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Plasma heating and current drive with Electron Cyclotron Waves (ECWs) require precise control over the
polarization state of ECWs to ensure that the entire input power is deposited where intended. However, due to the
magnetic shear in the peripheral plasma, the polarization state can change. This effect is particularly pronounced
in the Large Helical Device (LHD), where the magnetic field is sheared strongly. Here, we present a new code
PARADE (PAraxial RAy DEscription) that can simulate the evolution of the polarization state along the beam
propagation without resorting to full-wave modeling. We apply PARADE to the LHD plasma and simulate the
evolution of the beam transverse structure, including the local amplitudes of the two electromagnetic eigenmodes.
The results surpass those yielded by the code LHDGauss used in the past. Based on these new results, we discuss
how to improve the mode purity of ECWs by controlling the initial polarization state. A remarkable improvement
is predicted numerically.
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1. Introduction
Plasma heating and current drive with Electron Cy-

clotron Waves (ECWs) must be done with minimal stray
power, because even only a few percent of the input power
can damage the vacuum vessel, diagnostic instruments,
and heating devices due to the recent upgrade of Electron
Cyclotron Resonance Heating (ECRH) systems in power
and pulse length [1]. One must also ensure that the input
power be deposited where intended. All this requires that
the electromagnetic (EM) radiation injected into plasma be
channeled into high-purity O or X wave. However, the O
and X waves are generally coupled in the peripheral plasma
by the magnetic shear [2], and this is particularly an issue
in the Large Helical Device (LHD) [3], where the shear is
strong. The properly designed ECRH system can launch
a wave beam with any given proportion of the O and X
components [4, 5]: thus, in principle, one can adjust the
initial O/X amplitude ratio such that it becomes exactly
one or zero when the beam enters the plasma core. But
for that, precise modeling of the polarization state evolu-
tion in the peripheral plasma is required. Such modeling is
usually performed for the LHD using the multi-ray-tracing
code LHDGauss [6], and the polarization state is calcu-
lated by using a special module of LHDGauss that solves
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a one-dimensional full-wave equation for the beam ampli-
tude along straight rays [7]. Although the basic physics of
the O-X conversion at the periphery is captured this way,
the ray bending and diffraction are neglected.

Here, we present a new code PARADE (PAraxial RAy
DEscription) where these effects are rigorously modeled
for the first time. PARADE simulates the ECW evolution
by integrating a parabolic (quasioptical) partial differential
equation for a certain two-dimensional projection of the
field envelope. The underlying theoretical model is a gen-
eralization of the recently proposed extended geometrical
optics [8–10] and is presented separately [11–13]. Here,
we report the first applications of PARADE to modeling
the EM-wave propagation in the LHD. Using PARADE,
we calculate the evolution of the ECW polarization state
in the peripheral plasma with both the ray bending and the
diffraction included. Based on our simulations, we also
propose an optimization of the launching parameters. The
predicted beam profiles and the ECRH improvement on the
LHD via PARADE modeling of the beam diffraction will
be presented separately.

The paper is organized as follows. In Sec. 2, we briefly
introduce the theoretical model assumed in PARADE. In
Sec. 3, we validate PARADE by comparing its predictions
with those of LHDGauss. In Sec. 4, we discuss how to im-
prove the mode purity of ECWs by controlling the initial
polarization state. In Sec. 5, we summarize our main con-
clusions.
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2. Quasioptical Model Used in
PARADE
A numerical code for modeling mixed-mode quasiop-

tical wave beams in inhomogeneous plasma has been long
awaited for the LHD, where ECW beams are shaped with
a quasioptical mirror system and launched into helical
plasma with a strongly-sheared magnetic field. Here, we
present PARADE, which is the first code that satisfies these
requirements, resolves the beam bending and transverse
structure, and can also simulate wave absorption. The the-
oretical model underlying PARADE is as follows.

2.1 Basic definitions
A linear equation for the electric wave field E is rep-

resented generally as

D̂E = 0, (1)

where D̂ is a linear dispersion operator. The stationary
wave field is assumed in the eikonal form, E = ψeiθ, where
the slow complex vector envelope ψ and the fast real “ref-
erence phase” θ are functions of the spatial coordinate x.
Then, we introduce the local wave vector k = ∇θ(x) and
frequency ω, which is constant because the wave is con-
sidered stationary. Here, we adopt the following small pa-
rameters,

ε‖ = λ/L‖, ε⊥ = λ/L⊥, ε‖ ∼ ε2
⊥ � 1, (2)

where λ = 2π/k is the wavelength, L‖ is the character-
istic scale of the beam field along the group velocity at
the beam center, and L⊥ is the beam width. The medium-
inhomogeneity scale is assumed to be of the same order
with L‖ or larger, and the minimum scale of the field in the
plane transverse to the group velocity is also assumed to
be comparable with L⊥. Then, we adopt that the disper-
sion tensor D [11] satisfies the ordering,

