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Abstract. Kinetic-magnetohydrodynamic hybrid simulations were performed to

investigate the linear growth and the nonlinear evolution of off-axis fishbone mode

(OFM) destabilized by trapped energetic ions in tokamak plasmas. The spatial profile

of OFM is mainly composed of m/n = 2/1 mode inside the q = 2 magnetic flux surface

while the m/n = 3/1 mode is predominant outside the q = 2 surface, where m and n are

the poloidal and toroidal mode numbers, respectively, and q is the safety factor. The

spatial profile of the OFM is a strongly shearing shape on the poloidal plane, suggesting

the nonperturbative effect of the interaction with energetic ions. The frequency of

the OFM in the linear growth phase is in good agreement with the precession drift

frequency of trapped energetic ions, and the frequency chirps down in the nonlinear

phase. Two types of resonance conditions between trapped energetic ions and OFM

are found. For the first type of resonance, the precession drift frequency matches the

OFM frequency, while for the second type, the sum of the precession drift frequency

and the bounce frequency matches the OFM frequency. The first type of resonance is

the primary resonance for the destabilization of OFM. The resonance frequency which

is defined based on precession drift frequency and bounce frequency of the nonlinear

orbit for each resonant particle is analyzed to understand the frequency chirping. The

resonance frequency of the particles that transfer energy to the OFM chirps down,

which may result in the chirping down of the OFM frequency. A detailed analysis

of the energetic ion distribution function in phase space shows that the gradient of

the distribution function along the E′ = const. line drives or stabilizes the instability,

where E′ is a combination of energy and toroidal canonical momentum and conserved

during the wave-particle interaction. The distribution function is flattened along the

E′ = const. line in the nonlinear phase leading to the saturation of the instability.

1. introduction

Energetic particle confinement is an important issue of fusion research since energetic

particles heat the fuel plasma to achieve the high temperature required for the fusion

reaction. Magnetohydrodynamic (MHD) instabilities driven by energetic particles
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such as fusion-born alpha particles and fast ions generated by neutral beam injection

(NBI) and ion-cyclotron-range-of-frequency (ICRF) wave heating degrade the energetic-

particle confinement. The interactions between energetic particles and MHD modes have

been studied extensively over the decades [1, 2, 3, 4, 5, 6, 7, 8].

The classical fishbone mode located inside the q = 1 magnetic surface is a

well-known MHD instability caused by the resonant interaction of energetic particles

with MHD perturbations, where q is safety factor. The fishbone instability was first

discovered in the Poloidal Divertor Experiment (PDX) with the nearly perpendicular

NBI [9]. The fishbone instabilities were observed in periodic bursts with an m/n = 1/1

internal kink mode structure in the plasma, where m and n are poloidal and toroidal

mode numbers, respectively. In the time evolution of the fishbone instabilities, the mode

frequency is close to the precession drift frequency of deeply-trapped energetic particles

at the beginning of the instability and chirps down significantly in the nonlinear phase

associated with energetic particle losses. Since then, a considerable amount of work

has been conducted theoretically and experimentally. The resonance between energetic

particles and fishbones can be classified as follows:

1) Resonance with precession drift motion of trapped energetic particles. The fishbone

mode is a kind of energetic particle mode (EPM).[10, 11]

2) The fishbone mode is an intrinsic kink mode with an oscillation of the order of the

ion diamagnetic frequency.[12]

3) Resonance with the bounce motion of trapped energetic particles.[13]

4) Resonance with the circulating motion of passing energetic particles in the toroidal

direction.[14, 15, 16]

A new energetic-particle driven MHD instability, off-axis fishbone mode (OFM),

has been observed in JET, JT-60U, and DIII-D[17, 18, 19]. OFMs in plasmas with

q0 ≥ 1.5 have been studied in JT-60U[20, 21, 22, 23] and DIII-D[23, 24, 22] tokamaks

with higher βN than that of JET. The frequency of OFM is close to the precession drift

frequency of trapped energetic particles, which is similar to the classical fishbone. The

OFM is supposed to transport the energetic particles away from the center as a trigger

of the resistive wall mode (RWM) and the edge localized mode (ELM), preventing the

high-βN discharge. For the RWM, the impact of energetic-particle losses and rotation

drop induced by the OFM is sufficient to destabilize the RWM since plasma rotation

is the most efficient way to control the RWM [23]. In addition, a theoretical work[25]

reveals that a mode conversion can occur between the RWM and precessional OFM. For

the ELM, energetic particles transported by the OFM to the edge region may enhance

the pressure gradient leading to the destabilization [21, 22].

