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This study proposes a method for estimating plasma-emission transitions from plasma-emission videos using
a hidden Markov model (HMM). The proposed method retrieves similar videos and learns model parameters from
them. The plasma-emission characteristics that we have employed are color, brightness, position, shape, and the
speed at which the brightness of a plasma emissions changes. Multiple HMMs based on these plasma-emission
characteristics are employed to represent the plasma-emission patterns. The anticipated plasma-emission transi-
tions are estimated using state-transition probabilities from the generated model. Experimental results are used
to confirm that the proposed methods are effective in identifying similar plasma videos and estimating probable
future states of the plasma.
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1. Introduction
High-temperature plasma experiments are being con-

ducted at the National Institute for Fusion Science (NIFS)
[1]. During these experiments, emission is observed when
the plasma reaches a sufficiently high temperature. The
plasma emissions are recorded as videos and stored in disk
storage at NIFS [2].

The future emission states of plasmas must be esti-
mated to adjust experimental parameters for maintaining
the plasma and making emergency stops to avoid the de-
struction of devices. The durations of the plasma videos
range from a few seconds to one hour and more than
100,000 stored videos are available. Predicting emission
patterns from past data is difficult because it takes time
to manually analyze numerous videos; therefore, a system
must be developed to retrieve videos from past experiments
that exhibit similar characteristics and use them to deter-
mine the probabilities of future emissions.

The hidden Markov model (HMM) [3] is widely used
to analyze time-series data [4, 5], particularly in the field
of speech recognition, and is currently being used in other
fields as well.

A method to use plasma videos to determine the prob-
ability of future plasma emissions is proposed herein, and
the effectiveness of the proposed method is confirmed. The
feature values of plasma videos are defined; then, an HMM
is used to classify the plasma videos based on their simi-
larities. Plasma-emission models are then generated from
similar videos to determine the emission patterns. Finally,
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the effectiveness of the proposed method is verified via an
experiment.

The remainder of this paper is organized as follows.
Section 2 provides an overview of this research. Section
3 describes the related study, and Section 4 proposes our
method. Section 5 describes the experiment, Section 6 dis-
cusses the results, and Section 7 concludes the study.

2. Overview of the Estimation Model
2.1 Plasma-emission videos

Plasma emission frequently occurs during high-
temperature plasma experiments conducted at NIFS [1].
Video recordings of the plasma emissions are stored on
disk storage at NIFS in the MPEG-1 format, with a frame
rate of 29.97 frames/s. The width and height of a frame
are 352 × 240 pixels. The durations of the videos vary, but
most comprise approximately two hundred frames (∼7 s).

2.2 Overview of the plasma-emission model
The procedures used to construct our plasma-emission

model are as follows. First, 148 videos are prepared. Sec-
ond, the videos are divided into segments that comprise
multiple frames. For each segment, feature values are cal-
culated. The videos are then categorized into 23 groups
using HMM trained on the test videos. Then, the HMM pa-
rameters are determined from the segments in each group.
Multiple HMMs are prepared by this procedure. Finally,
for a prediction target video, the fitness to multiple HMMs
is calculated. Then, the model representing the target video
is selected.
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3. Related Study
3.1 Visual criteria for plasma videos

Evaluation criteria to determine the similarities among
plasma videos have been proposed in reference [6, 7]:

Cri. 1: Position of a bright spot
Cri. 2: Amount of movement of a bright spot
Cri. 3: Expansion and contraction of a bright spot
Cri. 4: Speed of brightness transition
Cri. 5: Amount of brightness transition
Cri. 6: Color
Cri. 7: Amount of color transition

Some researchers in fusion science consider these fea-
tures to be physically significant characteristics of plasma-
emission phenomena [6, 7].

3.2 Frame-hashing method
A fast-detection method for querying streaming

videos was proposed in reference [8]. The original frame-
hashing method divides a frame into 4 × 4 blocks. The
luminosity of each block is averaged and binarized using
the mean luminosity of the frame. Thus, binary digits can
be obtained for each frame, and this constitutes the “hash
value” of a frame. The hash value can then be used to de-
tect matching scenes in streaming videos.

In this study, the frame-hashing method is used to di-
vide a video into segments. A frame is divided into 16×16
blocks for more accurate division. A segment is defined as
a series of frames exhibiting similar hash values. Figure 1
shows sample frames in both same and different segments.
Each column of frames corresponds to a different segment.
The upper row is the first frame of a segment. In Fig. 1, the
next frame after the lower frame of a) is the upper frame
of b), and a similar pattern follows for columns b) and c).
The lower frame of a) is noticeably different from the upper
frame of b), even though these frames are adjacent to each
other in the time series. It can thus be seen that frames are
successfully divides frames into segments, each of which
contains similar frames.

