the electric field fluctuations at the end of the

simulation Ωit = 80. As a result of nonlinear evolution, these fluctuations are excited. This

figure clearly shows that more broadband wavenumber modes are excited as S in j increases.

Although not shown in this paper, we also performed the simulation of S in j = 0.5 for a longer

time Ωit ≃ 160 and observed that even when S in j = 0.5, the longer energetic-ion injection

causes the excitation of the broadband wavenumber modes and associated ion acceleration.
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Fig. 11. (Color online) Time evolution of total bulk-ion energy and total electric field energy for S in j = 2.0

(left panel) and S in j = 0.5 (right panel) (same format as in the upper panels in Fig. 9).

Therefore, we have concluded that the bulk-ion acceleration in Period IV is caused by the

broadband wavenumber modes. This mechanism can be a type of ion acceleration by LHW

turbulence.29)

Figure 13 shows the profiles of ∂ fh⊥/∂v⊥ as a function of v⊥ at four different times for

S in j = 1.0 and S in j = 2.0, and the dashed-colored lines indicate Vgm where ∂ fh⊥/∂v⊥ is the

maximum for each case. Comparison of the Vgm values between S in j = 1.0 and 2.0 at the same

time shows that Vgm for S in j = 2.0 is clearly smaller than that for S in j = 1.0. This indicates

that the velocity distribution is quickly changed by the faster energetic-ion injection. This

difference causes the wider wavenumber spectra for S in j = 2.0 than for S in j = 1.0, as shown

in Fig. 12.

We also performed the simulations for S in j = 0.3 and 1.5 and show the results in Fig. 14.

The bulk-ion energy increase normalized by the initial energy is plotted as a function of the

injection speed S in j. The black and red circles denote the values at the end time of Period II

and at the simulation final time Ωit = 80, respectively. That is, the difference between the

black and red circles is the energy increase for Periods III and IV, which appears due to the

energetic-ion injection. We confirm that the energy increase becomes larger with increasing

S in j. Furthermore, at S in j = 1.5 and 2.0, the energy increase at the final time is much greater

than that at the end time of Period II. This indicates that the bulk-ion acceleration by the

broadband wavenumber modes becomes important when S in j is large.
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6. Summary and Discussion

By means of one-dimensional, electromagnetic, particle-in-cell simulations, we have in-

vestigated the LHW instabilities driven by the ring-like energetic ions, paying special atten-

tion to the effect of the continuous energetic-ion injection. We have shown that the energetic-

ion injection affects the excitation of the LHWs, the nonlinear development of the LHWs,

and the energy transfer from the energetic ions to the bulk ions through the LHWs.

In the initial value problem, all the LHWs excited by the energetic ions are gradually

damped after their saturation. However, in the injection model, the LHWs excited by the

energetic ions can maintain large amplitudes for a long time. Moreover, the large wavenumber

modes are excited as time advances. This is because the continuous injection causes the steep

gradient of the energetic-ion velocity distribution. As a result of the excitation of the wide

wavenumber modes, the energy transfer from the energetic ions to the bulk ions is enhanced.

As the injection speed increases, the wide wavenumber modes are excited and the bulk-ion

energy change increases. The bulk-ion acceleration mechanism can be turbulent heating by

the LHWs, because we consider the waves propagating exactly perpendicular to the magnetic

field, and the Landau damping and cyclotron damping do not occur.

In this paper, we consider the LHWs excited by energetic ions with a speed smaller than

the Alfvén speed. The LHWs are electrostatic waves. If the energetic-ion speed is comparable

to or larger than the Alfvén speed, the electromagnetic waves can be excited. It is important

to study the effect of energetic-ion injection on the nonlinear development of the electromag-

netic waves and associated energy transfer.

To investigate the nonlinear development of the instabilities for a much longer time, we

have to take into account the loss of the energetic ions, which are not considered in this study.

In the near future, we will make a model including both the injection and the loss of the

energetic ions and study the effects of energetic-ion loss.
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