This paper aims to investigate numerically the linear properties and the nonlinear

evolution of OFM using kinetic-MHD hybrid simulation code MEGA, where plasma is

described as an MHD fluid interacting with energetic particles. We constructed MHD

equilibria via the Grad-Shafranov equation taking account of a DIII-D experiment [23].

It is found that the spatial profile of OFM is composed of m/n = 2/1 mode predominant
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inside the q = 2 magnetic surface and m/n = 3/1 mode predominant outside the

q = 2 surface. Parameter scans are performed on energetic-particle pressure, initial

velocity distribution of energetic particles, and the location of the q = 2 surface for the

linear frequency and the growth rate of OFM. The resonance condition analysis reveals

that the contribution from the precession drift resonance is dominant, while another

resonance through a combination of precession drift and bounce motion of trapped

energetic particles yields a substantial contribution. The energetic-particle distribution

function is analyzed carefully in phase space. All of the resonant energetic particles are

concentrated around the q = 2 magnetic surface in the linear growth phase of the OFM,

and they are transported radially in the nonlinear phase. The remainder of this paper is

organized as follows. In Section 2, the physics model of the simulation is described. In

Section 3, the simulation results are presented focusing on the linear properties of OFM

and the wave-particle interaction. The nonlinear evolution of the OFM is presented in

Section 4. Section 5 is devoted to discussion and summary.

2. Physics model

A kinetic-MHD hybrid simulation code MEGA[26, 27, 28, 29, 30, 31] is used for the

simulations of OFM in this paper. In the physics model of MEGA, bulk plasma is treated

as one fluid given by the nonlinear MHD equations, and the drift kinetic equations with

δf particle-in-cell method are adopted for the energetic particles. The MHD equations

with energetic-particle effects are given by

∂ρ

∂t
= −∇ · (ρv) + νn∇2(ρ− ρeq) (1)

ρ
∂v

∂t
= − ρω × v − ρ∇(

v2

2
)−∇p+ (j − j ′h)×B

−∇× (νρω) +
4

3
(νρ∇ · v) (2)

∂B

∂t
= −∇×E (3)

∂p

∂t
= −∇ · (pv)− (γ − 1)p∇ · v

+ (γ − 1)
[
νρω2 +

4

3
νρ(∇ · v)2 + ηj · (j − jeq)

]
+ χ∆(p− peq) (4)

E = −v ×B + η(j − jeq) (5)

ω = ∇× v (6)

j =
1

µ0

∇×B (7)
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Figure 1: Spatial profiles of energetic-particle beta (red curve) and safety factor (blue

curve).

where µ0, γ are the vacuum magnetic permeability and adiabatic constant, respectively,

the subscript ‘eq’ means the equilibrium, and ν and νn and χ are artificial viscosity

and diffusion coefficients chosen to maintain numerical stability. Resistivity in Ohm’s

law is represented by η. MEGA code solves these equations with a fourth-order finite

difference scheme for spatial derivatives and the fourth-order Runge-Kutta method for

time integration.

The energetic particle current density without E ×B drift in Eq. (2) is given by

j ′h =
∫

(v∗‖ + vB)Zhefd
3v −∇×

∫
µbfd3v (8)

where E × B drift is not considered due to the quasi-neutrality[26], v∗‖ includes the

velocity parallel to the magnetic field and the velocity of magnetic curvature drift

motion, vB is the velocity of magnetic gradient drift motion, and Zhe, f , and µ are

charge, distribution function, and magnetic moment for energetic particle, respectively.

The second term on the right-hand side is the magnetization current.