3.3 HMM
An HMM is a generative probabilistic model, in which

a sequence of observable variables is generated by a se-
quence of internal hidden states. An HMM is based on

Fig. 1 Examples of segments.

two conditional-independence assumptions: 1) the tth hid-
den variable, Qt, given the (t − 1)th hidden variable, is in-
dependent of the previous variables, and 2) the tth obser-
vation, Ot, given the tth hidden variable, is independent of
the other variables. These assumptions are qualitively rep-
resented by Eqs. (1) and (2), respectively:

P(Qt |Qt−1,Ot−1, . . . ,Q1,O1) = P(Qt |Qt−1). (1)

P(Ot |QT ,OT , . . . ,Qt, . . . ,Q1,O1) = P(Ot |Qt). (2)

Here, Qt is a discrete random variable with N possible val-
ues {1 . . .N}, and T is the total number of observations.
The hidden Markov chain defined by P(Qt |Qt−1), is rep-
resented by a stochastic transition matrix A = {ai, j} =
P(Qt = j|Qt−1 = i). The special case of time t = 1 is
described by the initial-state distribution πi = P(Q1 = i).
A particular sequence of observations O is represented as
O = (O1 = o1, ...,OT = oT ). The probability that a par-
ticular observation vector occurs at a particular time t for a
state j is b j(ot) = P(Ot = ot |Qt = j). The set of parameters
is described as λ = (A, {b j(·)}, π).

Three basic problems are to be solved for an HMM:

1. Find P(O|λ) for some O = (o1, . . . , oT ).
2. Given some O and λ, find the best state sequence q =

(q1, . . . , qT ) that explains O.
3. Find λ that maximizes P(O|λ).

A maximum-likelihood method of parameter-estimation to
find the parameters of an HMM has been proposed in ref-
erence [3]. In this study, we model the transitions between
segments using an HMM.

4. Proposed Methods
4.1 Feature values

Four types of feature values are adopted: color, the
amount of brightness transition (ABT ), the speed of bright-
ness transition (S BT ), and the shape. These are defined by
Eqs. (3) - (6), respectively.

Color(R,G, B) =
1
|F|
∑

r∈F

| f (r)|. (3)

ABT = brightt − brightt−1. (4)

S BT =
brightt − brightt−1

seg_num
. (5)

S hape =
4π × area

circum f erence2
. (6)

Here, f (r) is the pixel value at the coordinate r of the first
frame of a segment. The quantity F is the sum of all pix-
els in the first frame of a segment. We calculate the three
colors red, blue, and green. The quantity brightt is the
mean luminance value of the first frame of the tth segment,
seg_num is the number of frames in the (t − 1)th segment,
area is the total value of the brighter pixels after binarizing
the frame, and the circum f erence is the peripheral length
of the bright part after binarization. In the present study,
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Fig. 2 The model generated from a plasma video.

for each segment, six-dimensional features are used, and
the feature values are calculated for each segment.

4.2 Plasma-emission model from an HMM
We model the transitions between segments in similar

videos based on an HMM, and term the resulting model as
the “plasma-emission model.” Figure 2 outlines a plasma
emission model. The feature vector of a segment is re-
garded as an observation vector ot, and a transition be-
tween segments is represented by a transition between hid-
den states Qt. The observation vectors are continuous;
therefore, the probability distribution P(ot |Qt) is assumed
to be a mixture of multivariate Gaussians for each state.

4.3 Selection of similar videos
An HMM can determine the best state sequence q.

The plasma videos can be converted into a symbol se-
ries, which represents the series of hidden states q =
(q1, . . . , qT ). Here, two or more plasma videos are as-
sumed to be similar when their symbol series are the same
because the symbol series represent a time-series pattern.
In this study, we used half of the prepared videos to train
the HMM and employed the other half to test the trained
HMM. For some videos, the videos are determined to be
similar if three or more symbol series were the same; this
number was determined experimentally. For example, as-
suming that the symbol series for video S is (A, B, B,C,D)
and that for video T is (E, A, B, B,C, A), videos S and T
are similar because four symbol series (A, B, B,C) are the
same. In this way, the prepared videos are categorized into
several groups. We can then train the HMMs using sim-
ilar videos and obtain multiple models that represent the
plasma-emission pattern for each similar video. This pro-
cedure is shown in Fig. 3.

