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Trajectory Shift in Propagation of Electron Cyclotron Waves Due
to Berry Curvature in Magnetized Plasma∗)
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The polarization-dependent Hall effect of light was investigated in full-wave simulations for propagation
of electron cyclotron waves in magnetized plasma as an anisotropic medium. The transverse shift of the wave
packet, which is comparable to the wavelength in the vacuum, was observed in propagation of extraordinary (X)
waves under a static magnetic field. This transverse shift is produced by the Berry curvature for the X wave
strongly enhanced at the right-hand cutoff. The direction of the transverse shift is perpendicular not only to the
gradient of the refractive index but also to the static magnetic field.
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1. Introduction
It is known that polarization of light affects propa-

gation, shifting the wave path to the direction perpendic-
ular to the gradient of the refractive index of media [1].
This effect gives deviation from the Snell’s law in optics.
The transverse shift of the wave-packet motion, referred
to as the polarization-dependent spin Hall effect of light,
is caused by the Berry phase [2] that originates from the
spin angular momentum. When one considers the wave
packet with a finite width of distribution such as a Gaus-
sian beam, the Berry connection is obtained with the rel-
ative phase difference of the wave function in momentum
(k) space. This is analogous to a magnetic vector potential
in real space. As is the case with a magnetic field obtained
from rotation of the vector potential in real space, the Berry
curvature is obtained from rotation of the Berry connection
in k space. The “force” by the Berry curvature, analogous
to the Lorentz force by a magnetic field in real space, gives
rise to the transverse shift in “real” space.

From [1], the Berry curvature Ω of light propagating
in isotropic media is written as

Ω(k) = σ
k
k3
, (1)

where σ is the spin angular momentum. σ = ±1 denotes
the right-handed or left-handed circular polarizations. σ
of an arbitrary elliptical polarization can be obtained by
the linear combination of the two circular polarizations.
The Berry curvature corresponds to the field radiated from
a “monopole” with strength σ located at the origin in k
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space. Then, the equation of motion of the wave-packet
center is written as

ṙc = v
kc

kc
+ k̇c ×Ω,

k̇c = −(∇v)kc,

(2)

where rc and kc denote the position vector and the wave
vector at the wave-packet center. v = c/n is the velocity
of light in the media with the refractive index n. The addi-
tional term k̇c × Ω is the anomalous velocity by the Berry
curvature, which gives rise to the polarization-dependent
Hall effect of light.

The polarization-dependent Hall effect of light is ex-
pected to be universal in all wavelengths of electromag-
netic waves, which can be also applied to plasma waves in
magnetized plasma as anisotropic media. In an electron cy-
clotron (EC) range of frequencies, a ray-tracing approach
has been frequently used for the prediction of a wave-
packet motion in fusion plasma. However, the anomalous
velocity by the Berry curvature has not been included in
conventional ray-tracing codes such as LHDGauss [3] and
TRAVIS [4]. The effect of the Berry curvature on propa-
gation of EC waves is of interest because no EC systems
in fusion plasma experiments have been designed by in-
cluding the effect. It may be simple to add the effect of the
Berry curvature into the ray-trace equations of the current
codes. However, the effect is expected to be significant
at cutoffs where the quality of the ray-trace approximation
deteriorates due to the wavelength larger than characteris-
tic scale lengths in magnetized plasma. The significance
of the effect of the Berry curvature should be naively dis-
cussed with the full-wave equations without approxima-
tions as a first step, which is the motivation of this paper.
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In this paper, the trajectory shift of EC waves due to the
Berry curvature was investigated in magnetized plasma.
Section 2 describes the introduction of the Berry curvature
in magnetized plasma. Results on two-dimensional (2D)
full-wave simulations for propagation of EC waves are pre-
sented in Section 3. Section 4 summarizes this paper with
a future outlook.

