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Microwave, unlike visible light, can be measured directly on the phase of the wave. The measurement of
complex amplitude suggests a possibility of holographic plasma imaging with a single view-field of planar array
of detectors. In this paper, an inverse problem of holography is formulated with respect to reflection and scattering
wave observations. Against the restricted view-field and few detectors, a solution of Tikhonov type is proposed
and examined by numerical simulations. The first result of feasibility study is presented.
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1. Introduction
In the magnetized plasma confinement study, the

methods of the good confinement mode (H-mode) and
the detached plasma mode have been discovered, and the
physics descriptions of them are being understood. In par-
ticular, the plasma turbulence is understood to be important
for the transport and influential also to the whole plasma
profile via the nonlinear coupling among multi-scale phe-
nomena. In the experimental study, however, the diagnos-
tics for turbulence are limited, and further, it is common
that diagnostics have good temporal resolution but not spa-
tial resolution. The imaging diagnostic is strongly desired.

In plasma diagnostics, imaging techniques by multi-
directional or stereoscopic observations including tomog-
raphy have been developed. However, the freedom of
sightline and detector setting is often limited in the prac-
tical plasma experiment. Therefore, as a next step, we
focus on the mathematics of inverse problem for three-
dimensional (3D) image reconstruction with a single di-
rectional view. In this paper, we propose a technique of
microwave holography with the planar arrangement of de-
tectors. The feasibility is studied. After overviewing the
prospect in the next section, modeling and formulation of
observation are described in Sec. 3. A numerical method of
reconstruction is discussed and examined in Secs. 4 and 5.

2. Microwave Holography
The laser holography utilizes the complex amplitude

of light including power and phase information. In visible
light digital holography, interference fringes of the refer-

author’s e-mail: tsuchiya.hayato@nifs.ac.jp
∗) This article is based on the presentation at the 27th International Toki
Conference (ITC27) & the 13th Asia Pacific Plasma Theory Conference
(APPTC2018).

ence light and the light from object are captured by a CCD
camera, as shown in Fig. 1 (a). In microwave diagnostics,
it is advantageous that the complex amplitude can be mea-
sured directly by mixing with the local waves as shown
in Fig. 1 (b). Laser holography is well known and is uti-
lized in various fields. However, in the plasma field, it has
not yet been introduced. Moreover, in the frequency band
where the microwave strongly interacts with plasma, the
simultaneous imaging device with good resolution is not
common.

For the microwave imaging reflectometry (MIR) and
the electron cyclotron emission imaging (ECEI), our group
has developed the Horn-antenna Millimeter-wave Imaging
Device (HMID) [1] and the Local oscillator Integrated an-

Fig. 1 Comparison between holography systems using (a) visi-
ble light (laser) and (b) microwave.
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Fig. 2 The concept of imaging a) with optical system and b)
without optical system.

tenna Array (LIA) [2], both of which possess horn anten-
nas in planar arrangement, and they are applied to LHD
experiments [3]. In such applications, the imaging devices
were used together with optical systems which consisted
of lens or mirrors. In this case, as shown in Fig. 2, in or-
der to focus the microwave beam, the view area is a part of
the side surface of the toroidal plasma. In contrast, with-
out an optics system, a wide field of view would be se-
cured. Known examples of no-lens optics system are the
lensless camera of visible light and the synthetic aperture
radar (SAR) of millimeter wave. In plasma microwave di-
agnostics, the number of detector points would be much
fewer than that of CCD camera of visible light, and the
wide scan by moving either the detector or the objects,
such as SAR, is not feasible for transitional plasma. To
obtain a 3D image from a limited number of detectors and
sightlines, the inverse problem in a frame of ill-conditioned
equation must be examined for microwave holography.

3. Model of Microwave Propagation
The microwave propagation is modeled in such a sim-

ple scheme as shown in Fig. 3. This diagnostic system
model is applicable to both reflectometry and scattering
measurement. The microwave (RF) is radiated from the
source whose position is denoted as ps = (x0, y0, z0).
A stimulated particle in the target emits a spherical mi-
crowave. In the superposition of individual emissions, the
scattering rate in the target is assumed to distribute as f (pt),
which is related to the volume profile of electron density
in scattering with the Born approximation and to the re-
flection surface profile when the density of target plasma
is larger than the cutoff density. The scattering wave that is
originated from an element of target located at pt = (x, y, z)
reaches a detector located at pd = (x′, y′, z′). The elemental
wave sstd, which propagates via ps, pt and pd, is expressed
as follows:

sstd = S T(ps, pt) f (pt)S R(pt, pd), (1)

where S T,R(p1, p2) is a function that represents the wave
propagation from p1 to p2; the S T depends on the model
of the transmitted wave, for example, such as a spherical

