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High energy density physics is the field of physics dedicated to the study of matter and plasmas in 
extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines 
such as material science, planetary science, laboratory and astrophysical plasma science. For the 
latter, high energy density states can be accompanied by extreme radiation environments and 
super-strong magnetic fields. The creation of high energy density states in the laboratory consists in 
concentrating/depositing large amounts of energy in a reduced mass, typically solid material sample 
or dense plasma, over a time shorter than the typical timescales of heat conduction and hydrodynamic 
expansion. Laser-generated, high current–density ion beams constitute an important tool for the 
creation of high energy density states in the laboratory. Focusing plasma devices, such as cone-
targets are necessary in order to focus and direct these intense beams towards the heating sample or 
dense plasma, while protecting the proton generation foil from the harsh environments typical of an 
integrated high-power laser experiment. A full understanding of the ion beam dynamics in focusing 
devices is therefore necessary in order to properly design and interpret the numerous experiments in 
the field. In this work, we report a detailed investigation of large-scale, kilojoule-class laser-generated 
ion beam dynamics in focusing devices and we demonstrate that high-brilliance ion beams compress 
magnetic fields to amplitudes exceeding tens of kilo-Tesla, which in turn play a dominant role in the 
focusing process, resulting either in a worsening or enhancement of focusing capabilities depending 
on the target geometry.

A significant fraction of the visible Universe is composed by matter in extreme conditions of temperature, density 
and pressure. When the pressure in a physical system exceeds 1 Mbar, this is defined as a high energy density 
(HED) state, which corresponds to the pressure required to deform the water molecule or in other words the 
pressure at which water becomes compressible, corresponding to an energy density exceeding 1011 J/m31.

In nature we can find numerous examples of HED states, from the cores of gas-giant planets where the 
extreme pressures modify the fundamental properties of hydrogen and water–ice, leading to highly conductive 
interiors at the origin of the large magnetic fields characteristic of these planets2–4, to the interiors of brown 
dwarfs5, stars and more exotic objects like white dwarfs and neutron stars, where super-strong magnetic fields 
of amplitudes respectively of 106–107 Gauss and 1011 Gauss are often associated to these objects and determine 
the plasma physics of their surroundings6,7. These fields are inferred through UV spectroscopy showing extreme 
Zeeman splitting in the line emission of the plasma ions in the exotic atmospheres of these objects8.

High power lasers made possible to recreate HED conditions in the laboratory and begin a more experimen-
tal and less observational/deductive study, allowing for example to compress matter to densities and pressures 
like those found in the interior of giant planets9 and to directly conduct measurements that would otherwise be 
impossible, offering insights into worlds once accessible only theoretically.
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One of the modalities to create HED conditions in matter is through ultra-fast heating of material samples 
and compressed plasmas using high-brilliance laser-generated ion and proton beams.

Since their discovery over two decades ago10, high-intensity laser-generated proton and ion beams have been 
intensively investigated by the scientific community due to their remarkable properties, that make them ideal ion 
sources for application to High Energy Density (HED) Physics. The acceleration method treated in this work is 
called “target normal sheath acceleration” (TNSA), where ions from the surface of a thin foil are accelerated by 
a charge-separation electric field set up by relativistic electrons generated via intense laser-plasma interaction, 
that propagate through the target volume and expand into vacuum11,12.

TNSA proton beams are accelerated to multi-MeV energies in few picoseconds. They carry a significant 
fraction of the laser energy (0.5 to 10% depending on the laser system and targets), they are highly directional 
and characterized by a quasi-laminar flow that guarantees their focusability13,14. These properties make them 
suitable sources for ultra-fast heating of solid samples or dense plasmas to tens or hundreds of eV’s, attaining 
plasma pressures typical of the interior of giant planets, thus allowing the study of the properties and equations 
of state of matter in these extreme conditions15,16.

Here we focus our attention to the application of intense proton beams to the creation of HED states, and on 
their control and focusing by plasma devices such as cone targets.