2. Berry Curvature in Magnetized
Plasma
The Berry curvature in magnetized plasma as

anisotropic media is explained in [5]. In this section, the
Berry curvature of EC waves propagating in magnetized
plasma is briefly introduced. EC waves propagating in
magnetized plasma obey the Maxwell equations. Assum-
ing a monochromatic wave in time and space represented
with exp (ik · r − iωt), where ω and t denote the angular
frequency and time, the Maxwell equations are reduced to
the eigenvalue problem. Under the cold plasma approxi-
mation, the permittivity tensor is written as

ε(ω) = ε0εr(ω)

= ε0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
S (ω) −iD(ω) 0
iD(ω) S (ω) 0

0 0 P(ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(3)

where the dielectric tensor elements S , D, and P are the
same notation of Stix [6]. For this expression, the static
magnetic field is in the z direction, i.e., B0 = B0ez ≡ B0eb,
where eb denotes the unit vector directed in the static mag-
netic field. Using the eigenvectors of the wave electric
field, Ẽi, where i denotes each mode of the EC waves, the
Berry connection Λi and the Berry curvature Ωi are ob-
tained by [5]:

Λi(k) = Re

[
iẼ†i ·

∂

∂ω
{ωε(ω)} · ∇kẼi

]
,

Ωi(k) = ∇k × Λi(k),

where the symbol † means complex conjugate operation.
Thus, the direction of the anomalous velocity affecting the
wave packet of the EC wave is obtained by k̇c ×Ωi.

For the EC waves propagating parallel to the static
magnetic field, i.e., k ‖ B0, the eigenvectors of the elec-
tric field are ẼR,L = ex ± iey, which are the right-handed
(R) wave and the left-handed (L) wave. Therefore, there
is no Berry phase effect [5]. For the EC waves propagat-
ing perpendicular to the static magnetic field, i.e., k ⊥ B0,
there are two eigenmodes, i.e., the ordinary (O) wave and
the extraordinary (X) wave. The eigenvector of the O wave
is ẼO = ez. Therefore, there is no Berry phase effect [5].
On the other hand, the eigenvector of the X wave is

ẼX =
1
ω
ε−1

r · (ez × k),

with the dispersion relation

n2
X =

c2(k2
x + k2

y )

ω2
=

RL
S
. (4)

The eigenvector is complex-valued due to the permittivity
tensor, giving rise to nontrivial Berry properties. Thus, the
Berry curvature is obtained by [5]:

ΩX = γ
eb

k2
, (5)

where

γ ≡
Re

[
i
{
4α1α2β1 + 2

(
|α1|2 + |α2|2

)
β2

}]
(|α1|2 + |α2|2) β1 − 2α1α2β2

,

α1 ≡ S
RL
, α2 ≡ iD

RL
,

β1 ≡ ∂
∂ω

(ωε0S ), β2 ≡ ∂
∂ω

(ωε0D).

For the X wave, there are two “monopoles” at the
right-hand cutoff and the left-hand cutoff, where k = 0.
Figure 1 shows an example of the Berry curvature of the
X wave along with the squared refractive index as a func-
tion of ω2

pe/ω
2 ∝ ne, where ωpe and ne denote the angular

plasma frequency for electrons and the electron density. In
these calculations, the static magnetic field strength B0 is

Fig. 1 (a) The squared refractive index and (b) the absolute
value of the Berry curvature for the X wave as a function
of ω2

pe/ω
2. “RHC”, “UHR”, and “LHC” denote right-

hand cutoff, upper hybrid resonance, and left-hand cutoff.
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set 2 T for f = 77 GHz [7], thus ωce/ω = 0.73, where
ωce denotes the angular EC frequency. It is clearly seen
that the Berry curvature is strongly enhanced at the right-
hand and the left-hand cutoffs. This result indicates that the
transverse shift of the center of the reflected wave packet
is expected at those cutoffs. The anomalous velocity is di-
rected in ∇nX × eb, which indicates that the transverse shift
occurs at those cutoffs in the direction perpendicular not
only to the gradient of the refractive index but also to the
static magnetic field.

