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Abstract
A novel nonlinear functional relation of turbulence potential intensity, zonal flow potential
intensity, and ion thermal diffusivity that accurately reproduces nonlinear gyrokinetic
simulations of toroidal ion temperature gradient (ITG) driven turbulence is proposed. Applying
mathematical optimization techniques to find extremal solutions in high-dimensional parameter
space, the optimal regression parameters in the functional form are determined to be valid for
both near- and far-marginal regime of the ITG stability including the Dimits-shift. Then, the
regression error of ∼5% is accomplished. In addition, it is clarified that the intensity ratio of the
zonal flow and turbulence potential intensity is a crucial factor to determine the reproduction
accuracy.

Keywords: plasma turbulence, zonal flow, reduced model, gyrokinetic simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

In order to realize high-performance burning plasmas expec-
ted in ITER and DEMO, it is indispensable to elucidate and
predict global turbulent transport and profile formations. To
this end, the first-principle-based nonlinear gyrokinetic simu-
lation is one of powerful approaches, and many efforts have
been devoted to the extensions to global, electromagnetic,
and multiple-species treatments (see e.g. [1, 2]). Although
much physical information is contained, a huge amount of
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numerical costs is necessary to carry out the global gyrokinetic
simulations over the confinement time, and systematic numer-
ical scans for various operation scenarios are still infeasible.

As a practical approach, various integrated simula-
tions, such as TASK/TASK3D [3–5], TOPICS [6, 7], and
GOTRESS+ [8–10], have also been developed. Utilizing sim-
plified/reduced models constructed from theoretical, experi-
mental, and numerical studies, the magnetic equilibria, heat-
ing, fueling, neoclassical and turbulent transport, and time
evolution of macroscopic radial profiles are individually cal-
culated. The turbulent transport, which often exceeds the neo-
classical levels, is of particular importance for the accuracy of
predictions by integrated simulations. Construction of a more
accurate, but still simplified model that reproduces results
of the nonlinear gyrokinetic simulations or the experimental
observations is a central issue in tokamak and stellarator tur-
bulence studies.
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Theoretical and numerical studies on the simplified mod-
els for the turbulent transport have extensively been conducted
so far, where some remarkable models such as GLF23 [11],
TGLF [12–14], and QuaLiKiz [15] have been proposed
in the framework of quasi-linear gyrokinetic and gyrofluid
approaches. The effects of multi-scale fluctuations [16] and
meanE×B flow shear [17] are also incorporated. Moreover, a
combinedmodeling based on the linear and nonlinear gyrokin-
etic simulations has also been explored, where the impacts of
turbulence nonlinearity and zonal flow generation on the ion
temperature gradient (ITG) driven turbulent thermal transport
for ions have been taken into account [18]. An extension to the
electron-thermal and particle transport has been applied in the
similar manner [19–22].

Furthermore, modeling studies with deep neural networks
have actively been addressed as another recent approach
[9, 10, 23, 24]. Experimentally and/or numerically produced
massive datasets regarding the radial kinetic profiles and the
transport fluxes, etc are utilized for the training of multi-
layered neural networks. Then, one can rapidly estimate the
turbulent transport fluxes or the related diffusivities from
the several inputs of known physical parameters such as
the safety factor, local background density and temperat-
ure, and their logarithmic gradients. Indeed, a semi-empirical
neural network model, which was constructed by using the
local gyrokinetic simulation and JT-60U experiment data, well
reproduces the particle and thermal transport fluxes in neutral-
beam-heated plasmas [25, 26]. Although such deep-neural-
network-based modelings are powerful, one should note that
the physical explainability or interpretability and the extrapol-
ation capability are generally limited in the approachwith deep
neural networks.

In this study, to construct a more accurate and physically
interpretable model, a nonlinear functional relation (NFR) is
proposed. The nonlinearity among turbulence, zonal flows,
and thermal transport flux in tokamak ITG driven turbulence is
phenomenologically incorporated to the NFR by means of the
nonlinear gyrokinetic simulations and mathematical optimiza-
tion techniques. To be applicable to the global turbulent trans-
port with significant variations of the profile gradients [27],
our NFR is verified to be valid for a wide range of the physical
parameters and the radial domains, including near- and far-
marginal ITG stability. Indeed, the importance of the zonal
flow effects near the regime of so-called Dimits-shift [28]
has been revealed in several gyrokinetic simulation studies
regarding the near-marginal or sub-critical turbulence dynam-
ics [29, 30] and the isotope effects [31, 32]. Encompassing
such strong zonal flow effects is necessary to accurately pre-
dict the dynamical evolutions of the kinetic profiles and the
magnetic equilibria. Once the systematic methodology to pro-
posed an accurate NFR is established, various simplified trans-
port models can be induced by combining the conventional
modelings [18–22] with linear calculations as in [18]. Also,
the phenomenological arguments in the present NFR approach
enable us to extract the physical interpretations and useful sug-
gestions to improve the accuracy.

The rest of this paper is organized as follows. In section 2,
the gyrokinetic model and the nonlinear simulation results for

the tokamak ITG driven turbulence including the Dimits-shift
regime are presented. Then, based on three types of NFRs, the
identification of their regression parameters by using mathem-
atical optimization techniques is discussed in section 3. Fur-
ther investigations for a key factor to determine the reproduc-
tion accuracy are shown in section 4. The verifications of the
accuracy and the versatility are given in section 5. Finally, the
paper is summarized in section 6.

2. Toroidal ITG driven turbulence simulation

Gyrokinetic turbulence simulation model and numerical res-
ults are summarized in this section. Various datasets regard-
ing the turbulence potential intensity, the zonal flow poten-
tial intensity, and the turbulent transport coefficient, which
strongly depend on the temperature gradient, are prepared to
construct the NFR in sections 3 and 4.