This type of devices was first envisioned for application to relativistic electron-based Fast Ignition research17, 
where the function of the cone is simply to maintain a clear path for the ultra-intense laser from the ablation 
plasma originating from the implosion of the fusion fuel capsule. They subsequently were re-proposed for ion/
proton based Fast Ignition18,19, with the addition of a hemispherical shell (hemi) to generate the ion beam, 
mounted on the cone inner wall at about 300 µm from the cone tip. In this case the cone has two functions: keep 
the clear path for the intense laser as mentioned before and focus down the proton beam towards the tip of the 
cone by charge separation electric fields arising from the fast electron propagation along the cone wall.

Several works have been dedicated to the physics of cone targets for ion focusing20–22 and in particular a 
seminal work by Bartal et al.23 investigated the proton focusing with tip-less cone targets and determined that 
electric fields play a dominant role both inside the cone, as focusing field, and outside the cone where the focused 
proton beam is subject to hot electron pressure that results in a defocusing, radial electric field surrounding the 
ion beam waist, ultimately driving its expansion.

In this work we show that previous results represent a partial picture of the proton beam dynamics in focusing 
devices and are limited to relatively low-drive laser energies and rather large-aperture short-length cone targets.

For higher laser energies and cone geometries more appropriate to high-temperature plasma heating and iner-
tial fusion experiments, however, we demonstrate that return current-generated magnetic fields play a dominant 
role in the proton beam dynamics, constituting the root-cause of proton beam focusing to the cone tip and that, 
depending on the cone geometry, either worsen, resulting in a ring-like proton emission, or strongly enhance 
the exiting proton beam collimation, even overcoming the hot electron pressure and allowing for proton beam 
divergence lower than 10°.

This has important implications, both for the understanding of the physics of focusing plasma devices and 
for applications of these ion sources to HED physics. Circular proton beams could be used to drive or enhance 
hydrodynamic implosions, while highly collimated proton beams can be used for efficient eating of samples and 
precision irradiation of material and biological samples at a distance.

An extremely relevant corollary of this work, that could have major implications in extreme field science and 
laboratory astrophysics, is the generation of macroscopic magnetic fields with amplitude exceeding 10 kilo-Tesla, 
obtained by compression of relatively mild, 0.5 kilo-tesla magnetic fields by the highly energetic TNSA plasma 
inside the cone cavity.

By studying the dynamics of TNSA proton beams in focusing devices, we also performed the first successful 
proton radiography of > 10 kT magnetic fields. This can provide a method to generate and study in controlled 
conditions the physics of highly magnetized plasmas.

We investigate two types of cone targets as shown in (Fig. 1A,B), the first one is a classic ion fast ignition 
cone target, consisting of a free-standing gold cone with 50 µm tip and an hemi attached to the inner cone walls 
at 300 µm from the cone tip. The second one is a tip-less buried cone target, consisting of a tip-less gold cone 
300 µm long embedded into a cylinder of Epoxy resin with diameter of 800 µm, and an hemi directly attached 
to the cylinder, coaxially with the cone at 300 µm from the cone tip.

The aperture at the cone tip is 50 µm in diameter and the radius of the hemi is 350 µm for both types of cones. 
The latter is rather similar to the cones investigated in the above-referenced works, but with smaller tip aperture. 
As main diagnostic we used radio-chromic film stack (RCF)24,25, as they can provide both spatially and energy 
resolved information on the generated proton beams.

Experiment on LFEX laser.  The experiment was performed on LFEX laser at the Institute of Laser Engi-
neering, Osaka University. In this experiment, LFEX delivered 600 J of laser energy on target in 1.5 ps with four 
beamlets combined, for a nominal intensity of approximately 1 × 1019 W/cm2.

In case of classic free-standing cone, LFEX was focused at normal incidence on the hemi, along the cone axis 
direction. The RCF stack was aligned normally 25 mm from the cone tip and with the top-left corner adjacent 
to the cone axis.

This peculiar setup is required in order to avoid the RCF stack from being hit by the so-called “0th order light”, 
constituted by the direct reflections of the uncompressed (2 ns) and partially compressed (10 ps) LFEX beams 
off the compressor gratings (due to the diamond compressor design), which are focused by the parabola about 
8 mm to the side of the LFEX focus (see Fig. 1A).
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The tip-less buried cone target geometry instead provides more flexibility and allows for large laser incidence 
angles as well. For this target we opted for 45 degrees incidence, which allows to collect the entire proton beam 
instead of a single quadrant as in the free-standing cone case, as schematized in Fig. 1B. Simple free-standing 
hemi target, identical to those attached to the cone targets and aligned at 45 degrees incidence from LFEX laser, 
were also investigated for comparison.