4.4 Evaluation of the optimal model
An optimal plasma-emission model can be selected

from the models obtained from a new video. Using the
Viterbi algorithm [3], for each plasma-emission model, the
tth state qt for the tth segment of a new video can be deter-
mined.

We can calculate the Euclidean distance between the
mean parameters µ = (μ1, . . . , μ6) for the tth state of a
plasma-emission model qt and the feature vector ot =

(v1, . . . , v6) for the tth segment of a new video. This Eu-
clidean distance is represented as dis j(t) ( j = 0, . . . , 22) for

Fig. 3 Generation of multiple models.

the plasma-emission model j. When the values of dis j(t)
are arranged in ascending order, the ordered distance is de-
noted by Dis j,t(k), where k is the order after sorting. For
example, consider a case in which model3 is the second
similar plasma-emission model to the 4th segment of a new
video. In this case, dis3(4) is the Euclidean distance be-
tween the mean parameters of the fourth state of the third
plasma-emission model and the feature vector of the fourth
segment, and Dis3,4(2) is the second distance among these
ordered values.

Let us consider the point at which the distance
Dis j′,t(k + 1) − Dis j,t(k) becomes larger than the previous
value Dis j,t(k) − Dis j′′,t(k − 1). We label this point as Nt.
The state qt and the feature vector ot are regarded as simi-
lar up to Nt. The top Nth

t plasma-emission models are then
considered to be optimal for the tth segment of the new
video.

For each segment, we calculate the value of Nt. For
each plasma-emission model, the number of selections as
the top Nth

t models (NST) is incremented according to the
segment number t. The value of NST is considered to rep-
resent the similarity of the plasma-emission model to the
new video. Figure 4 shows an example of the method for
calculating NST. In this example because Models A and B
are selected as the top Nth

t plasma-emission models at time
t, the NSTs of Models A and B are incremented. The same
process is repeated for successive time increments. In this
case, Model A is the most similar to the example plasma
video because NST of Model A is the largest.

4.5 Determining the next emission
The transition probability can be obtained for each

state; hence, the probable next state can be estimated from
the current state. The symbol series are obtained from the
plasma video used in the HMM; therefore, by obtaining
the symbol series for the segment data used to train the
plasma-emission model, it is possible to detect the types
of segments that each state of the plasma-emission model
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Fig. 4 Method to calculate NST.

is composed of. The first frame of this segment is used as
the representative frame for the segment, and is used in the
visualization of each state of the plasma-emission model.

5. Experiment
5.1 Experimental method

We prepared 148 videos, which we grouped into 23
plasma-emission models (model0-model22). We also pre-
pared three test videos (t1 to t3) to evaluate the proposed
method.

We evaluated the plasma-emission model from two
perspectives: 1) Has the appropriate plasma-emission
model been selected for the test video from among mul-
tiple models? 2) Does the plasma-emission model appro-
priately predict future plasma emissions?

For each test video, we calculated the value of NST
for each plasma emission model. Next, we compared the
test video and the videos used in creating plasma models
with an NST larger than unity. Next, we selected a plasma-
emission model similar to the test video (Modelsim). This
model was used to evaluate the response to perspective (1).
Subsequently, we used Modelsim to predict a candidate for
the probable next state to evaluate the response to perspec-
tive(2).

5.2 Evaluation methods
We then examined where Modelsim is ranked in NST

for each segment. We also evaluated the ratio of the num-
ber of segments that include correct candidate images pre-
dicted in the top 80% of transition probability (Numcorrect)
to the total number of segments (Numseg). The value ob-
tained by dividing Numcorrect by Numseg is called the “ratio
of prediction” (RP), and is defined by Eq. (7).

RP =
Numcorrect

Numseg
. (7)

5.3 Results
Figure 5 shows the values of NST for test videos t1

and t2 obtained through the method described above. The

Fig. 5 Transitions of NST per segment. Each colored line repre-
sents a specific plasma-emission model. The bold lines
are Modelsim, which adopts large values as compared
with the thin lines.

Table 1 Mean Rank of Modelsim.

Video Mean Rank Number of segments RP
t1 1.00 12 0.58

t2-1 1.00 10 0.20
t2-2 1.56 10 0.09

t3 2.10 11 0.09

vertical axis is NST, and the horizontal axis is the time in
a segment. The bold lines show Modelsim, and the thin
colored lines show other models. Each color represents a
different model. The mean rank of Modelsim among all 23
models is shown in Table 1, together with the correspond-
ing value of RP.