The ITG driven turbulent transport simulations in a toka-
mak equilibrium are performed by using a gyrokinetic Vlasov
simulation code GKV [33]. Since the nonlinear modeling
incorporating the strong zonal flow effects is of particular
focus in this study, the electrostatic limit with the adiabatic
electron response is assumed for simplicity. The gyrokinetic-
Poisson equations in Fourier wavenumber representation are
summarized as follows:[

∂

∂t
+ v∥∇∥ + iωDs −

(
esµ
mi

∇∥B

)
∂

∂v∥

]
δfsk⊥

− 1
B

∑
k ′
⊥+k ′ ′

⊥=k⊥

b · (k ′
⊥ × k ′ ′

⊥)J0(k
′
⊥ρs)δϕk ′

⊥δfsk ′ ′
⊥

=
esFMs

Ts
(iω∗Ts + iωDs − v∥∇∥)J0(k⊥ρs)δϕk⊥ +Cs, (1)

[
k2⊥ +

1
ε0

∑
s

e2s ns
Ts

(1−Γ0sk⊥)

]
δϕk⊥

=
1
ε0

∑
s

es

ˆ
dv J0(k⊥ρs)δfsk⊥ , (2)

where δfsk⊥ = δfsk⊥(z,v∥,µ, t) denotes the perturbed gyrocen-
ter distribution function for the particle species ‘s’, which is
represented in the fluxtube coordinates (see [34, 35] for more
details). Here, k⊥ = (kx,ky), b, B, δϕk⊥ , µ, es, ms, and Ts are
the perpendicular wavenumber vector, the unit vector paral-
lel to the field line, the magnetic field strength, the electro-
static potential fluctuation, the magnetic moment, the electric
charge, the particle mass, and the temperature for each particle
species, respectively. The drift frequency, the diamagnetic fre-
quency, and the gyroradius are denoted by ωDs, ω∗Ts, and ρs,
respectively. The finite gyroradius effects are represented by
the zeroth-order Bessel function J0 and Γ0 = e−bI0(b) with
b= (k⊥ρti)2, where the zeroth-order modified Bessel func-
tion, the ion thermal speed, and the ion thermal gyroradius
are I0, vti =

√
Ti/mi, and ρti = mivti/eiB, respectively. Max-

wellian distribution and the collision operator are represented
by FM and Cs, respectively.
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The turbulent thermal transport flux in the radial direction
Qr is given by

Qr = Re

〈∑
k⊥

ˆ
dv

(
msv2

2
−Ts

)
δfsk⊥δv

∗
Ek⊥ ·∇r

〉

=

〈∑
k⊥

ˆ
dv

(
msv2

2
−Ts

)
b× k⊥ ·∇r

B

× Im

[
δfsk⊥
δϕk⊥

]
|δϕk⊥ |2

〉
. (3)

Here, δvEk⊥ = ib× k⊥δϕk⊥/B denotes the E×B drift velo-
city driven by the electrostatic potential fluctuations. The
superscript ‘∗’ means the complex conjugate. The flux sur-
face average is denoted by ⟨· · · ⟩. One finds that the turbu-
lent flux is proportional to the product of the fluctuation amp-
litude |δϕk⊥ |2 and the phase-difference of Im[δfsk⊥/δϕk⊥ ] as
shown in the second equality of equation (3). The turbulent
diffusivity is defined by χs =−Qr/(ns ∂Ts/∂r), where ns, r,
R, and 1/LT ≡−(∂ lnTs/∂r) mean the background density,
the radial position, major axis, and the logarithmic temperat-
ure gradient, respectively.

Spatially averaged turbulence potential intensity T and
zonal flow potential intensity Z are defined as follows:

T ≡ 1
2

∑
kx,ky ̸=0

⟨|δϕkx,ky |2 ⟩, (4)

Z ≡ 1
2

∑
kx

⟨|δϕkx,ky=0|2 ⟩. (5)

In order to propose the NFR among T , Z , and χi, R/LT-
dependence of each quantity is investigated. The heat flux Qr

is generally given by the second order correlation of δϕk⊥
and δfsk⊥ , which is determined by the nonlinear gyrokin-
etic equation in equation (1). On the other hand, when the
nonlinearity in equation (1) is neglected, the turbulent flux in
equation (3) is reduced to so-called quasi-linear flux QQL

r as
follows:

QQL
r = Re

〈∑
k⊥

Lk⊥ |δϕk⊥ |2
〉
,

Lk⊥ =

ˆ
dv i

esFMsky
TsB

(
mv2

2

)
ω∗Ts +ωDs − k∥v∥
ωk⊥ −ωDs − k∥v∥

. (6)

Here, ωk⊥ = ωr+ iγ denotes the complex frequency that is
composed of the mode frequency as the real part and the
growth rate as the imaginary part. Through the relation of
|δϕk⊥ |2 ∼ T ,QQL

r can be approximated toQQL
r ∼ CT δ , where

C is a constant and δ= 1.
Table 1 summarizes the physical parameters used in the

simulation. The linear and nonlinear simulations were per-
formed for a wide range of the ITG R/LT at two normal-
ized radial positions ρ≡ r/a in a tokamak magnetic configur-
ation, where a is the minor radius of the plasma. The safety
factor and the magnetic shear are denoted by q and ŝ. The

Table 1. Value and range of each parameter used in the simulations.

Parameter Value and range

Radial position ρ 0.5 and 0.75
Safety factor q 1.41 and 2.34
Magnetic shear ŝ 0.88 and 1.84
Ion temperature gradient R/LT 4–12
Density gradient R/Ln 2.2
Collisionality ν∗

ii 0.056

Figure 1. Time evolutions of turbulent diffusivity χi/χ
GB
i at

ρ= 0.5. Each curve corresponds to the cases for R/LT = 5,7,9,
respectively.

logarithmic density gradient R/Ln is fixed to 2.2. The phase-
space grid points of (nkx ,nky ,nz,nv∥ ,nµ) = (129,20,64,48,12)
are used, where µ≡ msv2⊥/2B. kx(min)ρti = 0.0251(at ρ=
0.5), 0.108(at ρ= 0.75), ky(min)ρti = 0.075, and the velocity
domain of 0 ⩽ v⊥ ⩽ 4vti, and −4vti ⩽ v∥ ⩽ 4vti are con-
sidered. In total, 17 nonlinear ITG turbulence simulations for
weakly collisional plasmas were performed. Figure 1 shows
the time evolution of the turbulent heat diffusivity in the gyro-
Bohmunitχi/χ

GB
i , whereχGB

i ≡ ρ2
tivti/R. Note that the time in

the horizontal axis is normalized by the maximum ITG-mode
growth rate γmax. The statistical steady states for tγmax ⩾ 50
are confirmed for all cases. In this paper, the time window of
(100 ⩽ tγmax < 300) is considered for the average of χ̄i/χ

GB
i ,

T̄ , and Z̄ . The overline is the time-averaging symbol, which
is, hereafter, omitted for simplicity.