Experimental results for free‑standing cone targets..  Free-standing cone target-accelerated protons 
have a maximum energy of 12 MeV and display a clearly diverging annular pattern. The average divergence angle 
is comprised between 10 and 30°. For middle to high energies (E > 6 MeV), the quasi-totality of the protons is 
deflected at angles greater or equal than 10 degrees, while for lower energies we observe proton also at smaller 
angles. Original raw data, post processed data and analysis are displayed in Fig. 2. The apparent high density of 
protons at small angles in the lower energy films is due to the logarithmic response of the RCF (ionizing radia-
tion-induced optical density). Post-processing of the image, however, reveals that the majority of the protons are 
emitted at angles greater than 10° even at low energy.

Experimental results for tip‑less buried cone targets..  Tip-less buried cone targets yielded very dif-
ferent results. From the RCF stack data we can observe that the proton beam presents a highly collimated com-
ponent that extends from low energies to about 13.5 MeV, followed at higher energies by a component with 
larger divergence, the latter containing only about 0.1% of the proton beam energy (see Fig. 3A–C). The highly 
collimated component has divergence angles comprised between 11 degrees at low energy and 6 degrees at 
high energy as shown in Fig. 3D. These values are far lower than the typical ones for TNSA accelerated protons, 
where the lowest divergence, corresponding to the highest energy protons, for maximum proton energies of 
15–20 MeV is about 10 degrees half-angle10,26,27, while the majority of the beam is distributed over much wider 
angles up to 25–30 degrees half-angle for the lower energy component.

From the RCF post-processing analysis we find that a total of 6.47 × 1012 protons have been accelerated for 
a total beam energy of 5.3 J (about 1% laser-to-proton energy conversion efficiency), resulting in an average 
current density of 2 × 109 A/cm2, which can be efficiently used for material sample and plasma heating in HED 
physics experiments.

Discussion
In the previous section we have shown that classic free-standing cone targets and buried cone targets yield very 
different results in terms of proton beam dynamics and exiting beam divergence. The first produces proton 
beams with a ring-like spatial profile and divergence comprised between 10 and 30 degrees, while the second 

Figure 1.   Schematic of the experimental setup. (A) Schematic of the classic free-standing cone as first proposed 
for proton fast-ignition. The LFEX laser is focused at normal incidence due to the cone geometry. The RCF-
stack is positioned to the top-left quadrant in order to avoid the LFEX 0th order light (direct reflections from the 
compressor gratings). (B) Schematic of the tip-less buried cone target. The cone geometry allows for 45° laser 
incidence angle. In this way it is possible to avoid the risk of 0th order light irradiating the RCF stack and to 
collect the majority of the proton beam.
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produces highly collimated proton beams with divergence comprised between 6 and 11 degrees for the majority 
of the spectrum.

In this section we discuss in detail the physics that leads to these two apparently antithetic results, and we will 
show that both behaviors descend directly from the complex interaction between the self-generated magnetic 
field inside the cone and the TNSA plasma, which is summarized in the bi-dimensional particle in cell simula-
tion results in shown in Figs. 4 and 5.

Being this a very complex and dynamic process, we decided to add movies for the free-standing cone simula-
tions as Supplementary material. The reader may want to view the movies entitled: “Supplementary_Bz_movie”, 
“Supplementary_Ex_movie”, “Supplementary_Ey_movie”, “Supplementary_Eden_movie” and “Supplementary_
Pden_movie”, which refer respectively to the evolution of the z-component of the B-field Bz, the x-component of 
the electric field Ex, the y-component of the electric field Ey, the electron density map ne and the proton density 
map np.