As shown in Fig. 5, Modelsim is selected as an optimal
model, rather than the other models; in the later segments
in particular, Modelsim has a higher value of NST. For test
video t2, two versions of Modelsim exist: t2-1 and t2-2.
According to Table 1, the RP values are different for these
test viedos. The mean rank of Modelsim is 1.42. This shows
that the proposed method is effective in selecting the opti-
mal model, even though the performance of the models is
different.

Examples of the first frames of segments and the se-
quence of the symbol series for t1 and t2 are shown in
Figs. 6 and 7, respectively. Examples of plasma-emission-
model parameters are shown in Tables 2 and 4, respec-
tively, while the mean parameters are shown in Tables 3
and 5, respectively. All mean values are normalized.

From Fig. 6, it can be seen that emissions of similar
colors correspond to the same hidden state. Table 2 shows
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Fig. 6 Test video t1 and the corresponding symbol series.

Fig. 7 Test video t2 and the corresponding symbol series.

Table 2 Example of Plasma-Emission Transition (model17).

State
ID Features

Transition
Probability

Transition
Destination

0 Green, Bright 0.56 10
0.22 17
0.11 0
0.11 7

4 Red, Bright 0.50 4
0.50 15

10 Green, Bright 0.50 10
0.30 0
0.10 7

17 White, Bright 0.50 17
0.17 4
0.17 5
0.17 8

Table 3 Mean Parameters of Plasma-Emission model17.

State
ID B G R ABT SBT Shape

0 1.10 1.68 1.03 0.23 0.40 0.74
4 1.10 0.65 1.61 -0.88 -1.01 0.50

10 0.93 1.58 0.87 -1.04 0.03 0.76
17 1.80 1.96 1.72 0.34 0.53 0.82

that the probability of transitioning from one bright emis-
sion to another is high. For example, the probability of a
transition from State ID 17 to 17 is high.

Figure 7 shows that even if the colors are the same,
many segments can be decoded to different states. Table 4
shows that visually, many states have the same color.

Table 4 Example of Plasma-Emission Transition (model18).

State
ID Features

Transition
Probability

Transition
Destination

1 Blue, Bright 0.25 1
0.75 8

2 Blue, Bright 1.00 5
4 Blue, Dark 0.67 6

0.33 9
5 Blue, Bright 0.75 1

0.25 5
8 Blue, A Little Bright 0.25 2

0.75 4

Table 5 Mean Parameters of Plasma-Emission model18.

State
ID B G R ABT SBT Shape

1 0.84 0.32 -0.84 -0.46 -0.06 1.06
2 1.37 0.58 -0.79 1.18 1.73 0.98
4 -0.57 -0.83 -1.09 -0.69 -0.75 1.11
5 1.49 0.85 -0.65 0.16 0.29 0.99
8 0.25 -0.31 -0.96 -0.51 -0.52 1.11

6. Discussion
According to Fig. 5, the differences among the values

of NST are not large at the beginning of a video, but the
value of NST for the bold line gradually increases more
than those of the thin lines in the later segments because a
similar video has more similar segments than non-similar
ones.

In test video t1, the plasma emissions are green, red,
and white, and the duration of the bright emission is rel-
atively longer than that for the other test videos. Hence,
the segments from this video seem to be special. We can
actually observe the differences in the segments visually.
Conversely, in test video t2, the plasma emission is dark,
and hence, visually selecting similar segments is difficult.
In Table 1, the mean RP is low. This indicates that many
predicted images were different from the actual images.
However, as RP is not 0 it can be seen that the image that
is appropriately predicted was included in the prediction
candidates.

We consider that the difference in the mean rank of
each video and the value of RP are due to the pattern of the
plasma emission.

7. Conclusion
In this study, we proposed a method for estimating

plasma-emission transitions using an HMM trained on
plasma-emission videos.

We also proposed a plasma-emission model and a
method for selecting similar videos. We selected the mod-
els using an HMM and confirmed that the plasma videos
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are well-classified. We conducted an evaluation experi-
ment using the model rank results and showed that the op-
timal model has a higher rank than others. We also con-
ducted that acquiring knowledge about plasma emissions
using the hidden Markov model is possible.

We plan future studies to improve this model and
make it more robust to various emission patterns.
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