Unless otherwise specified, the parameter in this paper is given as follows. We use

the whole tokamak plasma domain with the toroidal angle range 0 ≤ φ < 2π. Then, the

simulation region is Rc − a ≤ R ≤ Rc + a, 0 ≤ φ < 2π and −1.7a ≤ Z ≤ 1.7a, where

Rc = 1.7 m and a = 0.6 m are the major radius and the minor radius, respectively.

The number of grid points is 128 × 64 × 128 for cylindrical coordinates (R, φ, Z) with

approximately 8 × 106 particles. The values of viscosity and diffusivity are set to be

ν = 10−6vARc and νn = χ = 0, and the resistivity is η = 10−7µ0vARc in the simulations,

where vA is the Alfvén velocity at the plasma center. An anisotropic slowing-down

distribution is used here to be consistent with the distribution of energetic particles in

the experiments. The distribution function is given by

feq
(
ψ̄, υ,Λ

)
= C exp

(
− ψ̄

∆ψ̄

)
1

υ3 + υ3
crit

× 1

2
erfc

(
υ − υinj

∆υ

)
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× exp

(
−(Λ− Λ0)2

∆Λ2

)
(9)

where ψ̄ is normalized poloidal magnetic flux with ψ̄ = 0 at the plasma center and ψ̄ = 1

at the plasma edge, and ∆ψ̄ = 0.3. Pitch angle variable is represented by Λ = µB0/E,

where µ, B0, and E are magnetic moment, the magnetic field strength at the plasma

center, kinetic energy of particles with Λ0 and ∆Λ being the distribution peak location

and width, respectively. In this paper, Λ0 = 1.1 and ∆Λ = 0.1 are used for all the cases.

The background plasma is deuterium with the number density of 3 × 1019 m−3. The

magnetic field strength at the plasma center is B0 = 1.7 T. The injection velocity of

energetic particles is vinj = 0.58vA, corresponding to 80 keV deuterium neutral beam

with ∆v = 0.1vA. The critical velocity is vcrit = 0.62vA. The profiles of energetic-

particle beta and safety factor are shown in Fig. 1. The energetic-particle beta profile

is defined by

βh(ψ̄) = βh0 exp(−ψ̄/∆ψ̄) (10)

with βh0 the value at the center. A uniform bulk plasma beta profile with an initial

value of 2.48% is assumed for simplicity. Regarding the safety factor, a parameter scan

is carried out on safety factor profile, while the on-axis value and the edge value are

kept the same as qr=0 = 1.6 and qr=a = 5.0.

3. Simulation results

3.1. characteristics of OFM

Figure 2 shows the time evolution of the MHD perturbation energy (W ) with n = 1

and the frequency of radial MHD velocity with m/n = 2/1, and the MHD pressure

fluctuation profiles for different times in the standard run with βh0 = 1.5 × 10−2. We

see the exponential growth and the saturation of the MHD perturbation energy at

tωA ' 5177 with ωA = vA/Rc. The frequency of radial MHD velocity is f0 ' 12.3 kHz

before the saturation and chirps down along with the mode damping. The snapshots of

the spatial structure of the MHD pressure fluctuations are shown for the linear and the

nonlinear phases in Fig. 2(b) and (c). The linear phase shown in Fig. 2(b-i) exhibits that

the mode is dominantly composed of the m = 2 harmonic inside the q = 2 magnetic

surface drawn in solid line, while m = 3 is dominant outside the q = 2 surface. In

particular, we see the strongly shearing profile of the OFM on the poloidal plane. The

possible mechanism of the shearing structure of the OFM is the nonperturbative kinetic

effects of energetic particles [32, 33, 34, 35, 36], as no shearing structure is observed in

resistive kink mode. We see the shearing structure in the radial variation of the ratio

of the m = 2 harmonic sine part to the cosine part shown in Fig. 2(c-i). The phase

of the harmonics is chosen so that the cosine part of the dominant harmonic (m = 2)

is maximized at the mode peak location. On the other hand, such a strongly shearing

structure is not observed in the simulations of classical fishbone [29, 37]. During the

damping phase, the m = 2 fluctuation profile becomes narrower in the radial direction,
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while the m = 3 fluctuation is disappearing as shown in Fig. 2(b-iii). At the end of the

simulation shown in Fig. 2(b-iv) and (c-ii), we can observe that the m = 2 harmonic

profile is narrow with an outward shift in the radial direction and the relative amplitude

of the sine part to the cosine part is enhanced. This indicates that the shearing profile

is enhanced during the nonlinear evolution.