When a solid target is irradiated by a high intensity laser pulse, about half of the absorbed laser energy goes in 
the form of a bright relativistic electron beam that propagates inside the target and along its surface. In order to 
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Figure 2.   Example of experimental and post-processed data for free-standing cone target. (A) Raw RCF data 
showing the proton beam distribution for free-standing cone target. The RCF film corresponding to the post 
processed data in (B) are framed in red. (B) Post-processed data with 3-dimensional spectral unfolding showing 
the angularly resolved proton energy spectrum. The post-processed results are displayed in different color-scale 
to make them clear to the reader. The unit of solid angle d� is fixed at 7 × 10–6 sr. Clear ring-like pattern with 
large divergence is observed, with complete absence of protons in a 0.225 sr solid angle for energies > 6 MeV. 
At lower energy we can observe presence of protons emitted more at smaller angles. However, post-processed 
data show that even at low energies the distribution presents the ring-like pattern with average divergence 
angle > 10°. (C) Proton energy spectrum obtained from the spectral unfolding of the RCF data. (D) Angular 
distribution of the proton beam for all energies, the inlet image shows the angular distribution for protons with 
energy ≥ 9.2 MeV which are not clearly visible in the large format image.
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Figure 3.   Example of experimental and post-processed data for tip-less buried cone target. (A) Raw RCF data 
showing the proton beam distribution tip-less buried cone target. The RCF film corresponding to the post 
processed data in (B) are framed in red. (B) Selection of post-processed data from the measurement in (A). It is 
evident the presence of a highly collimated proton beam component up to 13 MeV, characterized by divergence 
angles comprised between 11 degrees at low energy and 6.5 degrees at higher energy. Measurement on the 
first two RCF foils, corresponding to energies of 3.4 and 4.8 MeV is more difficult due to RCF saturation in the 
green channel at the beam center. For Energies exceeding 13 MeV the collimated component fades and gives 
place to a broader distribution with significantly higher divergence, starting at about 25 degrees, and reducing 
for higher energies similarly to typical TNSA proton beams. (C) Proton energy spectrum calculated from the 
spectral unfolding of the RCF data. (D) Proton beam angular distribution for all energies, clearly showing a 
divergence ≤ 11 degrees for proton energies between 4.8 and 9.8 MeV. The enclosed plots represent the angular 
distribution for (up) the mid-energy component, showing that the collimation is maintained till 12.7 MeV and 
the high high-energy component, with higher divergence (down) typical of classic TNSA proton beams.
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Figure 4.   Bi-dimensional PIC simulations of proton beam generation and dynamics in free-standing cone target (A) Map of the 
Bz component of the magnetic field in the simulation for three simulation times: 1.2, 2.2 and 3.6 ps. At 1.2 ps, the surface current-
generated magnetic field is initially distributed in the inner volume of the cone target. At later times it is compressed against the cone 
walls and tip by the expanding TNSA plasma, with magnetic field amplitude exceeding 10 kT and sharp gradients. (B) Map of the Ey 
component of the electric field for simulation times: 1.2, 2.2 and 3.6 ps. At early times the Ey component is produced mainly by fast 
electrons propagating along the cone walls. At intermediate times (not represented here) the electric field fades as the fast electron flow 
reduces. At 2.2 ps, when the TNSA plasma compresses the magnetic field inside the cone, a sudden strengthening of the electric field 
occurs due to the charge density gradient induced by the hot electron confinement by the magnetic field. Modulating the magnetic 
field gradients, the Ey component presents a de-collimating configuration that helps, together with the B-field, to deflect the proton 
beam exiting the cone. (C) Hot electron density map at 1.2, 2.2 and 3.6 ps simulation times. Only electrons coming from the hemi-
shell are visualized in these maps. Initially the electron beam propagates and refluxes within the hemi-shell and the cone structure 
accelerating the proton beam via TNSA and generating focusing electric fields along the cone walls. At 2.2 ps as the TNSA plasma 
compresses the B-field, we can clearly observe the enhanced electron density in the area corresponding to the B-field gradients and the 
reduced electron density inside the B-field region. This is at the origin of the charge density gradient leading to the enhanced electric 
field in (B). This configuration is still clearly visible at 3.6 ps simulation time, with electrons accumulating at the edges of the magnetic 
field both on the cone walls and tip. (D) Hemi-shell proton density map at 1.2, 2.2 and 3.6 ps simulation time. At 1.2 ps we observe the 
protons being accelerated at the front and rear side of the hemi-shell. At later times, as the proton beam propagates inside the cone, we 
can clearly appreciate the focusing effect of the Ey component at 2.2 ps. At 3.6 ps, the proton beam is being deflected at the cone tip by 
the combined action of the Ey and Bz components, ultimately resulting in ring-like spatial distribution with large divergence angle, as 
observed in the experimental results.
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Figure 5.   Bi-dimensional PIC simulations of proton beam generation and dynamics in tip-less buried cone targets. 
(A) Map of the Bz component of the magnetic field for simulation times of 2.8, 3.2 and 3.6 ps. At 2.8 ps we can observe 
the magnetic field compressed against the cone walls as in the free-standing cone case, with part of it flowing through 
the tip and along the outer rear surface of the target as the TNSA beam exits the cone. At 3.2 ps, as higher density 
TNSA plasma crosses the cone tip, part of the magnetic field is carried with the beam and forms a channel around 
it, which is maintained throughout the rest of the simulation. This B-field configuration prevents the hot electrons 
from radially expand and defocus the proton beam. (B) Map of the Ey component of the electric field for simulation 
times of 2.8, 3.2 and 3.6 ps. As the highest energy protons start exiting the tip at 2.8 ps, a strong de-focusing electric 
field surrounds the beam waist as result of the hot electron pressure. At later times of 3.2 and 3.6 ps we observe the 
disappearance of this de-focusing field, and the appearance of a focusing electric field structure in correspondence 
of the B-field gradient, preventing lateral expansion and allowing for a highly collimated beam to ensue. (C) Hot 
electron density map at 2.8, 3.2 and 3.6 ps. Despite the thick bulk material surrounding the cone, fast electrons are 
mostly confined in the cone cavity by the compressed magnetic field. At 2.8 ps we can see the hot electrons exiting 
the tip in a narrowly focused beam, following the proton density distribution. These electrons are responsible for the 
de-focusing electric field observed in (B). At later simulation times we observe the electrons being radially confined 
by the magnetic field structure, giving rise to the collimating electric field discussed in (B). (D) Proton beam density 
map at 2.8, 3.2 and 3.6 ps. At 2.8 ps we observe a tightly focused proton beam exiting the tip of the cone. These higher 
energy protons are going to be defocused by the hot electron pressure-generated electric field discussed above. At later 
simulation times, as the magnetic and electric field focusing structure develops, we observe that the majority of the 
proton beam is emitted with very low divergence, in full agreement with the experimental results.
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propagate, the relativistic electron current needs to be counterbalanced by a so-called return current composed 
by electrons from the target material.