Figure 2(a) shows the R/LT-dependence of χi/χ
GB
i and the

maximum ITG-mode growth rate γmax. One can see a slight
difference between the critical gradient of the ITG instabil-
ity and the effective gradient driving the thermal transport
near R/LT ∼ 4, which is so-called the Dimits-shift [28]. Here,
the critical gradient for the ITG instability is estimated by
zero value of the fitting function of data for R/LT = 4∼ 5,
R/LT = 4∼ 5, and the width of the Dimits-shift is evaluated
as ∆(R/LT) = R/LT|finiteχi/χGB

i
−R/LT|ITG crit. γmax = 0.861 at

ρ= 0.5 and ∆(R/LT) = 0.296 at ρ= 0.75. The ratio of
the zonal flow potential intensity to the total fluctuations
Z/(T +Z) as a function of R/LT is shown in figure 2(b). One

3
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Figure 2. (a)Temperature gradient dependence of χi/χ
GB
i evaluated

by nonlinear simulations (symbols) and γmax [vti/R] by linear
analysis (lines). (b) The ratio of the zonal flow potential intensity Z
to the total fluctuation amplitude (T +Z).

finds a significantly larger zonal flow ratio Z/(T +Z) near
the critical gradient, where the transport reduction occurs. For
the lager temperature gradient region of R/LT ⩾ 6, the zonal
flow ratio indicates a moderate dependence. The magnitude
of Dimits-shift discussed here indicates a positive correlation
not only to the relative intensity Z/(T +Z), but also to the
residual zonal flow level [36–38]. From the linear zonal flow
response, the residual zonal flow levels K are evaluated as
K = 0.0428(ρ= 0.5), and K = 0.0259(ρ= 0.75), where the
analytic estimations in the limit of the large-aspect-ratio cir-
cular cross section by Rosenbluth and Hinton [36] are KRH =
0.145(ρ= 0.5), and KRH = 0.0558(ρ= 0.75). These quantit-
ies can be useful to explain the qualitative trends in the non-
linear simulation results in figure 2. Furthermore, the shape
of the turbulence potential fluctuation spectrum is exemplified
in figure 3. It can be seen that for the turbulence (non-zonal
ky ̸= 0) and zonal flow (ky = 0) components the shape of the
spectrum is rather different between the cases with high and
low temperature gradients. Such various nonlinear depend-
ence on R/LT appearing in T , Z , and χi is crucial for con-
structing the simplified transport model, which is valid for a
wide parameter range of R/LT.

3. Nonlinear functional relation

NFRs among T , Z , and χi, which accurately reproduce the
nonlinear gyrokinetic simulation results, are discussed in this
section. Three types of the functional forms FQL, FNFR1, and
FNFR2 are examined.

Figure 3. Wavenumber spectra of turbulence potential fluctuations
for (a) ρ= 0.5,R/LT = 4.5, and (b) ρ= 0.5,R/LT = 9.

First, we consider a functional form FQL that is
similar to the quasi-linear approximation (cf equation
(6)). FQL is a simple regression to express the turbu-
lent thermal diffusivity χi/χ

GB
i only by T , which is

defined as

χi

χGB
i

∼ FQL(T ) = C1T α, (7)

whereC1 andα denote the regression parameters to be determ-
ined. To determine the regression parameters, figure 4 shows
the relationship between T and χi/χ

GB
i . As is obviously seen

in figure 4, there is the refractive behavior at χi/χ
GB
i ∼ 2.5,

which changes the exponent α significantly. Indeed, when the
simulation data is classified as the near- and far-marginal cases
with the boundary of χi/χ

GB
i ∼ 2.5, two exponents are evalu-

ated as α= 0.943 and α= 0.608 for the near- and far-marginal
cases, respectively [shown by the two straight lines in green
(near-marginal) and purple (far-marginal) in the figure 4]. It
is, therefore, hard to reproduce χi/χ

GB
i for a wide parameter

range including near- and far-marginal ITG stability by the
functional form of equation (7) with only turbulence potential
intensity T . Indeed, as will be discussed later in table 2, relat-
ively larger regression error is found for FQL with C1 = 0.208
and α= 0.733.

On the other hand, the strong correlation between
Z/(T +Z) and χi/χ

GB
i is shown in figures 2(a) and (b)

motivate us to consider another type of the functional form,
which is applicable for both near- and far-marginal cases.
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Figure 4. Relation of turbulence potential intensity T and the
turbulent diffusivity χi/χ

GB
i calculated by GKV.

Here, two nonlinear functional forms of FNFR1 and FNFR2 are
defined as follows:

χi

χGB
i

∼ FNFR1(T ,Z) =
C1T α

1+C2(Zβ/T )
, (8)

χi

χGB
i

∼ FNFR2(T ,Z) =
C1T α

1+C2(Z/T )β
, (9)

where the zonal flow potential intensity is explicitly incorpor-
ated. Note that these kinds of functional forms are not unique,
but still satisfy the fundamental phenomenological require-
ments of

FNFR1,2(T ,Z)⩾ 0,

lim
T →0

FNFR1,2(T ,Z) = 0,

lim
T →∞

FNFR1,2(T ,Z) = FQL(T ),

lim
Z→0

FNFR1,2(T ,Z) = FQL(T ),

lim
Z→∞

FNFR1,2(T ,Z) = 0. (10)

Here (C1,C2,α,β) in equations (8) and (9) are the regression
parameters to be determined such that reproduce the nonlin-
ear gyrokinetic simulation data. FNFR1 is inspired by our pre-
vious research [18] corresponding to the model for the far-
marginal parameter regime. In this study, a more generalized
form is considered, where the exponent of the second term of
the denominator is changed from the fixed value of 1/2 used in
[18] to a variable β. A slightly modified form of FNFR2 is also
considered to investigate the impact of intensity ratio of Z to
T in the denominator. For both functional forms, the second
term in the denominator plays role in describing the transport
suppression effect by the zonal flows, where the importance
of the relative zonal flow intensity in near-marginal cases has
been demonstrated in section 2.