3. Transverse Shift in Propagation of
EC Waves
The transverse shift in propagation of EC waves is

numerically investigated with 2D simulations performed
by the commercial FEM (finite element method) software,
COMSOL Multiphysics with its RF solver [8–11]. The
simulations are restricted in 2D due to limited computa-
tional resources. The simulation area is set to be a rect-
angular with a width of 50 mm and a height of 100 mm.
Figure 2 shows the ne profile. The ne profile is defined as

ne(x, y) = ne0 exp

{
u(x, y) −W0

L0

}
,

u(x, y) = W0 +
1√
2

(
x − W0

2

)
+

y√
2
,

(6)

where ne0 = 4.82 × 1019 m−3, W0 = 50 mm, and L0 = 20
mm for 45◦ of incidence and reflection. Thus, the right-
hand cutoff layer is located at y ≈ −x. The wave frequency
f is set at 77 GHz. For simplicity, the static magnetic field
B0 is uniformly set at 2 T and its direction is varied for each
simulation run. Thus, the gradient of the refractive index is

Fig. 2 ne profile along with the right-hand cutoff layer where
R = 0. The direction of the gradient of the refractive
index ∇ni for each mode is shown by an arrow.

directed to the gradient of the electron density. The wave
electric field in a form of the Gaussian beam is excited at
the line of x = −25 mm (the boundary at the left side),
given by

E(x, y)

= E0
w0

w(x)
exp

[
− y2

w(x)2
+ i

{
−k0

y2

2R(x)
+ ζ(x)

}]
at x = −25 mm,

(7)

where

w(x) = w0

√
1 +

(
x
xR

)2

, xR =
πw2

0

λ0
,

R(x) = x

{
1 +

( xR

x

)2
}
, ζ(x) = tan−1 x

xR
.

Here, k0 and λ0 are the wavenumber and the wavelength in
the vacuum. The focal length xR is set at 25 mm and the
beam waist w0 becomes 5.6 mm in the vacuum. The inci-
dent polarization, i.e., the direction of the excited electric
field, is varied for each simulation run. The size of trian-
gular meshes is 0.2 mm at a maximum and 0.02 mm at a
minimum. Propagation of the excited wave is calculated
by solving the telegraphic equation given by

∇ × (∇ × E) − k2
0εr · E = 0,

where the cold plasma dielectric tensor εr given in Eq. (3)
includes the effect of collisions with the artificial collision
frequency of ν0 = 10−3ω [12, 13]. This effect simply pre-
vents numerical divergence at the upper hybrid resonance
where resonant waves should be collisionally damped. The
scattering boundary condition is applied to prevent reflec-
tion at the simulation boundaries.

When the static magnetic field is in the ±z direction,
the anomalous velocity for the X wave is in the ∓ex ± ey

directions, parallel to the reflection line at the right-hand
cutoff. Thus, the transverse shift can be observed even
in 2D simulations. In this case, the y-directed linearly-
polarized electric field given by Eq. (7) is excited as the
X wave. Figure 3 shows the electric field strength in the
X wave propagation. The incident X wave with the shape
of the Gaussian beam is reflected at the right-hand cutoff
layer. The transverse shift occurs at the layer during reflec-
tion. The direction of the transverse shift depends on the
direction of the static magnetic field. The existence of the
transverse shift is recognizable by changing the magnetic
field polarity. In terms of photons, the generated transverse
shift means that orbital angular momenta are generated in
the z direction, i.e., the direction of (∓ex±ey)× k, although
there is no spin angular momentum in the k direction for
the linearly-polarized incident X wave. The difference of
the transverse shift due to the magnetic field polarity is
shown in Fig. 4. The difference between each peak position
of the reflected electric field strength profile is observed to
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Fig. 3 Electric field strength for the X wave in the cases of (a) B0 = B0ez and (b) B0 = −B0ez.

Fig. 4 Electric field strength at y = −75 mm (the boundary at
the bottom side) as a function of x for the X wave in the
cases of B0 = ±B0ez.

be 3.6 mm, which is comparable to the wavelength in the
vacuum. For simplicity, suppose that the trajectory of the
wave is straight and reflection is at a right angle, as shown
in Fig. 5. Using Eqs. (2), (4), (5), and (6), the transverse
shift δ of the beam center can be estimated to be

δ ≈ 4
√

2π
λ0

∣∣∣∣∣∣
∫ ur

ui

dnX

du
ΩXdu

∣∣∣∣∣∣
=

√
2
π
λ0

∣∣∣∣∣∣
∫ ur

ui

dnX

du
γ

n2
X

du

∣∣∣∣∣∣ ,
(8)

where ui and ur denote the position of the incident wave ex-
cited and the reflection position. It is noted that the beam
center is not reflected exactly at the right-hand cutoff layer
but reflected in front of the layer, so that the distance be-