When the target in question is a cone-attached hemi, a surface current of electrons will propagate from the 
cone walls to the hemi, replenishing the electron charge that left the hemi during laser-plasma interaction. This 
surface current manifest itself via the generation of macroscopic magnetic fields, both inside the target and along 
the target surface and filling the inner volume of the cone with a relatively low amplitude (0.5–1 kT) magnetic 
field (Fig. 4A, 1.2 ps). At the same time, the fast electron flow from the hemi to the cone walls produces charge-
separation electric fields (Fig. 4B, 1.2 ps) that are considered the responsible for the proton beam enhanced 
focusing on cone targets, but as we will see in the following paragraphs, this only occurs in the initial stage of 
ion acceleration.

As the energetic TNSA plasma expands inside the cone, the magnetic field is compressed against the cone 
walls and the cone tip, resulting in sharp gradients with magnetic field amplitudes largely exceeding 10 kT 
(Fig. 4A, 2.2 ps). In these conditions, the hot electrons present in the TNSA plasma (although we talk about 
proton/ion beams, TNSA plasmas are in average charge neutral) cannot penetrate the B-field, as their average 
Larmor radius in > 10 kT magnetic fields is sub-µm (Fig. 4C, 2.2 ps).

This produces a charge density gradient, resulting in the enhancement of the electric field at the B-field/TNSA 
plasma interface, which is ultimately responsible for the proton beam focusing down the cone tip, given that the 
original charge separation electric field has been drastically reduced by the plasma filling the cavity.