For a better understanding of OFM, we have performed a systematic scan of the

central energetic-particle beta value βh0 on the mode growth rate and the frequency as

shown in Fig. 3(a). Without energetic particles (βh0 = 0%), we see that a resistive

kink mode with the same m/n = 2/1 mode is unstable. With increasing βh0, the kink

mode is stabilized by energetic particles, and the OFM becomes unstable. We notice

the appearance of the OFM by the jump in the mode frequency from 0 kHz to ∼ 12

kHz. With increasing βh0, the growth rate of the OFM increases while the frequency is

kept almost constant in the range of 12.3±0.5 kHz. In the present simulations, however,

beta-induced Alfvén eigenmode (BAE)[38] becomes dominant for βh0 > 1.5% and limits

the range of βh0 for the parameter scan for OFM. It is concluded that the OFM exhibits

a similar relationship of the q = 1 fishbone mode to the kink mode[39].

In the experiments [18, 23], the initial mode frequency of OFM is close to the

precession drift frequency of trapped energetic particles. Figure 3(b) shows the growth

rate and the frequency of the OFM as a function of the injection velocity of energetic

particles. The mode frequency increases when the injection velocity increases from

0.47vA to 0.66vA. Meanwhile, the growth rate of OFM decreases. The results indicate

that the mode frequency depends on the orbit frequency of the energetic particle. In

particular, the precession drift frequency of deeply trapped particles is approximately

given by [40]

ωd =
Eq

mhrRcΩ0

(11)

where E, mh, and Ω0 are kinetic energy, mass, and gyro frequency of the energetic

particle, respectively. For the specific case of vinj = 0.58vA, the mode frequency is

12.3 kHz, which is consistent with the precession drift frequency 14.3 kHz for v = vinj.

This suggests that the trapped energetic particles drive the OFM. Further details are

discussed in the next subsection.

In previous studies [41], the effects of the radial location of the q = 1 magnetic flux

surface were investigated for the classical fishbone. We performed a series of simulations

to investigate the effect of the q = 2 magnetic flux surface location on the OFM. The

safety factor profiles we used are shown in Fig. 3(c). Figure 3(d) shows the growth rate

and the frequency of the OFM versus the normalized radius of the q = 2 magnetic flux

surface (rq=2). We see in the figure that the growth rate is an increasing function of

rq=2, and the mode frequency has a slight reduction. It indicates that the OFM becomes

more unstable with increasing radius of the q = 2 magnetic flux surface. This effect is

similar to that of the radius of the q = 1 magnetic flux surface on the classical fishbone.
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Figure 2: (a) Time evolution of MHD perturbation energy for n = 1 mode (red) and

frequency of radial MHD velocity with m/n = 2/1 (blue). (b) Spatial structures of

MHD pressure perturbation for different times. The q = 2 magnetic flux surface and

other surfaces for r/a = 0.2, 0.4, 0.6, 0.8 are plotted with black solid and dashed lines,

respectively. (c) Radial structures of MHD pressure perturbation at the linear growth

phase and the nonlinear phase, respectively. Solid (dashed) lines with symbols represent

the cosine (sine) parts of Fourier components. The location of the q = 2 magnetic flux

surface is denoted by black solid lines.
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Figure 3: Linear growth rate (red circle) and mode frequency (blue triangle) versus (a)

βh0, (b) vinj, and (d) normalized radius of the q = 2 magnetic flux surface (rq=2). The

data points shown in panel (d) are investigated by using the safety factor profiles shown

in panel (c).