Figure 5. (a) Visualization of the existence of multiple local
minima at (C1,0,C2,0) with α0 = β0 = 0 fixed. The variations of
color correspond to each local minimum. (b) Histogram of σ for the
(C1,0,C2,0) surface.

The regression error σ to evaluate the reproduction cap-
ability is defined by the arithmetic average of the root-mean-
square deviations as follows:

σ =

√√√√1
n

n∑
j=1

(
F(Tj,Zj)

χi, j/χ
GB
i

− 1

)2

, (11)

where Fmeans the functional relation shown in equations (7)–
(9) with no explicit labels. The total data number and the data
index are expressed by n and j, respectively. The identifica-
tion of the NFR to minimize σ is equivalent to the problem of
finding the optimal regression parameters (C1,C2,α,β). An
extremal value of σ is given by the solution of a non-convex
mathematical optimization problem. Here, the solution corres-
ponds to optimal parameter in FNFR1 and FNFR2.

Since the regression error σ = σ(C1,C2,α,β), which is the
objective function in the context ofmathematical optimization,
is a nonlinear multi-modal function in the four-dimensional
parameter space, a lot of local minima exists in general. Then,
depending on the choice of the initial condition, gradient-
descent-based searching algorithms often lead to the trapping
by a single local minimum. Figure 5(a) shows the example of
the initial-value scan with respect toC1 andC2, where the con-
tour indicates the different converged values of σ. The exist-
ence of several local minima is also emphasized by the his-
togram P(σ) shown in figure 5(b), indicating a multi-modal
distribution. Note that the initial values for β and α are fixed
to β0 = 0 and α0 = 0 in this visualization, where the subscript
‘0’ denotes the initial value.

5
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Table 2. Optimal regression parameters and the regression errors.

Parameter FQL FNFR1 FNFR2

C1 0.208 0.485 0.264
C2 — 1.30 0.0142
α 0.733 0.611 0.732
β — 0.243 1.37
σ 0.178 0.0569 0.133

In order to search the high-dimensional solution space
as broadly as possible, systematic scans of the initial val-
ues should be carried out. However, the discretized grid
scan for (C1,0,C2,0,α0,β0) requires huge computational costs
even for the four-dimensional cases. Thus, we introduce a
technique to scan a broader parameter range while reducing
computational costs. Here, 6 possible combinations of the
two-dimensional initial value spaces of (C1,0,α0),(C1,0,β0),
(C1,0,C2,0), (C2,0,α0), (C2,0,β0), and (α0,β0), which are
chosen from the original parameters, are numerically scanned.
The other two initial values are fixed as (C1,0,C2,0,α0,β0) =
(1,1,0,0). The numerical scan of each initial value set is per-
formed in the condition of 200× 200meshes for−1⩽ α0 ⩽ 1,
−1⩽ β0 ⩽ 1, −10⩽ C1,0 ⩽ 10, and −10⩽ C2,0 ⩽ 10. Then,
the best optimal solution (C1,C2,α,β) and σ are selected from
six results of the two-dimensional scan.

The mathematical optimization algorithm is similar to
Levenberg–Marquardt method [39, 40] which combines gradi-
ent descent method and Gauss–Newton method. Although the
Hessian matrix is approximated by using the Jacobian matrix
in Levenberg–Marquardt method, our algorithm directly cal-
culates the Hessian matrix to hold the fast convergence near
the local minimum. Then, the Newton method is used when
the Hessian matrix is positive definite. Otherwise, the steep-
est descent method is applied. Typically, 1.4× 109 steps are
needed for one calculation.

The optimal solution (C1,C2,α,β) and σ for three nonlin-
ear functional forms FQL, FNFR1, and FNFR2 are summarized
in table 2. One finds the smallest regression error of 0.0569
for FNFR1. As shown in figures 6(a) and (b), the reproduction
accuracy ofχi/χ

GB
i is examined, where the estimation byNFR

is compared to the nonlinear gyrokinetic simulation results
shown in the horizontal axis. The deviation from χi/χ

GKV
i = 1

in the vertical axis indicates the magnitude of local errors. It
is clarified from the comparison between FQL and FNFR1,2 that
the explicit inclusion of zonal flow potential intensity is crucial
for improving the reproduction accuracy of NFR. In addition,
we found that the intensity ratio of Z to T in the denomin-
ator of NFR has a large impact on the regression error. It is
emphasized that σ for FNFR1 is more than 2.79 times smaller
than that in the previous work [σ= 0.159 [18], 0.12 [19], 0.15
[20], 0.30 [22]], and is valid for wider parameter range includ-
ing the near- and far-marginal ITG stability.

4. Impacts of zonal flow effects

As is shown in table 2, the regression error of FNFR1 is
rather smaller than that of FNFR2, where the magnitude of the

Figure 6. Comparison between NFR (shown bi χi) and the
gyrokinetic simulation results at (a) ρ= 0.5 and (b) ρ= 0.75. The
deviation from χi/χ

GKV
i = 1 indicates the local error.

zonal flow potential intensity Z in the denominator is slightly
different. In this section, the impact of the intensity ratio of
Z to T on the regression accuracy is examined in more detail
to find the reason why FNFR1 is more accurate, which enables
one to find further optimal parameters. To this end, we define
FNFR3 as follows:

χi

χGB
i

∼ FNFR3 =
C1T α

1+C2(Zξ/T )β
. (12)

The additional parameter ξ is introduced. Using ξ, FNFR1

and FNFR2 are reproduced by setting ξ= 0.243 with β= 1 and
ξ= 1 with β= 1.37, respectively.