By comparing the magnetic field (Bz), electric field (Ey), the electron density (ne) and proton density (np) 
maps reported in the simulation results of Fig. 4A–D at simulation time of 2.2 ps, it appears clear that the TNSA 
plasma electrons are prevented from penetrating the magnetic field, which results in higher electron density in 
correspondence to the Bz gradient, and lower electron density in the region of high magnetic field. This electron 
density gradient enhances the Ey component of the electric field, which is maintained despite the plasma filling 
of the cone cavity. The proton beam reacts to the electric field and it is further guided towards the tip of the cone.

At later simulation time of 3.6 ps, the magnetic field is fully compressed at the cone walls and tip. The Ey 
component of the electric field follows the Bz gradient with two distinct effects on the proton beam. On one 
hand, the beam is directed and focused towards the cone tip. On the other hand, the electric and magnetic field 
configuration at the cone tip is de-collimating, and their combined action on the protons crossing the cone 
tip results in deflected proton trajectories in a ring-like shape with large divergence angle, as observed in the 
experimental data.

The electric field generated by the interaction of the TNSA plasma with the surface-current generated B-field 
not only influences the proton beam in terms of focusing and subsequent deflection at the cone tip, but it also 
causes their slow-down when exiting the tip. This is clearly visible (Fig. 1 in the Supplementary Material) by 
looking at the negative Ex component that increases when the TNSA plasma reaches the cone tip. This also 
explains the lower maximum proton energy observed for the free-standing cone target case compared to the 
tip-less buried cone case.

The physics for tip-less buried cone targets is in many ways like the free-standing cone one and it is deter-
mined by the interaction and interplay between the magnetic field and the TNSA plasma.

From the simulation results in Fig. 5, the extension and maximum amplitude of the B-field is lower compared 
to the free-standing cone, as part of it flows freely outside the tip and it is not confined in the cone. Also, for 
tip-less buried cone the fast electron current along the cone walls is reduced as a large fraction of them flows 
in the bulk plasma surrounding the cone. This also contributes to reduce the amplitude of the surface-current 
generated magnetic field.

Nevertheless, we clearly observe the stages of TNSA plasma expansion in the cone, the consequent B-field 
compression at the cone walls with the enhancement of the Ey component, providing efficient focusing up to 
the cone tip.

However, the dynamics radically changes at the cone tip region, where the absence of tip allows the protons to 
flow freely outside the cone, without B-field accumulation and compression at the tip. In order to better explain 
the physics at the cone tip, we display the simulation results in Fig. 5 at later times of 2.8, 3.2 and 3.6 picoseconds, 
where the relevant dynamics occurs.

At first, the highest energy tail of the proton beam exits the tip, maintaining the trajectory it had inside the 
cone, resulting in a narrowly focused beam (Fig. 5D at 2.8 ps).

However, the hot electron pressure gives rise to a de-focusing electric field (Fig. 5B–D at 2.8 ps), which leads 
to the proton beam expansion as it propagates further into vacuum.

This result agrees with the experimental data showing broader proton emission at very high energies, from 
13.7 to 17.3 MeV, as in more classic TNSA data, and it is also in agreement with the above-referenced work by 
Bartal et al., where the proton trajectories exiting the cone are affected by the hot electron pressure, acting as a 
de-focusing agent that drives the proton beam lateral expansion as it propagates in vacuum.

At later times however, the dynamics significantly changes as the TNSA plasma carries part of the magnetic 
field outside the cone. As soon as the B-field follows the TNSA beam outside the cone tip, the de-focusing electric 
field at the proton beam waist disappears and is replaced by a focusing electric field structure, in correspondence 
to the magnetic field distribution outside the cone (Fig. 5A,B at 3.2 and 3.6 ps). The electric field is originated by 
the hot electron confinement provided by the magnetic field structure outside the cone (Fig. 5C at 3.2 and 3.6 ps).

This mechanism quenches the effect of the hot electron pressure and collimates a large fraction of the proton 
beam as it propagates into vacuum, giving rise to the high flux component observed in the experimental data.

The proton beam dynamics at the cone tip region for the two types of targets is more easily understandable 
by looking at the proton energy flux maps shown in Fig. 6.