3.2. Resonance condition of energetic particles

We have picked up energetic particles with large |δf | to clarify the resonance condition

with the OFM. Particles with large |δf | represent strong interaction with the OFM and

can be regarded as resonant particles. The top 8000 energetic particles with large |δf |
are shown in (µ,Λ) space in Fig. 4(a). We classify the particles with large |δf | into three

types, Type I-III. Type I particles represented by black triangles in the figure are widely

distributed in the range of 0.07 ≤ µ/(mhv
2
A/B0) ≤ 0.19 and 1.08 ≤ Λ ≤ 1.2. Type II

particles represented by blue circles are distributed around µ/(mhv
2
A/B0) = 0.02 and

0.97 ≤ Λ ≤ 1.07. Type III particles represented by red circles are distributed around

µ/(mhv
2
A/B0) = 0.02 and 1.1 ≤ Λ ≤ 1.2.

Here, it should be noted that the OFM is the most unstable when the pitch angle

variable is set to be Λ0 = 1.1 among Λ0 = 1.0, 1.05, 1.1, 1.15, 1.2 with ∆Λ = 0.1 in the

initial distribution function of energetic particles. The OFM is stable for Λ0 = 1.0 and

1.2.
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Figure 4: (a) Top 8000 energetic particles with large |δf | in (µ,Λ) space, where µ is

normalized by mhv
2
A/B0. Black triangles, blue circles, and red circles represent Type I,

Type II, and Type III particles, respectively. (b) Distribution of the top 8000 particles

in [r, (ω0 − nωφ)/ωθ] space. (c) Typical orbits of the three types of resonant particles

and the q = 2 magnetic flux surface.
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Fig. 4(a). Blue color represents energy transfer from particles to the OFM, while red

color represents energy transfer from the OFM to particles.

The resonance condition with a wave, of which frequency ω0 is sufficiently lower

than the cyclotron frequency in a tokamak, is [26, 42]

ω0 − Lωθ − nωφ = 0 (12)

where n is the toroidal mode number of the wave, and L is an integer representing

the poloidal resonance number, ωθ and ωφ are poloidal and toroidal orbit frequency of

the particle, respectively. For trapped particles, ωθ is the bounce frequency and ωφ is

the precession drift frequency. We plot the values of (ω0 − nωφ)/ωθ for the top 8000

particles in Fig. 4(b). The horizontal axis of the figure is the normalized radial location

of the particles. We see that the values are concentrated around 0 and 1, indicating

that the resonance occurs with L = 0 for Type I particles and L = 1 for Type II and III

particles. The typical orbits for the three types of particles are plotted in (R,Z) plane

in Fig. 4(c). All of the orbits are located close to the q = 2 magnetic flux surface, which

leads to the strong interaction with the OFM. This may also explain why the OFM is

the most unstable for Λ0 = 1.1. The pitch-angle variable for the Type I and Type III

particles shown in Fig. 4(c) is Λ = 1.15. For Λ0 = 1.1 and Λ = 1.15, the pitch-angle

distribution G = exp
(
− (Λ−Λ0)2

∆Λ2

)
given by Eq. (9) leads to the strong drive to the OFM

through the energy derivative ∂G
∂E

∣∣∣
µ=constant

= 2(Λ− Λ0)(µB0/E
2∆Λ2)G > 0 [43].

The energy transfer rate w dE
dt

is analyzed for energetic particles in (µ,Λ) space,

where w is the particle weight, dE/dt is the time derivative of kinetic energy of the

particle. The result is shown in Fig. 5. The region with w dE
dt
< 0 represented by blue

color transfers energy to the OFM and drives the instability. We can see that Type I

particles are the primary component for the destabilization of the OFM, while Type III

particles also provide a weak contribution. In contrast, Type II particles obtain energy
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stabilizing the OFM. The primary resonance between the OFM and energetic particles

is the precession drift resonance with L = 0. This is consistent with the theoretical

study which predicts that OFM with external kink mode profile can be excited when

trapped energetic-particle beta exceeds a critical value [25]. The spatial profile of OFM

in our simulation is different from the external kink mode profile which was assumed in

the theory. In addition, we have found a new resonance with L = 1 for a relatively low

magnetic moment with a similar Λ to the primary resonance. Since Λ is comparable

between the two resonances, the low magnetic moment is equivalent to low energy. The

new resonance with L = 1 occurs for Type II and III particles with relatively low energy.