Figure 7 shows the regression error ofFNFR3 as a function of
ξ, where σ and the other 4 parameters (C1,C2,α,β) for given
ξ are determined by the same manner in section 3. One finds a
nonlinear ξ-dependence of the regression error in the domain
of 0< ξ ⩽ 1. Even though the regression error for FNFR1 is
enough small compared to that for FNFR2, a slightly more
optimal solution at ξ= 0.2 is identified, where σ= 0.0527.

As can be seen in equation (12), the parameter ξ charac-
terizes the intensity ratio of Z to T . It is clear from figure 7
that the intensity ratio has a significant impact on σ. This sug-
gests the importance of considering the appropriate intens-
ity ratio of Z and T . Here, an additional parameter ξ is
introduced to characterize the impact of the zonal flow com-
pared to the turbulence intensity. Then, the parameter depend-
ence of Λ≡Zξ/T in high accuracy and low accuracy is
compared. This consideration can clarify the non-negligible

6
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Figure 7. Dependence of the regression error for FNFR3 on ξ, where
the cases with ξ= 0.243 and ξ= 1 correspond to FNFR1 and FNFR2,
respectively.

physics that improves the accuracy of the NFR. To compare,
we choose ξ = {0.1,0.2,0.243} and ξ = {0.8,0.9,1} as the
representative subsets for high and low reproduction accuracy,
respectively.

Figures 8(a) and (b) show Λ for the two subsets as a func-
tion of the temperature gradient R/LT. It is demonstrated that
the strongly decaying characteristic appears for the subset
of ξ = {0.1,0.2,0.243} with small σ, while nearly flat beha-
vior is observed for the subset of ξ = {0.8,0.9,1} with lar-
ger σ. Then, we can discuss more clearly the different beha-
vior of Λ for the various ξ, by assuming Λ∝ (R/LT)−η. The
fitting exponent η is evaluated as ∼ 4.5 for high accuracy
cases in figure 8(a), and as ∼1.5 for low accuracy cases in
figure 8(b). The tendency in the former cases with the small
regression error is qualitatively consistent with the nonlinear
simulation results shown in figure 2(b), where the intensity of
relative zonal flow becomes significant in the near-marginal
regime with the Dimits-shift. On the other hand, for the latter
cases with larger errors, the nearly flat R/LT-dependence of Λ
implies that these NFRs are effectively equivalent to the quasi-
linear form of equation (7). Indeed, the regression errors for
ξ = {0.8,0.9,1} are similar to that for FQL, where C1 ∼ 0.2,
α∼ 0.7, and C2 ∼ 0. From these observations, it is, thus, cru-
cial for constructing accurate NFR to capture steep behaviors
in Λ around the critical gradient.

5. Verification of regression accuracy

In the previous section, the most optimal NFR was identi-
fied. The functional form is same as equation (12) where
(C1,C2,α,β,ξ) = (0.602,2.01,0.571,0.898,0.2) and the
regression error σ= 0.0527. By using the nonlinear simulation
data for ρ= 0.25, 0.5 ,and 0.75, the verification of reproduc-
tion accuracy is carried out to examine the versatility of radial
direction and temperature gradient. Here, the data for ρ= 0.25
is not included in the regression for NFR.

Figure 8. R/LT-dependence of the intensity ratio Λ = Zξ/T in the
subsets of (a) ξ = {0.1,0.2,0.243} in high accuracy and (b)
ξ = {0.8,0.9,1} in low accuracy.

Figure 9 shows the turbulent thermal diffusivity as a func-
tion of the temperature gradient R/LT, where the estimations
by NFR are compared with the gyrokinetic simulation results.
It is found that our NFR well reproduces the simulation res-
ults for ρ= 0.25 with the prediction error of σ= 0.0658, as
well as the cases for ρ= 0.5 and ρ= 0.75. In addition, to verify
the accuracy in near-marginal region, the Dimits-shift widths
in the NFR and GK-simulation are compared. The Dimits-
shift widths of NFR evaluated by the difference between
the NFR and the linear calculations are ∆(R/LT) = 0.868 at
ρ= 0.5,∆(R/LT) = 0.294 at ρ= 0.75, and∆(R/LT) = 0.888
at ρ= 0.25. This is results well reproduces the simulation
results ∆(R/LT) = 0.861 (at ρ= 0.5), 0.296 (at ρ= 0.75),
and 0.9 (at ρ= 0.25), respectively. From these results, the
accuracy and versatility of the NFR covering near- and far-
marginal ITG stability for the several radial positions are
demonstrated.

To verify the applicability of NFR in slightly more col-
lisional cases [27], the collisionality ν∗ is changed under
the conditions of ρ= 0.5 and R/LT = 4.5, where ν∗ =
0.0824,0.109,0.162. Figure 10(a) shows the heat diffusivity
and the relative zonal flow intensity for each collisionality.
As collisionality increases, the heat diffusivity increases while
and the relative zonal flow intensity decreases. Figure 10(b)
shows the results of applying the NFR to obtained data. It
is demonstrated that the accuracy of the present NFR gradu-
ally decreases toward the collisional regime, but still keeps a
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Figure 9. Comparison between NFR and the gyrokinetic simulation
results for χi at three different radius positions, where the data for
ρ= 0.25 is not used in the regression.

Figure 10. (a) Collisionality dependence of the heat diffusivity
χGKV
i /χGB

i and the relative zonal flow intensity Z/(T +Z).
(b) The regression error of applying the NFR to obtained data. The
deviation from χNFR

i /χGKV
i = 1 indicates the local error.

reasonable reproductivity. Such an insensitive feature is asso-
ciated with the NFR approach with the statistically averaged
quantities T and Z in which the various parameter dependen-
cies like the collisionality and configuration parameters do not
appear explicitly in the NFR.

6. Summary

The aim of this study is to propose a NFR, which is useful
for constructing a simplified model for the turbulent trans-
port. To this end, nonlinear gyrokinetic simulations were

performed for the tokamak ITG driven turbulence to obtain
the parameters used in the construction of the NFR. Here,
the electron response was assumed to be adiabatic. The
nonlinear dependence of the logarithmic ITG R/LT on the
turbulent thermal diffusivity χi/χ

GB
i , turbulence potential

intensity T , and zonal flow potential intensity Z , includ-
ing the Dimits-shift, were evaluated for the several radial
positions.