For free-standing cone target we can clearly observe the proton beam being guided to the cone tip, where is 
then split by the magnetic and electric field in two diverging directions (Fig. 6A), which in 3 dimensions would 
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correspond to a ring-like emission. It is important to notice the splitting of the proton beam occurs inside the 
cone, in correspondence to the magnetic and electric fields, and it is not a post-emission effect related to the 
cone geometry itself.

For tip-less buried cone target (Fig. 6B), we observe the proton beam being focused at the tip and then further 
collimated outside the cone by the azimuthal magnetic field and the radial electric field distribution, preventing 
the beam from expanding due to radiation pressure, and resulting in a high-energy flux beam.

In summary, the mechanisms of proton beam focusing and emission from cone targets are determined by 
the self-generated magnetic field and its interaction with the expanding TNSA plasma.

For the focusing stage, the B-field helps maintaining a focusing electric field at the cone walls, even when the 
entire cone cavity is filled with plasma, by preventing the electrons from free-flowing to the cone walls and thus 
inducing hot electron density gradients that preserve and enhance the electric field. This is very different from 
the explanations provided in previous works, where the original TNSA-type electric field is considered the only 
responsible for the proton beam focusing.

For the emission stage, the magnetic field and the associated electric field determine the spatial profile and 
divergence of the proton beam by either accumulating at the cone tip and deflecting the incoming protons as in 
the free-standing cone target, or by flowing outside the cone, preventing the hot electron pressure from exerting 
radial pull on the proton beam and providing instead a collimating structure that allows the proton beam to 
propagate with minimum divergence.

In the work by Bartal et al., the cone is a tip-less buried type with very large aperture tip (127 µm), short 
distance between the hemispherical shell and the tip (150 µm) and larger aperture angle (60 degrees). This cone 
geometry allows for a large fraction of the proton beam to propagate unperturbed in the forward direction 
(especially the high-energy, low divergence protons), while only the higher divergence protons would be focused 
by the fields at the cone walls.

In addition, the experiment was performed on a laser of much smaller scale compared to LFEX (about 10% 
of the LFEX energy on target) with much reduced hot electron current density, lower amplitude self-generated 
magnetic field and much lower energy carried by the TNSA beam.

All these factors lead to a much-reduced energy density inside the cone, consequently the dynamics described 
in our publication does not manifest in Bartal and co-authors work.

On the other end, the effect of hot electron pressure-driven de-focusing of the proton beam, first described 
in Bartal’s work, is confirmed in our measurements and simulations as well (see Figs. 3D and 5B at 1.2 ps), with 
the highest energy part of the proton beam experiencing the radial pull exerted by the hot electron pressure, 
resulting in broader angular distribution at very high energies.

The results presented in our work have implications that go beyond the generation of high energy density 
states with ion and proton beams.

Control and collimation of laser-generated ion beams is being actively pursued by several research teams 
around the world. Tip-less buried cones represent a rather simple way to obtain collimated beam without requir-
ing complex experimental setups. For smaller scale laser facilities, a key aspect would be to scale-down the cone 
target size while maintaining the aspect ratio, as to guarantee sufficient energy density inside the cone for the 
magnetic field-driven collimation to occur.

Figure 6.   Map of the proton energy flux for free-standing and tip-less buried cone targets. (A) Proton energy 
flux superposed to the Bz map at 3.6 picoseconds in the simulation. It appears clear that the deflection of the 
proton beam occurs prior to reaching the tip due to the combined action of electric and magnetic field. (B) 
Proton energy flux superposed to the Bz map at 3.6 picoseconds in the simulation. It is evident that the majority 
of the protons exiting the cone tip are collimated by the azimuthal magnetic field structure and the consequent 
focusing electric field.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6876  | https://doi.org/10.1038/s41598-022-10829-1

www.nature.com/scientificreports/

Moreover, it provides with a way to generate super-strong magnetic fields with amplitudes exceeding 10 kT, by 
taking advantage of the TNSA plasma pressure and treating it as a piston to compress the magnetic field, which is 
naturally generated as result of the fast electron return current. This can allow for relatively simple experimental 
setups with targets characterized by a partially enclosed volume, to allow for magnetic field compression, and 
some side windows/apertures to allow for diagnostics to peek-in and observe the physics of plasmas in super-
strong magnetic fields, recreating conditions close those in the atmosphere of highly magnetized white dwarfs.