It is interesting to note that Type II particles with lower Λ obtain energy from the OFM

while Type III particles with higher Λ give energy. This will be investigated in detail in

the next section.

4. Nonlinear evolution

4.1. Evolution of particle orbit frequency

The nonlinear dynamics and transport of energetic particles are investigated in this

section. We see in Fig. 2(a) that the OFM grows exponentially with the initial frequency

f0 = 12.3 kHz, and the frequency chirps down to around 7.4 kHz during the nonlinear

phase. We define the resonance frequency ωresonant by

ωresonant = nωφ + Lωθ . (13)

Here, we should emphasize that ωφ and ωθ are nonlinear orbit frequencies measured

during the nonlinear simulation following the particle orbit interacting with the MHD

perturbations. Distributions of the top 8000 energetic particles with large |δf | are shown

in (ωφ, ωresonant) space for different times in Fig. 6. Red (blue) color represents positive

(negative) δf in the figure. For the linear growth phase of the OFM shown in Fig.

6(a), we see that the resonance frequency for both L = 0 and L = 1 particles are

almost the same as the mode frequency represented by the dashed line. The L = 0

and L = 1 particles are located around ωφ = 0.0285ωA and ωφ = 0.004ωA, respectively.

For tωA = 4008 shown in Fig. 6(b), the resonance frequency begins to chirp down (up)

for positive (negative) δf particles shown in red (blue). It indicates that a weak effect

of nonlinearity exists before the saturation. For tωA = 5010 at the saturation of the

instability, we see in Fig. 6(c) a large down-shift in resonance frequency for positive δf

particles and a significant up-shift for negative δf particles. At the same time, we see a

slight decrease in the mode frequency in Fig. 2(a).

In the nonlinear phase shown in Fig. 6(d), the separation in resonance frequency

between positive and negative δf particles develops further. The resonance frequency

of the particles with positive δf decreases along with the chirping-down of the OFM

frequency. These particles may be kept resonant with the OFM. This suggests a different

mechanism of frequency chirping from recent studies of classical fishbone where the
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Figure 6: Distributions of the top 8000 energetic particles with large |δf | in

(ωφ, ωresonant) space at (a) tωA = 3340, (b) tωA = 4008, (c) tωA = 5010 and (d)

tωA = 6680. Red (blue) color represents positive (negative) δf . The mode frequency

of the OFM at each time is represented by black dashed line. The L = 0 and L = 1

particles are located around ωφ = 0.0285ωA and ωφ = 0.004ωA, respectively, in panel

(b).

frequency down-chirping is attributed to the flattening of the energetic particle pressure

profile [44].

In addition, the transition from trapped particle to passing particle is observed in

the nonlinear phase. It should be noted that for some L = 1 particles, the precession

drift frequency decreases to zero, and changes the sign. These particles become passing

particles moving in −φ direction.

4.2. Distribution function analysis

We have analyzed the energetic-particle distribution function to understand the physical

mechanisms of destabilization and stabilization in the linear growth and nonlinear

phases. Figure 7 illustrates distribution function perturbations in (Pφ, E) space for
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Figure 7: Energetic-particle distribution function perturbations in (Pφ, E) space with

µ = 0.14 (L = 0) and µ = 0.02 (L = 1) are shown in left and right columns, respectively,

for [(a) and (b)] tωA = 3340 and [(c) and (d)] tωA = 6680. Magenta lines represent

resonance condition with the OFM, where resonance integer L is labeled. The white

dashed lines represent E ′ = const. The location of the q = 2 magnetic flux surface is

denoted by gray lines. Energetic-particle distribution functions along the E ′ = const.

lines are compared between different times for (e) µ = 0.14 and (f) µ = 0.02.
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Figure 8: Time evolution of Pφ for Type II (red curve) and Type III (blue curve)

particles with positive δf .