In order to propose the most plausible NFR that accur-
ately reproduces the gyrokinetic simulations results, several
types of the functional form were considered, where χi/χ

GB
i

is expressed as a nonlinear function of T and Z . The func-
tional form is not unique but still satisfies phenomenological
requirements in the ITG driven turbulence.

Applying mathematical optimization techniques to find
extremal solutions in high-dimensional parameter space, the
optimal regression parameters (C1,C2,α,β) in the NFR are
determined. Then, the regression error of σ= 0.0527, which
is much smaller than that in earlier work [18–22] and
in the quasi-linear form FQL, is accomplished. Moreover,
the present NFR is found to be valid for both near- and
far-marginal regimes of the ITG stability, including the
Dimits-shift.

It is also clarified that the intensity ratio of the zonal flows
and turbulence, Zξ/T with the additional parameter ξ, is a
crucial factor to determine the reproduction accuracy. Through
the verification using the simulation data for ρ= 0.25, which
is not applied to the regression, the accuracy and versatility of
the NFR covering near- and far-marginal ITG stability for the
several radial positions are demonstrated.

The NFR approach contributes to extract the essential tur-
bulent suppression process by the zonal flow in the plasma
turbulent transport. Besides, the NFR explicitly depends on
only T and Z , but not on the detailed plasma and equilib-
rium parameters. This property is useful for estimating tur-
bulent transport with reduced computational costs. Moreover,
the NFR approach encourages new capabilities to suggest the
optimal quantities and functional forms be learned in deep
neural network modelings. The NFR itself can not reduce the
computational costs in the transport simulations, because T
and Z are obtained from nonlinear simulation. There are sev-
eral works on constructing further simplified transport mod-
eling by utilizing the NFR [18–22]. It also can be applic-
able to construct global flux driven turbulent simulations such
as GT5D [27], GKNET [41], and GYSELA [42]. As shown
in figure 3, we can see that the turbulent spectrum shape is
rather different for near- and far-marginal cases. Such spec-
tral shape in the wavenumber space is needed to incorpor-
ate in future work. Also, the predator-prey like low-frequency
oscillation [43] may occur in the collisional plasma. However,
the present NFR has not treated such dynamics. Also, the fre-
quency decomposition is not applied to Z and T so that the
contribution for high-frequency GAM oscillation [44] in Z is
not distinguished. Such additional flexibility may be useful to
improve the physical reproductivity. Also, extending NFR to
multiple particle species is an important issue. These issues
remain to be addressed in future work and will be reported
elsewhere.

8



Plasma Phys. Control. Fusion 64 (2022) 075007 T Nakayama et al

Data availability statement

All data that support the findings of this study are included
within the article (and any supplementary files).

Acknowledgments

The authors would like to thank Dr E Narita, Dr M Yoshida,
and Mr K Fujii for useful discussions on this study. This work
is supported by JST SPRING, Grant No. JPMJSP2104, in part
by the MEXT Japan, Grant Nos. 20K03907, and 17K07001,
in part by the NIFS collaborative Research Programs
(NIFS21KNST191, NIFS17KNST115, NIFS22KIST017,
NIFS22KIST018), and in part by JST, PRESTO Grant Num-
ber JPMJPR21O7, Japan, and in part by PLADyS, JSPS
Core-to-Core Program. Numerical simulations were per-
formed by JFRS-1 at IFERC- CSC, and Plasma Simulator
at NIFS.

ORCID iDs

Nakayama T https://orcid.org/0000-0002-6719-9013
M Nakata https://orcid.org/0000-0003-2693-4859
M Honda https://orcid.org/0000-0003-3942-0080
M Nunami https://orcid.org/0000-0002-2459-2392
S Matsuoka  https://orcid.org/0000-0003-2790-2226

References

[1] Idomura Y 2014 Full-f gyrokinetic simulation over a
confinement time Phys. Plasmas 21 022517

[2] Merlo G, Dominski J, Bhattacharjee A, Chang C S, Jenko F,
Ku S, Lanti E and Parker S 2018 Cross-verification of the
global gyrokinetic codes GENE and XGC Phys. Plasmas
25 062308

[3] TASK (available at: https://bpsi.nucleng.kyoto-u.ac.jp/task/)
[4] Honda M and Fukuyama A 2008 Dynamic transport

simulation code including plasma rotation and radial
electric field J. Comput. Phys. 227 2808–44

[5] Yokoyama M, Wakasa A, Seki R, Sato M, Murakami S,
Suzuki C, Nakamura Y and Fukuyama A (LHD Experiment
Group) 2012 Development of integrated transport code,
TASK3D and its applications to LHD experiment Plasma
Fusion Res. 7 2403011

[6] Hayashi N and JT-60 Team 2010 Advanced tokamak research
with integrated modeling in JT-60 upgrade Phys. Plasmas
17 056112

[7] Honda M, Satake S, Suzuki Y, Matsunaga G, Shinohara K,
Yoshida M, Matsuyama A, Ide S and Urano H 2014
Experimental analyses and predictive simulations of
toroidal rotation driven by the neoclassical toroidal
viscosity in rippled tokamaks Nucl. Fusion 54 114005

[8] Honda M, Aiba N, Seto H, Narita E and Hayashi N 2021
Development of a novel integrated model GOTRESS+ for
predictions and assessment of JT-60SA operation scenarios
including the pedestal Nucl. Fusion 61 116029

[9] Honda M and Narita E 2019 Machine-learning assisted
steady-state profile predictions using global optimization
techniques Phys. Plasmas 26 102307

[10] Honda M and Narita E 2021 Development of a surrogate
turbulent transport model and its usefulness in transport
simulations Plasma Fusion Res. 16 2403002

[11] Waltz R E, Staebler G M, Dorland W, Hammett G W,
Kotschenreuther M and Konings J A 1997 A
gyro-Landau-fluid transport model Phys. Plasmas 4 2482

[12] Staebler G M, Kinsey J E and Waltz R E 2005 Gyro-Landau
fluid equations for trapped and passing particles Phys.
Plasmas 12 102508

