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Since the observation of impurity hole in LHD, which contradicts the prediction of the conventional neo-
classical transport theory, several attempts have been made to explain the mechanism behind the phenomenon.
Consideration of the impact of electrostatic potential variation within the flux surface,Φ1, is one of those attempts.
However, all of the numerical studies that have investigated the effect of Φ1 to date have been conducted with
local simulation codes, and no global calculation has been performed yet. Here, a global neoclassical simulation
code FORTEC-3D is applied to evaluate Φ1, including the global effects, for the first time. The global simulation
result for a high-temperature low-density plasma, which corresponds to an impurity hole plasma, shows signifi-
cant difference from the local simulation results in the Φ1 profile. This indicates that consideration of the global
effects is essential for quantitative evaluation of impurity neoclassical transport in an impurity hole plasma.
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1. Introduction
Fusion plasmas contain a variety of ions in addition to

fuel deuterium and tritium. Accumulation of such impurity
ions in the plasma core leads to radiation loss or fuel dilu-
tion and decreases the performance of the plasma. Thus,
understanding the behavior of impurity ions is a crucial
task to realize a practical fusion reactor. Particle fluxes can
be separated into two different contributions. One is turbu-
lent flux and the other is neoclassical flux. The neoclassi-
cal part is expressed by the linear combination of driving
forces:

Γz ≡
〈∫

d3vv · ∇r fz1

〉
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where v is the drift velocity and fz1 is the first order dis-
tribution function of the impurity ion. na is the density of
species a with charge Zae, pa = naTa is the pressure, Ta

is the temperature, Er is the ambipolar electric field, the
prime denotes the derivative with respect to the radial co-
ordinate, r, and 〈...〉 denotes the flux surface average. The
coefficient Dza

1 is positive and the ambipolar radial electric
field is usually negative. In axisymmetric systems such as
tokamaks, the contribution of the radial electric field term
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vanishes and sufficiently strong temperature gradient may
drive the flux outward [1]. However, this is not usually
the case for non-axisymmetric systems. Because the ra-
dial electric field term is proportional to the charge Z, it
dominates the transport of high-Z ions. Thus, it has been
thought that impurity accumulation is inevitable in stellara-
tors. This prediction has been confirmed in several cases
experimentally.

However, a notably exceptional phenomenon has been
observed in LHD [2, 3]. It is called “impurity hole” and it
represents the formation of extremely hollow density pro-
file of the carbon impurity ions in the core region where
an inwardly pointing radial electric field exists. This ob-
servation implies that the conventional neoclassical trans-
port theory is not adequate for treating impurity transport
at least in some specific parameter regions. Since then,
several attempts have been made to fill the gap between
the observation and the theoretical prediction. While many
researchers have tried to explain the impurity hole phe-
nomenon by investigating the turbulent contribution on the
impurity transport, it has been found by a gyrokinetic sim-
ulation that the impurity turbulent flux directs inward in
the impurity hole plasma [4, 5]. Improvements within the
framework of neoclassical transport theory have also been
a subject of research. Recent studies have shown that as-
sumptions and approximations on which the conventional
neoclassical models are constructed may be invalid for the
description of impurity transport, and the inconsistency be-
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tween the observation and the conventional theoretical pre-
diction may be, at least partially, explained by the improper
simplifications [6–9].

One of the assumptions commonly employed in neo-
classical transport models is that electrostatic potential is
constant on each flux surface. However, it has been shown
that the non-uniform part of the electrostatic potential on
the flux surface, Φ1 ≡ Φ − Φ0(r), may also have sig-
nificant impact on impurity transport [6]. Several stud-
ies have investigated and confirmed that the effect of Φ1

may have substantial impact on impurity transport, and
the results tend to indicate that Φ1 acts in such a way
that impurity flux is driven more inwardly rather than out-
wardly [10–12]. However, all the studies have been con-
ducted with local simulation codes, and no global calcu-
lation has been performed yet. Furthermore, each study
uses different approximations and the results vary accord-
ingly as well. Among them, it has been shown that even
the tangential part of the magnetic drift radically changes
the profile of Φ1 and the necessity of global calculation
has been suggested [10]. Thus, we have applied a global
neoclassical simulation code FORTEC-3D to evaluate Φ1

for the first time and have compared the global result with
previous local simulation results.