Fig. 3 Model of microwave holography.

wave or a plane wave. When one takes a model of spher-
ical wave also for transmission, one has S T,R(p1, p2) =
exp(−ikr12)/||r12|| for the wavenumber k and r12 = ||p1− p2||.
The Gaussian beam expression might be more appropriate
to express the incident wave injected from the RF source
point. The actual measurement g(pd) is the superposition
of waves coming from all points of the target. Thereby,
g(pd) is expressed in the form of integral:

g(pd) =
∫

V
sstd d pt =

∫
V

htd f (pt)d pt, (2)

where htd is a function which depends on the geometry of
the source and the detector for the target.

By discretizing the integration, the above equation is
approximated as

gm = Σ
N
n=1hmn fn (m = 1, 2, . . . ,M), (3)

where we have hmn = htd,mnd pt, the number of detectors M
and that of target voxels N. Then, Eq. 3 is written simply
as

H f = g, (4)

where H is a matrix with elements hmn; and p and g are
column vectors. Since H is derived from the product of
wave propagation functions, it is generally a complex ma-
trix. The g has also complex components related to the
measurement values of power and phase, while f can be
assumed a real vector so long as the wave scatters without
phase shift. In holographic image reconstruction, Eq. 4 is a
system of linear equations to be solved for the unknown f .
A planar array of microwave receivers for 3D target sug-
gests an inverse problem to be solved under the condition
of measurements weakly independent and few as M � N.

4. Reconstruction from Complex
Amplitudes
In regard to Eq. 4, which will be underdetermined

in our microwave holography, the least squares method
of ||H f − g||2/M → min leads to the normal equation
(H∗H) f = H∗g, where H∗ is the Hermitian transpose of
H. The coefficient matrix H∗H is rank deficient when-
ever M < N and may be ill-conditioned in general. In
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proceeding to the Tikhonov regularization, the constrained
minimization can be so extended as to use plural terms of
regularization, that is, the Lagrangian function of the form

1
M
||H f − g||2 +

∑
j

γ j||C j f ||2 → min, (5)

with sets of multiplier γ j (>0) and square matrix C j [5]. In
the present case study, we use two terms with C1 and C2,
which are chosen to be the 3D Laplacian operator and the
identity matrix, respectively. As well-known in plasma di-
agnostics, the Laplacian operator is effective to let the im-
age value change smoothly at neighboring voxels. Mean-
while, the identity matrix is given the role of keeping the
following normal equation well-conditioned.

Applying the Cholesky decomposition to the regular-
ization terms leads to an extended normal equation written
as

(γ1R∗R + H∗H) f = H∗g. (6)

Here R is such an upper triangular matrix that we have
γ1R∗R = γ1C1

∗C1 + γ2C2
∗C2. Then, the solution of Eq. 6

can be written in the ordinary form of series expansion us-
ing the singular value decomposition (SVD) of HR−1 =

UΣV∗. That is, we have

f̂ (γ1, γ2) = R−1V(γ1I + Σ∗Σ)−1Σ∗U∗g
= ΣM

j=1wja jR
−1v j, (7)

with the Tikhonov window and the coefficients

wj =
1

1 + γ1

σ2
j

, a j =
u∗j g

σ j
, (8)

for M � N, where u j and v j are the orthonormal column
vectors of U and V , and the singular values σm are diago-
nal elements of Σ. The generalized cross-validation (GCV)
in its original expression [4] can be used for optimizing the
value of γ1 with respect to the term R∗R, which includes the
ratio γ2/γ1 implicitly. The extension of the linear regular-
ization of Tikhonov to the complex form is now available.

It is noted that the solution f̂ is a complex vector
in general even though it should be a real vector in our
case. With inadequate measurements, the solution can-
not be prevented from the appearance of the imaginary
part. In Fig. 4, instructive results of a numerical test are
exhibited. With respect to a complex matrix H composed
with random numbers, a simple target fn = sin(2πn/N)+i0
(1 � n � N) was recovered from the projection H f without
and with additive noise. It is seen that the target is well re-
covered in the no-noise case. However, the imaginary part
error of f̂ increases remarkably with the noise amplitude,
and even becomes comparable with the real part in magni-
tude. Both solutions f̂ were obtained with agreement good
enough to the data g, that is, with small magnitudes of the
residuals.