DH = O(1), DA = O(ε‖), (3)

where the indices H and A denote the Hermitian and anti-
Hermitian parts, correspondingly. Then, Eq. (1) yields
DHψ = O(ε⊥). Since the Hermitian matrix DH = O(1)
is the dominant part of D and has enough eigenvectors ηs

to form a complete orthonormal basis, the vector complex
envelope ψ can be represented in this basis, ψ = ηsa

s,
where as are the complex amplitudes. The correspond-
ing eigenvalues Λs (DHηs = Λsηs) are also introduced as
DHψ = ηsΛsas. When Λs is small, ηs approximately sat-
isfies the eigenmode equation, DHηs ≈ 0, and thus can be
viewed as the local polarization vector. Since both O and
X modes can be excited simultaneously in peripheral plas-
mas, the envelope is represented explicitly as

ψ = ηoao + ηxax + O(ε⊥) = Ξa + O(ε⊥). (4)

Here, Ξ is the 3 × 2 polarization matrix satisfying

Ξ+Ξ = 1, Ξ+DHΞ = Λ, (5)

where Ξ+ is the complex conjugate of Ξ, and Λ is the diag-
onal eigenvalue matrix. Also, a, which can be expressed as
a = Ξ+ψ, describes the slow envelope as shown in Sec. 2.2.

2.2 Governing equations
The beam dynamics is calculated relative to the “ref-

erence ray” (RR) governed by

dX
dζ
=

1
V�

∂H�

∂K
,

dK
dζ
= − 1

V�

∂H�

∂X
. (6)

Here, X and K are the ray coordinate and wave vector, ζ is
the path along the ray, V� = |∂H�/∂K|, and H� is the ray
Hamiltonian, namely,

H� =
1
2

(Λ�o + Λ�x). (7)

(Here and further, the index � denotes that the correspond-
ing quantity is evaluated on the RR.) It is assumed that the
rays corresponding to the two EM modes do not split con-
siderably in the region of interest (which is indeed the case
in the LHD peripheral plasma); hence the RR represents
both EM modes. Next, we introduce curvilinear coordi-
nates x̃μ ≡ {ζ, 
̃1, 
̃2}, where 
̃σ are, loosely speaking, the
orthogonal coordinates on the plane transverse to the group
velocity of the RR [12]. Then, the rescaled complex am-
plitude φ of the beam, which is defined as

φ =
√

V�a, (8)

satisfies the following parabolic equation:

∂φ
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=

1
V�

[
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i
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2
φ
]
. (9)

Here, summation over repeating indices is assumed; also,

M� = Λ� − H�1, (10)

M̃�σ =
∂M�

∂
̃σ
− ∂H�

∂
̃σ
∂M�

∂kβ

V�β

V2
�

, (11)
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∂
̃σ
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Γ = Ξ+�DAΞ�, (14)
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[
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− (X̃�Y�σ̄X̃�V�)σ, (16)
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and

L̃�σσ̄ =
1
2

[
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− 2
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]
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Here, we also introduced X̃μα = ∂x̃μ/∂xα and a 3×3 matrix
Y�σ, which is specifically defined in Ref. [12]. Based on
this model, which is described in more detail in Refs. [11–
13], PARADE can simulate how the amplitudes of the two
modes (reflected in the two components of φ) evolve along
the beam trajectory.

3. Code Validation
We validate PARADE by comparing its predictions

with those of LHDGauss. The propagation of an ECW
beam with frequency f = 77 GHz is simulated for two
different situations in actual LHD experiments. This fre-
quency is chosen to accommodate the fundamental ECRH
with the O mode in the LHD. Figure 1 demonstrates the
simulation results for a beam launched from the 5.5U-out
LHD antenna perpendicularly to the magnetic field toward
the magnetic axis. The plasma parameters are assumed
as those of the LHD shot #147817 at time t = 3.6 s.
Figure 2 shows the assumed electron plasma density pro-
files ne(reff/a99). Here, reff is the effective minor radius
and a99 is the effective minor radius confining 99% of the
stored energy in the plasma, which is experimentally mea-
sured in the LHD. The polarization angles [14] are (α, β) =
(44.5◦,−0.4◦). Figure 3 demonstrates the simulation re-
sults for a beam launched from the 2.0O-UR LHD antenna
obliquely to the magnetic field. The plasma parameters are
assumed as those of the same experiment at t = 3.533 s,
and the polarization angles are (α, β) = (55.6◦,−44.5◦).
For comparison with LHDGauss, the PARADE simulation
results are mapped to the Cartesian coordinates used in
LHDGauss, where the corresponding unit vectors are