2. Neoclassical Transport Models
The first order guiding center distribution function is

given as the solution of the following drift-kinetic equa-
tion: (

∂

∂t
+ Ż · ∂

∂Z

)
fa1 = −Ż · ∂

∂Z
fa0 +C( fa), (2)

where Z = (X, v‖, μ) are the 5-dimensional phase space
coordinates and C( fa) is the linearized Fokker-Planck-
Landau collision operator, respectively. X is the guid-
ing center position, v‖ is the parallel velocity and μ =
mav2⊥/(2B) is the magnetic moment, where v⊥ is the
perpendicular component of the velocity. The lowest
order guiding center distribution function is the local
Maxwellian
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When the electromagnetic potentials are static, the time
derivatives of the guiding center variables are given as

Ẋ =
B∗

B∗‖
v‖ +

1
eB∗‖

b × (μ∇B + Ze∇Φ) , (4)

v̇‖ = − 1
mv‖

Ẋ · (μ∇B + Ze∇Φ) , (5)

μ̇ = 0, (6)

where b = B/B, B∗ = ∇ × A∗ is corrected magnetic field
with the guiding center vector potential A∗ = A + mv‖b/e
and B∗‖ = B∗ · b. The equations of motion are derived in
such a way that the conservation of the phase space volume

is ensured [13].
Neglecting the correction term in B∗‖ and using low-

beta approximation (∇ × b � B × ∇B/B2) yields another
set of equations:

Ẋ = v‖b + vm + vE , (7)

v̇‖ = − 1
mv‖

Ẋ · (μ∇B + Ze∇Φ) , (8)

μ̇ = 0, (9)

where vm = (1/Ze)(mv2
‖ + μB)B × ∇B/B3 and vE = B ×

∇Φ/B2. Furthermore, removing the radial component of
the guiding center velocity in the left-hand side of (2) re-
duces the dimension of the phase space from five to four
and allows us to solve the equations on each flux surface
independently. This is called radially-local approximation
and models based on this approximations are called “local”
models. The most common way to do this is by dropping
the magnetic drift term vm entirely and the radial compo-
nent of the E×B drift, vE , from (7). The resulting equations
are

Ẋ = v‖b + vE0, (10)

v̇‖ = − 1
mv‖

(v‖b + vm + vE0) · (μ∇B + e∇Φ) , (11)

μ̇ = 0, (12)

where vE0 = B × ∇Φ0(r)/B2. These types of local models
have been almost exclusively used for neoclassical simu-
lations. Still, keeping the radially-local approximation, we
can retain the effect of the magnetic drift partially. The lo-
cal models which retain the components of the magnetic
drift tangential to the flux surface (v̂m ≡ vm − (vm · ∇r)er)
in (7) are called zero orbit width (ZOW) models. It has
been shown that even the tangential part of the magnetic
drift changes the dependence of the neoclassical transport
on the radial electric field, especially when the radial elec-
tric field is weak [14]. Approximating the collision oper-
ator in (2) by the pitch-angle scattering operator enables
us to treat the magnitude of velocity v as a parameter
and reduce another dimension of the phase space. This is
called mono-energetic approximation. In addition to the 5-
dimensional global model with the full linearized Fokker-
Planck-Landau operator, FORTEC-3D is also able to solve
those local models.

Before proceeding to the next section, let us briefly
discuss the primary reason why Φ1 may not be negligible
for impurity transport analysis. Look at the equation for
parallel acceleration (5) or (8). The leading terms in those
equations are parallel gradient of magnetic field ∇‖B and
electrostatic potential ∇‖Φ, where ∇‖ ≡ b · ∇. The latter
is usually not taken into account since Φ is assumed to
be a flux function, i.e., Φ1 does not have the flux surface
component. The ratio of the magnitude of the two terms is

Ze∇‖Φ
μ∇‖B ∼

ZeΦ1

TΔB
, (13)
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where ΔB represents the typical depth of the magnetic
well. eΦ1/T is the order of 10−3 ∼ 10−1. Thus, it is rea-
sonable to neglect the Φ1 term for bulk species. However,
the ratio may approach to or exceed the order of unity for
impurity ions due to their high Z number. Then, the parti-
cle trapping behavior is changed by Φ1, and so is the dif-
fusion process. A similar argument can be applied to the
ratio between the radial E × B drift generated by Φ1 and
the magnetic drift:

vE1

vm
∼ ZeΦ1

T
R
a
, (14)

where R is the major radius of the device and a is the minor
radius of the plasma, although the effects of those radial
drifts in the orbit equations cannot be considered in local
simulations.