Fig. 5 Schematic diagram of the transverse shift for the X wave
in the cases of eb = ±ez.

tween the reflection point and the right-hand cutoff layer is
approximated as the beam waist w0. Due to the finite beam
size, the beam center cannot be affected by the diverging
Berry curvature at the right-hand cutoff, which limits the
transverse shift to a finite length. Then, the difference of
the transverse shift between the two cases with eb = ±ez is
estimated to be 2δ ≈ 0.75λ0 ≈ 2.9 mm, which is the same
order as obtained from Fig. 4. In isotropic media, γ is re-
placed with constant σ = [−1, 1] given by Eq. (1), so that
the integral in Eq. (8) shows the change of the reciprocal
of the refractive index. The transverse shift is restricted to
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Fig. 6 Electric field strength in the cases of (a) B0 = B0ey and
(b) B0 = −B0ey. The z-directed linearly polarized wave
is excited to couple to the X wave.

the order of the wavelength in the vacuum due to the spin
angular momentum. In the case of the X wave, γ changes
from 0 at the vacuum to 2 at the right-hand cutoff, so that
the integral in Eq. (8) shows the same order as in the case
of the isotropic media. At that time, the transverse shift
is also restricted to the order of the wavelength in the vac-
uum.

On the other hand, when the static magnetic field is in
the ±y direction, the anomalous velocity for the X wave is
in the ∓ez directions, perpendicular to the x-y plane. In
this case, the transverse shift cannot be observed in 2D
simulations. The simulation results are shown in Fig. 6,
which indicates that there is no difference in the electric
field strength between the cases of B0 = ±B0ey. The trans-
verse shift can be expected in the z direction only when
simulations are performed in 3D.

For the R wave, there can be no Berry phase effect.
When the static magnetic field is in the ±x direction, the
incident polarization should be the right-handed circular
polarization for eb = ex or the left-handed circular polar-
ization for eb = −ex, so that the incident wave can couple
to the R wave in the magnetized plasma. The simulation
results are shown in Fig. 7, which indicates that there is
no difference in the electric field strength between the two
cases. The reflected wave almost becomes the X wave due
to k ⊥ ex. However, the anomalous velocity is directed in
the ±ez directions. Thus, the trajectory shift is not observed
in 2D.

As a supplement, the incident R wave shown in Fig. 7
is refracted more than the incident X wave shown in Fig. 6
during reflection at the right-hand cutoff layer. The inci-
dent R wave almost becomes the X wave during reflection.
The incident X wave almost becomes a mixture of the R
wave and the L wave during reflection. Since the wave-
length of the X wave is shorter than that of the R wave, the
effect of refraction is stronger in the case shown in Fig. 7.

Fig. 7 Electric field strength in the cases of (a) B0 = B0ex and
(b) B0 = −B0ex. The right-handed circularly polarized
(RHCP) wave for (a) and the left-handed circularly po-
larized (LHCP) wave for (b) are excited, respectively, to
couple to the R wave.

However, the difference of the wave trajectories is not re-
lated to the transverse shift due to the Berry curvature dis-
cussed in this paper.

4. Summary and Outlook
The polarization-dependent Hall effect of light was

investigated for propagation of EC waves in magnetized
plasma. According to the Berry curvature calculated for
the modes in the cases of parallel propagation and perpen-
dicular propagation, full-wave simulations were performed
in 2D space, where the incident EC waves were reflected
at the right-hand cutoff layer in the varied electron density
profile for various directions of the static magnetic field.
The observed transverse shift in the X wave propagation
was comparable to the wavelength in the vacuum.

In this paper, only the polarization-dependent Hall ef-
fect of light was discussed. Light has not only spin an-
gular momentum but also orbital angular momentum by
adding exp(ilϕ) to the phase term, which is a so-called op-
tical vortex, where l is the topological charge and ϕ is the
azimuthal angle around the propagation axis of the beam.
It is known that the Berry curvature produced by the orbital
angular momentum in the optical vortex is added to the
Berry curvature produced by the polarization-dependent
spin angular momentum in isotropic media [14]. The im-
portant point is that |l| can be larger than |σ| (≤ 1). Thus,
the transverse shift can be larger than the order of the wave-
length. This phenomenon is also expected for propagation
of vortex EC waves in magnetized plasma.
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