Methods
Experimental setup.  The experiment was conducted on LFEX laser at the Institute of Laser Engineering, 
Osaka University. LFEX laser is composed by four beamlets and delivers up to 1 kJ of laser energy on target 
in 1.5 picoseconds, over a spot diameter of approximately 60 µm, resulting in an average intensity on target of 
1 × 1019 W/cm2.

In this experiment the energy on target was limited to 600 J due to a limitation of the LFEX amplifiers output.
The cone targets are made of gold 10 µm thick, with an aperture angle of 45-degrees and tip size of 50 µm. 

For the tip-less buried cone, a thick Epoxy resin wall is added, giving this target the aspect of a cylinder with 
800 µm base diameter and height of 300 µm.

The hemispherical shell, made of CH plastic has a radius of curvature of 350 µm and cross-sectional diameter 
of 300 µm. CH plastic was chosen because of the hydrogen-rich bulk material as LFEX laser is capable of fully 
depleting the contaminant layer of hydrocarbons that would constitute the proton source in metallic targets.

The diagnostic used was a RCF stack composed by 15 HD-V2 films followed by 20 EBT3 films. The stack was 
positioned at 2.5 cm distance from the target, and it was shielded with 105 µm Al foil which would protect the 
films from target debris. The LFEX incidence angle on target was either normal incidence for free-standing cone 
targets or 45-degrees incidence for the tip-less buried cone targets as shown in Fig. 1A and B.

Data and statistical analysis.  For data analysis and statistics, we refer to our recent publication in Review 
of Scientific Instruments25, describing the dosimetry calibration of Gafchromic HD-V2, MD-V3 and EBT3 
films, that we briefly summarize in this section.

Dosimetry calibration was performed by irradiating the RCF films with a 130 Tera-Becquerel Co60 g-ray 
source with different exposure time, corresponding to radiation doses ranging from 1 Gy to 100 kGy.

The data were scanned using a response-calibrated Epson GT-X980 flatbed film scanner, that allows to calcu-
late the optical density associated to the dose in each RCF and to obtain the optical density-to-dose calibration 
curves in red, green and blue channels.

For RCFs, the highest optical density is recorded in the red channel, however for high-dose exposures the red 
channel is not the best option given lower saturation threshold together with solarization effect that occurs for 
extremely high doses and that could lead to underestimation of the dose in the film. Therefore, the experimental 
data presented in this work are analyzed in the green channel, with an error associated to the calculated dose 
of 7.1% for HD-V2 and 5.1% for EBT3. To this error must be added the one associated to the batch-to-batch 
variation in RCF response as declared by Ashland-Gafchromic, corresponding to 20%.

Once the dose per RCF is obtained, data post-processing is performed via three-dimensional spectral unfold-
ing procedure, entirely based on a method developed by Schollmeier and co-authors28. The post-processing code 
accounts for low-energy-transfer as well as straggling during transport in the RCF stack, providing as result the 
proton beam energy spectrum and angular distribution.

Particle in cell simulations.  Particle in Cell simulations have been performed with the Epoch2d code29 
using two different simulation setups according to the different cone geometries and laser-plasma interaction 
conditions. The simulation box was 230 µm in the longitudinal dimension and 170 µm in the transverse dimen-
sion, with cell size l/30 in both dimensions. The cone walls have been modeled as Au18+ with density of 60 nc 
and the hemi as pure hydrogen with density of 40 nc and a sharp, 2 µm scale-length pre-formed plasma. A thin, 
0.25 µm contaminant layer of hydrogen is also set on all the inner and outer cone surfaces.

The choice of pure hydrogen instead of CH plasma as hemi-shell material is since in relativistic laser-plasma 
interaction the laser energy absorption occurs through collisionless mechanisms, therefore no significant dif-
ference is expected between the two materials in terms or proton generation. Moreover, our experimental data 
are only related to protons, as the heavier ion stopping power is much higher compared to hydrogen and they 
are entirely stopped within the aluminium filter in front of the RCF pack.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Data are stored at ILE and can be made available upon reasonable request.
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