[13] Staebler G M, Kinsey J E and Waltz R E 2007 A theory-based
transport model with comprehensive physics Phys. Plasmas
14 055909

[14] Kinsey J E, Staebler G M and Waltz R E 2008 The first
transport code simulations using the trapped
gyro-Landau-fluid model Phys. Plasmas 15 055908

[15] Bourdelle C, Garbet X, Imbeaux F, Casati A, Dubuit N,
Guirlet R and Parisot T 2007 A new gyrokinetic quasilinear
transport model applied to particle transport in tokamak
plasmas Phys. Plasmas 14 112501

[16] Staebler G M, Howard N T, Candy J and Holland C 2017 A
model of the saturation of coupled electron and ion scale
gyrokinetic turbulence Nucl. Fusion 57 066046

[17] Staebler G M, Waltz R E, Candy J and Kinsey J E 2013 New
paradigm for suppression of gyrokinetic turbulence by
velocity shear Phys. Rev. Lett. 110 055003

[18] Nunami M, Watanabe T-H and Sugama H 2013 A reduced
model for ion temperature gradient turbulent transport in
helical plasmas Phys. Plasmas 20 092307

[19] Toda S, Nakata M, Nunami M, Ishizawa A, Watanabe T-H and
Sugama H 2017 A reduced transport model for ion heat
diffusivity by gyro-kinetic analysis with kinetic electrons in
helical plasmas Plasma Fusion Res. 12 1303035

[20] Toda S, Nakata M, Nunami M, Ishizawa A, Watanabe T-H and
Sugama H 2019 Modeling of turbulent particle and heat
transport in helical plasmas based on gyrokinetic analysis
Phys. Plasmas 26 012510

[21] Toda S, Nakata M, Nunami M, Ishizawa A, Watanabe T-H and
Sugama H 2019 Transport simulation for helical plasmas by
use of gyrokinetic transport model Plasma Fusion Res.
14 3403061–3403061

[22] Toda S, Nunami M and Sugama H 2020 Reduced models of
turbulent transport in helical plasmas including effects of
zonal flows and trapped electrons J. Plasma Phys.
86 815860304

[23] Citrin J, Breton S, Felici F, Imbeaux F, Aniel T, Artaud J F,
Baiocchi B, Bourdelle C, Camenen Y and Garcia J 2015
Real-time capable first principle based modelling of
tokamak turbulent transport Nucl. Fusion 55 092001

[24] Meneghini O et al 2017 Self-consistent core-pedestal transport
simulations with neural network accelerated models Nucl.
Fusion 57 086034

[25] Narita E, Honda M, Nakata M, Yoshida M, Takenaga H and
Hayashi N 2018 Gyrokinetic modelling of the quasilinear
particle flux for plasmas with neutral-beam fuelling Plasma
Phys. Control. Fusion 60 025027

[26] Narita E, Honda M, Nakata M, Yoshida M, Hayashi N and
Takenaga H 2019 Neural-network-based semi-empirical
turbulent particle transport modelling founded on
gyrokinetic analyses of JT-60U plasmas Nucl. Fusion
59 106018

[27] Nakata M and Idomura Y 2013 Plasma size and collisionality
scaling of ion-temperature-gradient-driven turbulence Nucl.
Fusion 53 113039

[28] Dimits A M et al 2000 Comparisons and physics basis of
tokamak transport models and turbulence simulations Phys.
Plasmas 7 969–83

[29] Schekochihin A A, Highcock E G and Cowley S C 2012
Subcritical fluctuations and suppression of turbulence in
differentially rotating gyrokinetic plasmas Plasma Phys.
Control. Fusion 54 055011

[30] Van Wyk F, Highcock E G, Schekochihin A A, Roach C M,
Field A R and Dorland W 2016 Transition to subcritical

9

https://orcid.org/0000-0002-6719-9013
https://orcid.org/0000-0002-6719-9013
https://orcid.org/0000-0003-2693-4859
https://orcid.org/0000-0003-2693-4859
https://orcid.org/0000-0003-3942-0080
https://orcid.org/0000-0003-3942-0080
https://orcid.org/0000-0002-2459-2392
https://orcid.org/0000-0002-2459-2392
https://orcid.org/0000-0003-2790-2226
https://orcid.org/0000-0003-2790-2226
https://doi.org/10.1063/1.4867180
https://doi.org/10.1063/1.4867180
https://doi.org/10.1063/1.5036563
https://doi.org/10.1063/1.5036563
https://bpsi.nucleng.kyoto-u.ac.jp/task/
https://doi.org/10.1016/j.jcp.2007.11.017
https://doi.org/10.1016/j.jcp.2007.11.017
https://doi.org/10.1585/pfr.7.2403011
https://doi.org/10.1585/pfr.7.2403011
https://doi.org/10.1063/1.3327917
https://doi.org/10.1063/1.3327917
https://doi.org/10.1088/0029-5515/54/11/114005
https://doi.org/10.1088/0029-5515/54/11/114005
https://doi.org/10.1088/1741-4326/ac2639
https://doi.org/10.1088/1741-4326/ac2639
https://doi.org/10.1063/1.5117846
https://doi.org/10.1063/1.5117846
https://doi.org/10.1585/pfr.16.2403002
https://doi.org/10.1585/pfr.16.2403002
https://doi.org/10.1063/1.872228
https://doi.org/10.1063/1.872228
https://doi.org/10.1063/1.2044587
https://doi.org/10.1063/1.2044587
https://doi.org/10.1063/1.2436852
https://doi.org/10.1063/1.2436852
https://doi.org/10.1063/1.2889008
https://doi.org/10.1063/1.2889008
https://doi.org/10.1063/1.2800869
https://doi.org/10.1063/1.2800869
https://doi.org/10.1088/1741-4326/aa6bee
https://doi.org/10.1088/1741-4326/aa6bee
https://doi.org/10.1103/PhysRevLett.110.055003
https://doi.org/10.1103/PhysRevLett.110.055003
https://doi.org/10.1063/1.4822337
https://doi.org/10.1063/1.4822337
https://doi.org/10.1585/pfr.12.1303035
https://doi.org/10.1585/pfr.12.1303035
https://doi.org/10.1063/1.5058720
https://doi.org/10.1063/1.5058720
https://doi.org/10.1585/pfr.14.3403061
https://doi.org/10.1585/pfr.14.3403061
https://doi.org/10.1017/S0022377820000495
https://doi.org/10.1017/S0022377820000495
https://doi.org/10.1088/0029-5515/55/9/092001
https://doi.org/10.1088/0029-5515/55/9/092001
https://doi.org/10.1088/1741-4326/aa7776
https://doi.org/10.1088/1741-4326/aa7776
https://doi.org/10.1088/1361-6587/aaa02d
https://doi.org/10.1088/1361-6587/aaa02d
https://doi.org/10.1088/1741-4326/ab2f43
https://doi.org/10.1088/1741-4326/ab2f43
https://doi.org/10.1088/0029-5515/53/11/113039
https://doi.org/10.1088/0029-5515/53/11/113039
https://doi.org/10.1063/1.873896
https://doi.org/10.1063/1.873896
https://doi.org/10.1088/0741-3335/54/5/055011
https://doi.org/10.1088/0741-3335/54/5/055011