A wise and effective countermeasure is to divide the
entries of H and g to real and imaginary parts and define

Fig. 4 Results of test inversion using Eq. 7 and GCV: Real and
imaginary part of the solution f̂ from noiseless data (a) -
(b) and from noise corrupted data (c) - (d); M = 50,
N = 500. In noisy case, uniform random numbers whose
amplitude is as large as 50% of the average of |H f |m were
added to Re(H f )m and Im(H f )m; S/N = 4.

an inverse problem of twice larger size in column. That is,
for the same target f , we have H′ f = g′ with

H′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re(h11) · · · Re(h1N)
... Re(hmn)

...

Re(hM1) · · · Re(hMN)

Im(h11) · · · Im(h1N)
... Im(hmn)

...

Im(hM1) · · · Im(hMN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

g′=
[

Re(g1) · · · Re(gM) Im(g1) · · · Im(gM)
]T
.

(10)

With this definition of real-value problem, the solution f̂
is formally the same with Eqs. 7 and 8, where the Hermi-
tian transpose ∗ is replaced by the simple transpose, and the
number of terms is replaced by M′ = 2M. The twice-larger
size of g′ looks reasonable because the acquisition of com-
plex amplitude requires two independent measurements of
power and phase.

5. Effect of Detector Arrangement
Now, the above formulation of Tikhonov inversion is

examined on the back scattering with the Born approxi-
mation. Toward the target whose center position pt,center =

(0,0,0) as shown in Fig. 5 (a), the RF source located at ps

= (0, 0, −100 mm) injects a 30 GHz spherical wave up-
wards in z direction. The scattered wave is received by a
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Fig. 5 Numerical test with different arrangements of detector.
(a) Assumed scattering rate profile f (pt) = 0.01 cos2

(πx/100) over the area of −50 mm < x, y, z< 50 mm
(equally divided as N = 10 × 10 × 10 = 1000); (b), (c)
the images f̂ in component row for the array stretches of
160 mm × 160 mm and 80 mm × 80 mm with M = 10 ×
10 = 100; (d) f̂ for a set of randomly located detectors
of M = 100; (e), (f) Change of δ with the array stretch
(M = 100) and with the number of detectors M (80 mm
× 80 mm stretch).

planar array, which is set in the xy plane of z = −100 mm
with the detectors that are arranged in tetragonal lattice.
Using the same noise addition condition as that in Fig. 4
in data generation, the results of image reconstruction are
shown in Fig. 5 with the change of detector arrangement,
the real values of f̂ being guaranteed. While the GCV is
valid primarily for choosing the best value of γ1, it was
used empirically for searching the best set of (γ1, γ2) [5].

In Fig. 5, the effect of detector arrangement is clear.
When the reconstruction error δ is evaluated as δ = || f̂ −
f ||2/N, it is changed by one order of magnitude with the
change of arrangement, that is, the size of planar array and

the number of detectors. With the geometry of tetragonal
lattice such as HMID, a good reconstruction is obtained for
the detector plane of 80 mm × 80 mm wide as in Fig. 5 (c).
However, a wider plane gives a worse reconstruction, as
in Fig. 5 (b), since the detector sightline becomes similar
in the edge region of the plane because the plane inclines
against the target. The matrix H′ is likely to lose the rank
in numerically. This effect is explained by the quality of
the matrix H′, whose condition number κ = σmax/σmin in-
creases from 2.5 × 104 to 8.2 × 104. When the detectors
are located randomly around the target, the reconstruction
improves as shown in Fig. 5 (d), with a decreased value of
κ = 4.4 × 103. The errors δ are summarized in Fig. 5 (e).

Another result is shown in Fig. 5 (f). For a fixed stretch
of detector plane, the number of detectors M in tetragonal
lattice is changed. Larger M gives better reconstruction as
expected, whereas the manufacturing cost would be pro-
portional to M.

6. Summary
The microwave holography for plasma diagnostic has

been studied with the direct measurement of complex am-
plitude. Due to the microwave wavelength, the detector
size is large and the number of detectors is much smaller
than that of CCD picels. This situation leads to an ill-
conditioned inverse problem. A solution for real-valued
imaging objects has been examined numerically on the
back-scattering observation. The results suggest that a
good reconstruction is possible with the appropriate ar-
rangement of planar detectors.
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