a particular value of µ = 0.14mhv
2
A/B0 (µ = 0.02mhv

2
A/B0) in top (middle) panels

for different times. There are three variables, toroidal canonical momentum (Pφ),

kinetic energy (E), and magnetic moment (µ) with the definition Pφ = ehΨ +mhRv‖bφ,

E = 1
2
mhv

2, and µ = 1
2
mhv

2
⊥/B. For the interaction with Alfvén eigenmodes whose

frequency is sufficiently lower than the ion Larmor frequency, magnetic moment µ is an

adiabatic invariant. At the plasma core, the poloidal magnetic flux is set to Ψ0, and

at the plasma border, it is set to 0. The energetic particle is denoted by the subscript

“h” while the φ component of the magnetic field unit vector is denoted by bφ. All the

particles in the simulation are included for the integration of the δf distribution. The

magenta lines are the contours of

F (ωφ, ωθ) =
ω − nωφ
ωθ

(14)

where ωφ and ωθ are measured following particle orbits in the equilibrium magnetic

field for the linear resonance condition [31]. The magenta lines represent the resonance

condition F (ωφ, ωθ) = L where L is an integer and labeled in the figure. In the linear

growth phase shown in Fig. 7(a) and (b), resonance regions between the OFM and

energetic particles emerge. It should be noted that the resonance regions are close to

the q = 2 magnetic flux surface represented by gray lines in both figures. The total

distribution function is almost the same as the initial distribution function as shown

in Fig. 7(e) and (f). After the saturation, we see in Fig. 7(c) and (d) that positive

(negative) δf regions shown in red (blue) appear along the E ′ = E− ω
n
Pφ = const. lines,

which is conserved during the wave-particle interaction when the frequency chirping is

neglected [8, 45]. It is found in Fig. 7(d) that for L = 1 particles, the two pairs of

resonance regions are created while the blue regions overlap each other. These two pairs

are Type II and III particles. Type II particles stabilize the OFM on the higher-energy

side, while Type III particles are located on the lower-energy side. Figure 8 clearly
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Figure 9: Series of poloidal snapshots for energetic particle distribution perturbations of

the top 8000 particles with large |δf | for (a) type I particles (L = 0), (b) type II particles

(L = 1) and (c) type III particles (L = 1) at (a-i) (b-i) (c-i) tωA = 3340, (a-ii) (b-ii)

(c-ii) tωA = 5177, (a-iii) (b-iii) (c-iii) tωA = 6680. Red (blue) color represents positive

(negative) δf . The q = 2 magnetic flux surface is represented by black solid lines and

other magnetic flux surfaces are represented by dashed lines for r/a = 0.2, 0.4, 0.6, 0.8.
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shows that the type II and type III particles with positive δf tend to move radially

inward and outward, respectively. It means that Type II (III) particles move to the

center (edge), matching the right (left) pair of the resonant regions shown in Fig. 7(d).

The oscillation of typical particles shown in Fig. 8 suggests that they are trapped by

the wave.

We see in Fig. 7(e) and (f) that the distribution function is flattened along the

E ′ = const. lines around the resonance due to (inverse) Landau damping significantly

in Fig. 7(e) and moderately in Fig. 7(f). The energy derivative of the distribution

function along an E ′ = const. line is defined by [8, 31]

∂f

∂E

∣∣∣
E′

=
∂f

∂E
+
dPφ
dE

∂f

∂Pφ
=
∂f

∂E
+
n

ω

∂f

∂Pφ
(15)

where n and ω are toroidal mode number and mode frequency. The right-hand side

of the equation represent the drive for the inverse Landau damping or the damping for

Landau damping. We see in Fig. 7(e) and (f) that df/dE > 0 along the E ′ = const. lines

at tωA = 0 causes the inverse Landau damping and drives the OFM for Type I particles

with L = 0 and Type III particles with L = 1. The saturation of the instability can be

attributed to the significant flattening of the distribution function along the E ′ = const.

lines as shown in Fig. 7(e). In Fig. 7(f), the negative gradient of distribution function

causes the Landau damping to stabilize the OFM. This phase space region corresponds

to Type II particles.