Plasma Phys. Control. Fusion 64 (2022) 075007 T Nakayama et al

turbulence in a tokamak plasma J. Plasma Phys.
82 905820609

[31] Nakata M, Nunami M, Sugama H and Watanabe T-H 2016
Impact of hydrogen isotope species on microinstabilities
in helical plasmas Plasma Phys. Control. Fusion
58 074008

[32] Nakata M, Nunami M, Sugama H and Watanabe T-H 2017
Isotope effects on trapped-electron-mode driven turbulence
and zonal flows in helical and tokamak plasmas Phys. Rev.
Lett. 118 165002

[33] Watanabe T-H and Sugama H 2006 Velocity-space structures
of distribution function in toroidal ion temperature gradient
turbulence Nucl. Fusion 46 24

[34] Nakata M, Watanabe T-H and Sugama H 2012 Nonlinear
entropy transfer via zonal flows in gyrokinetic plasma
turbulence Phys. Plasmas 19 022303

[35] Nakata M, Honda M, Yoshida M, Urano H, Nunami M,
Maeyama S, Watanabe T-H and Sugama H 2016 Validation
studies of gyrokinetic ITG and TEM turbulence simulations
in a JT-60U tokamak using multiple flux matching Nucl.
Fusion 56 086010

[36] Rosenbluth M N and Hinton F L 1998 Poloidal flow driven by
ion-temperature-gradient turbulence in tokamaks Phys. Rev.
Lett. 80 724

[37] Diamond P H, Itoh S-I, Itoh K and Hahm T S 2005 Zonal flows
in plasma—a review Plasma Phys. Control. Fusion 47 R35

[38] Hahm T S, Wang L, Wang W X, Yoon E S and Duthoit F X
2013 Isotopic dependence of residual zonal flows Nucl.
Fusion 53 072002

[39] Levenberg K 1944 A method for the solution of certain
non-linear problems in least squares Q. Appl. Math.
2 164–8

[40] Marquardt D W 1963 An algorithm for least-squares
estimation of nonlinear parameters J. Soc. Ind. Appl. Math.
11 431–41

[41] Wang W, Kishimoto Y, Imadera K, Li J Q and Wang Z X 2018
A mechanism for the formation and sustainment of the
self-organized global profile and E×B staircase in tokamak
plasmas Nucl. Fusion 58 056005

[42] Dif-Pradalier G, Hornung G, Garbet X, Ghendrih P,
Grandgirard V, Latu G and Sarazin Y 2017 The
E×B staircase of magnetised plasmas Nucl. Fusion
57 066026

[43] Lin Z, Hahm T S, Lee W W, Tang W M and Diamond P H
1999 Effects of collisional zonal flow damping on turbulent
transport Phys. Rev. Lett. 83 3645–8

[44] Hahm T S, Beer M A, Lin Z, Hammett G W, Lee W W and
Tang W M 1999 Shearing rate of time-dependent E×B
flow Phys. Plasmas 6 922–6

[45] Murakami S et al 2015 Integrated transport simulations of
high ion temperature plasmas of LHD Plasma Phys.
Control. Fusion 57 054009

10

https://doi.org/10.1017/S0022377816001148
https://doi.org/10.1017/S0022377816001148
https://doi.org/10.1088/0741-3335/58/7/074008
https://doi.org/10.1088/0741-3335/58/7/074008
https://doi.org/10.1103/PhysRevLett.118.165002
https://doi.org/10.1103/PhysRevLett.118.165002
https://doi.org/10.1088/0029-5515/46/1/003
https://doi.org/10.1088/0029-5515/46/1/003
https://doi.org/10.1063/1.3675855
https://doi.org/10.1063/1.3675855
https://doi.org/10.1088/0029-5515/56/8/086010
https://doi.org/10.1088/0029-5515/56/8/086010
https://doi.org/10.1103/PhysRevLett.80.724
https://doi.org/10.1103/PhysRevLett.80.724
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1088/0029-5515/53/7/072002
https://doi.org/10.1088/0029-5515/53/7/072002
https://doi.org/10.1090/qam/10666
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1088/1741-4326/aab032
https://doi.org/10.1088/1741-4326/aab032
https://doi.org/10.1088/1741-4326/aa6873
https://doi.org/10.1088/1741-4326/aa6873
https://doi.org/10.1103/PhysRevLett.83.3645
https://doi.org/10.1103/PhysRevLett.83.3645
https://doi.org/10.1063/1.873331
https://doi.org/10.1063/1.873331
https://doi.org/10.1088/0741-3335/57/5/054009
https://doi.org/10.1088/0741-3335/57/5/054009

	Nonlinear functional relation covering near- and far-marginal stability in ion temperature gradient driven turbulence
	1. Introduction
	2. Toroidal ITG driven turbulence simulation
	3. Nonlinear functional relation
	4. Impacts of zonal flow effects
	5. Verification of regression accuracy
	6. Summary
	Acknowledgments
	References