3. Evaluation of Φ1
Here we consider a hydrogen plasma (Zi = 1) which

contains only single impurity species and suppose the im-
purity ion is in thermal equilibrium with the bulk ion:
Tz = Ti. Then imposing the quasi-neutrality condition,∑

a Zana = 0, on the density up to the first order

na = na0 exp (−ZaeΦ1/Ta) + na1, (15)

yields the expression

−e2Φ1

(
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z
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)

+ e (ni1 − ne1 + Zznz1) = 0. (16)

Here, ZaeΦ1/Ta  1 is assumed for all species. Assuming
the electron response is adiabatic (ne1 = 0) and the con-
centration of the impurity is negligibly low (Zznz � 0), the
equation for Φ1 is reduced to

Φ1 =
1
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=
1
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(
1
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+

1
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)−1 ∫
d3v fi1, (17)

where n0 = ni0 � ne0. This expression is used in several
studies to compute Φ1 (e.g., [10, 11, 15]). Some assump-
tions in the argument above may be questionable, and mod-
els based on more relaxed assumptions have also been in-
vestigated [12, 16]. Yet, the primary purpose of this study
is not to make an accurate computation of Φ1 but to see
if and how the global effects make a difference compared
with local results. Thus, we adopt the simplified expres-
sion (17) in this study to assess Φ1. This means that the
distribution of Φ1 computed in this study is essentially the
spatial distribution of fi1, which is the solution of the drift-
kinetic equation (2) for the bulk ion. However, it should be
noted that the effect of Φ1 is not considered in the calcu-
lation of fi1, since the Φ1-effect is assumed to be small for
Z = 1 hydrogen.

Fig. 1 Plasma profiles for case A and B. In the top, the magenta
line represents Er profile for A and the green line for B.
In the bottom, the temperature and density profiles are
plotted.

We have considered two different LHD plasmas
(Fig. 1): while plasma A corresponds to a standard ion
root plasma, plasma B, of which density is ten times lower
than that of plasma A, is closer to an impurity hole plasma.
The profiles of those plasmas correspond to the plasma A
and B in reference [10], respectively, which investigated
the effect of the tangential magnetic drift on Φ1 given by
(17) using the codes EUTERPE and KNOSOS. The study
showed that the profile of Φ1 was largely modified by the
inclusion of the tangential magnetic drift. While the am-
plitude was increased by a factor of around 2 for case A
and case B both, the change in the phase was more dis-
tinctive for case B. The relative position of positive and
negative peaks are inverted, and stellarator symmetry, seen
in the result without the magnetic drift, was lost in the case
with the tangential magnetic drift (see Fig. 2). Stellara-
tor symmetry is the invariance under the transformation
(θ, ζ) → (−θ,−ζ), and as it can be seen in Fig. 3, the mag-
netic field in LHD has this property. We will see if these
features are reproduced by FORTEC-3D, and if and how
the global effects change the result further. Nevertheless,
it should be noted that KNOSOS solves drift-kinetic equa-
tion only for trapped particles, and the equation is based
on an approximation in which the magnetic field configu-
ration is close to ominigeneity. As the authors note, how-
ever, results based on this approximation may be qualita-
tively inaccurate especially for r/a < 0.5. Thus we make a
comparison here to see the qualitative tendency in how the
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Fig. 2 Figure 9 in [10]. eΦ1/Ti calculated by KNOSOS with
(right) and without (left) the tangential magnetic drift at
r/a = 0.6 (top) and 0.8 (bottom) for an impurity hole
plasma.

Fig. 3 Magnetic field strength at r/a = 0.2, 0.4, 0.6, and 0.8 in
LHD.

magnetic drift changes the profile of Φ1, focusing on their
results for r/a > 0.5.

4. Numerical Results
In this section, we discuss the numerical results we

have obtained. For each case in this study, we calculated
Φ1 using three different models: (I) the standard local
model which entirely ignores the magnetic drift vm; (II)
ZOW model which includes the tangential magnetic drift
v̂m; and (III) global model which retains the full magnetic
drift. In Fig. 4, eΦ1/Ti for case A is mapped on θ-ζ plane,
where θ and ζ are poloidal and toroidal angle in Boozer

coordinate system, respectively. From the top, each row
corresponds to r/a = 0.2, 0.4, 0.6, and 0.8, respectively.
The leftmost column is the result of the model (I) calcu-
lated with EUTERPE in [10]. The next from the leftmost
column is the result of the same model obtained with the
local version of FORTEC-3D. They show good agreement
on each flux surface. The third from the left is the ZOW re-
sult calculated with the local version of FORTEC-3D. The
modification due to the tangential magnetic drift is small in
the inner half region (r/a = 0.2 and 0.4). Although the im-
pact of the tangential magnetic drift is more visible in the
outer half region (r/a = 0.6 and 0.8), the relative position
of positive and negative regions are not largely shifted. Fi-
nally, the rightmost column is the result of the global model
(III) calculated with FORTEC-3D. While the effect of the
magnetic drift is mild in the inner half region, the impact
becomes more appreciable in the outer half region. Still,
comparing the results with the standard local results, the
modification are continuous and no radical changes such
as phase inversion are found.