4.3. Distribution evolution in (R,Z) plane

Furthermore, the top 8000 resonant particles with large |δf | are chosen to plot the

energetic particle distribution perturbations in an (R,Z) plane. In the linear growth

phase shown in Fig. 9(a-i), (b-i) and (c-i), the resonant interaction is taking place

around the q = 2 magnetic flux surface. In the nonlinear phase, we see that the red

regions (δf > 0) move radially outward and blue regions (δf < 0) move inward for

Type I particles shown in Fig. 9(a-ii) and (a-iii), while the motion of Type II particles

is in the opposite way as shown in Fig. 9(b-ii) and (b-iii). Type III particles move

similarly to type I particles, although radial transport of positive and negative particles

is weak, as seen in Fig. 9(c-ii) and (c-iii). In particular, we notice in Fig. 9(b-iii)

that some Type II particles become passing particles near the plasma center due to the

energy transfer from wave to particles. The perpendicular energetic-particle pressure

profiles are compared for different times in Fig. 10. The initial profile is shown as a

shaded region. The solid red line shows the flattening of the energetic-particle pressure

profile at the end of the simulation and a substantial energetic-particle transport in the

radial direction. Interestingly, the energetic-particle transport occurs not only at the

saturation of the OFM (tωA = 5010) but also during the frequency chirping after the

saturation.
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Figure 10: Perpendicular energetic-particle pressure profiles for different times. The

OFM is saturated at tωA = 5010.

5. Discussion and summary

We have investigated the linear growth and the nonlinear evolution of OFM destabilized

by trapped energetic ions in tokamak plasmas with kinetic-MHD hybrid simulations.

The spatial profile of the OFM is mainly composed of m/n = 2/1 mode inside the

q = 2 magnetic flux surface while the m/n = 3/1 mode is predominant outside the

q = 2 surface. The spatial profile of the OFM is a strongly shearing shape on the

poloidal plane, suggesting the nonperturbative effect of the interaction with energetic

ions. The frequency of the OFM in the linear growth phase is in good agreement with the

precession drift frequency of trapped energetic ions, and the frequency chirps down in the

nonlinear phase. The parametric scan showed that the OFM is significantly affected by

energetic-particle pressure, injection velocity, and the radius of the q = 2 magnetic flux

surface. It was found that two types of resonance with the poloidal resonance number

L = 0 and L = 1 make a substantial contribution to the instability. The primary

resonance between energetic particles and OFM is the precession drift resonance with

L = 0. The resonance with L = 1 is a combination of precession drift and bounce motion

and has both the destabilizing and the stabilizing effects on OFM. The contribution from

the L = 1 resonance is weaker than that from the L = 0 resonance.

The resonance frequency, which is defined based on precession drift frequency

and bounce frequency of the nonlinear orbit for each resonant particle, was analyzed

to understand the frequency chirping. It was found that the resonance frequency of

positive δf particles chirps down, which may result in the chirping down of the OFM

frequency. We analyzed the energetic-ion distribution function in (Pφ, E) space. It

was demonstrated that the gradient of the distribution function along the E ′ = const.

line drives or stabilizes the instability. The distribution function is flattened along the

E ′ = const. line in the nonlinear phase leading to the saturation of the instability.

The energetic-ion pressure profiles for different times indicate that the energetic-ion
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transport occurs not only at the saturation of the OFM but also during the frequency

chirping after the saturation.

In the experiments, the magnetic probe signals in both JT-60U and DIII-D devices

exhibit a strong waveform distortion (non-sinusoidal oscillation) synchronized with the

energetic particle transport to the plasma edge [22, 23, 24]. The data from the toroidal

array show that the mode distortion is related to the higher-n harmonics. This unique

feature has never been reported for classical fishbone bursts. The higher-n harmonics

are generated through MHD nonlinearity, which depends significantly on the mode

amplitude and the spatial profile. The shearing profile of the OFM found in this

work may affect the waveform distortion observed at a specific location through the

spatial profile of the nonlinearly generated modes. The waveform distortion will be

investigated in our future work, where the numerical resolution and the dissipations

should be considered carefully.
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