(
ex, ey, ez

)
=

(
ein × (etor × ein)
|ein × (etor × ein)| ,

ein × etor

|ein × etor| ,
ein

|ein|
)
,

(18)

and ein and etor are the unit vectors along the initial wave
vector and along the LHD toroidal direction, respectively.
In both sets of simulations, the predictions of PARADE are
consistent with those of LHDGauss as long as the plasma
frequency fpc remains small. At larger fpc, where the ECW
approaches the last closed flux surface (LCFS), the two
codes predict slightly different results. The difference is
due to the fact that LHDGauss assumes a straight refer-
ence beam, while PARADE actually accounts for the ref-
erence beam bending. Figure 4 shows the RR trajectory
simulated by PARADE under the same conditions as in
Fig. 3. The arrow along lz shows the straight-ray trajectory
assumed in LHDGauss. The RR propagates obliquely to

Fig. 1 Simulations of the ECW propagation in the LHD using
PARADE (solid lines) and LHDGauss (dashed lines). The
assumed plasma parameters are those from the LHD shot
#147817 at t = 3.6 s. The initial conditions are assumed
as for the 5.5U-out antenna settings in the actual exper-
iment. (a) shows the key frequencies on the RR trajec-
tory, namely, the upper-hybrid frequency fuh, the right-
cutoff frequency frc, the electron cyclotron frequency
fce, and the plasma frequency fpc, all in units f . (b)
shows the components of the magnetic field (Bx, By, Bz)
in units of the local |B|. (c) shows the absolute val-
ues of the components of ψ defined as (|ψx|, |ψy|, |ψz|) =
((ψ+xψx)1/2, (ψ+yψy)1/2, (ψ+z ψz)1/2). (d) shows the polariza-
tion angles α and β. (e) shows the ratios of the intensities
carried by the two electromagnetic eigenmodes forming
the ECW.

Fig. 2 The electron plasma density profiles of the LHD shot
#147817 used both in PARADE and LHDGauss simula-
tions. The solid line corresponds to t = 3.6 s, and the
dashed line corresponds to t = 3.533 s. These profiles
were measured by Thomson scattering diagnostics.

the flux surface, reff/a99, and starts to bend gradually near
the LCFS. This bending of the RR trajectory, which cannot
be taken into account by LHDGauss, results in slightly dif-
ferent mode dynamics, as shown in Fig. 3. The effect must
be taken into account for reducing the stray power.

4. Optimization of the Polarization
State
Exciting just one mode, as opposed to a two-mode

mixture, in core plasma is advisable for plasma heating,
current-drive, and stray power reduction. This can be
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Fig. 3 Same as in Fig. 1, but for t = 3.533 s. The initial condi-
tions are assumed as for the 2.0O-UR antenna settings in
the actual experiment.

Fig. 4 The RR trajectory as simulated by PARADE under the
same conditions as in Fig. 3. Here, lx, ly, and lz are
the coordinates along ex, ey, and ez [Eq. (18)], respec-
tively. The arrow is the straight-ray trajectory assumed in
LHDGauss. The colored lines represent the isosurfaces
of reff/a99, which are also flux surfaces.

achieved by properly controlling the polarization angles
(α, β) near the antenna [15]. For perpendicular injection in
the LHD, linear polarization with (α, β) ≈ (±45.0◦, 0.0◦)
is usually employed. The corresponding value of α was
determined experimentally as that maximizing the ECRH
efficiency. It was also verified numerically that α ≈ ±45.0◦

ensures a decent purity of the intended mode; see Refs.
[6, 7] and Fig. 1. The angle β has not been usually taken
into account in the LHD but can be used to further im-
prove LHD operation. Any waves in magnetized plasmas,
except propagating strictly perpendicular to the magnetic
field, should have elliptical polarization and, furthermore,
a nonzero longitudinal component. Hence, the intended
mode purity can be improved by controlling not only α but
also β. As we found numerically using PARADE simula-
tions (Fig. 5), choosing β = −17.0◦ maximizes the O-mode
purity if the other parameters are the same as in Fig. 1.

Fig. 5 PARADE simulations for β = −17.0◦, which yields a pure
O mode in the core plasma (ho → 1). The parameters
other than β are the same as in Fig. 1.

5. Conclusions
Here, we present simulations of the ECW propaga-

tion in the LHD using a new code PARADE that can
calculate the polarization state without resorting to full-
wave modeling. The results surpass those yielded by the
code LHDGauss used in the past. Namely, as opposed to
LHDGauss, which has to assume straight ray trajectories,
PARADE accounts for refraction (and transverse diffrac-
tion), so it simulates the amplitude dynamics along the ac-
tual, curved, ray trajectories. Based on these new results,
we discuss how to improve the mode purity of ECWs by
controlling the initial polarization state. Another remark-
able feature of PARADE is that it can also calculate the
ECRH deposition profile with a resolved beam width. The
corresponding simulations will be reported separately.
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