In contrast to case A, a notable change due to the
global effects was found for case B. Figure 5 shows the
profile of Φ1 for case B. As for case A, the first and second
columns from the left are results of the model (I) calculated
with EUTERPE and FORTEC-3D, respectively, and they
show reasonable agreement. In the result of this model,
the phase of Φ1 is almost stellarator symmetric. This is a
consequence expected from the property of the local drift-
kinetic equation in the collisionless limit [15]. Note that
this feature is not generally shared in the result of the same
model for case A, where the collision frequency is higher
than this case. It can be noted that once the tangential
magnetic drift is included, the phase of Φ1 is completely
changed: the relative position of the positive and negative
regions are largely shifted. The way of the modification in
the phase of Φ1 at r/a > 0.5 is somewhat similar to that
in Fig. 2. However, no consistent tendency in the effects
on the amplitude is found. Finally, in the global result, the
way of the modification is similar to that in the ZOW re-
sult, but some differences are found as well. The global
result shows smaller amplitude of Φ1 than the ZOW result,
especially at r/a > 0.5. Further, while both the ZOW re-
sult and the global result mainly consist of stellarator sym-
metric components, the Fourier composition of the global
result is, although the sign is opposite, closer to that of the
standard local result than the ZOW result is.

In an LHD plasma, the sign of the tangential compo-
nent of the magnetic drift v̂m is, on average, opposite to that
of the E × B drift, vE0, generated by the negative ambipo-
lar electric field. When the absolute value of the electric
field is large, as for case A, the effect of v̂m is negligible
relative to the effect of vE0. However, when the amplitude
of the electric field is small, v̂m becomes of the same or-
der as vE0, and can even be larger. Then the direction of
the guiding center drift on the flux surface is inverted and,
accordingly, so is the phase of Φ1. This seems to be the
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Fig. 4 eΦ1/Ti mapped on θ-ζ plane in Boozer coordinate system. The left two columns are results of the standard local model (I)
calculated with EUTERPE in [10] and local version of FORTEC-3D, respectively. The right two columns are results of ZOW (II)
and global model (III), respectively. Note that not all color scales are the same.

primary reason that the phase inversion was seen in case
B but not in case A. Further, different phases of Φ1 were
produced by the ZOW model and the global model, respec-
tively. This means the inclusion (or the lack of) the radial
component of the magnetic drift in the model changes the
Fourier composition of Φ1. This difference may be crucial
since the mode composition determines how the E×B drift
due to Φ1 couples to fz1 in generating the radial particle
flux. Although we cannot explain how these differences
result in impact on the radial impurity flux without per-
forming computation, significant difference inΦ1 is indeed
found between the results of global and local simulations.

5. Conclusion
In this article, we have investigated the global effects

on Φ1 in a condition similar to an impurity hole plasma,
and significant difference in the profile of Φ1, which is cal-
culated from the ion density variation, was found between
local and global neoclassical calculations. This implies
that the finite orbit effects become non-negligible in im-
purity hole plasmas where the collisionality is lower and
the E × B drift is weaker than those in standard ion root
plasmas. This suggests that the global drift-kinetic model
is essentially required to evaluate Φ1 potential profile and
that the amplitude and direction of radial impurity flux in
global simulations may also be significantly different from
those in local simulations. The difference may come not
only from the difference in Φ1, but also from the difference
in the first order distribution function of the impurity given
as the solution of the global drift-kinetic equation. Nev-
ertheless, the inversion of the phase of Φ1 does not nec-
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Fig. 5 eΦ1/Ti mapped on θ-ζ plane in Boozer coordinate system. The left two columns are results of the standard local model (I)
calculated with EUTERPE in [10] and local version of FORTEC-3D, respectively. The right two columns are results of ZOW (II)
and global model (III), respectively. Note that not all color scales are the same.

essarily mean the inversion of the direction the effects of
Φ1 act on impurity flux, since the distribution of the impu-
rity ion may also be modified in such a way that the effect
caused by the difference is canceled. Assessment of the
accuracy of numerical evaluation of Φ1 is also important
for investigating its impact in real plasmas. In addition to
the global simulation of impurity transport in LHD includ-
ing Φ1, comparisons between numerical simulation results
and available experimental data on Φ1 profile, such as the
radial electric field due to Φ1 in the TJ-II [16], will be pre-
sented in our future publications.
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