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Multiple free energy sources for instabilities coexist in magnetized plasmas with density gradient and veloc-
ity shear. Linear stabilities are investigated, and the mutual relation between resistive drift wave, D’Angelo mode
and flute mode is systematically clarified. By evaluating the linear growth rates, dominant instability is catego-
rized in a parameter space. The parallel wavenumber spectrum could be used as a guideline for the identification
of the instabilities.
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1. Introduction
Multiple free energy sources for instabilities coexist

in magnetized plasmas with density gradient and velocity
shear. Density and temperature gradients destabilize drift
wave type instabilities such as resistive drift wave, and ion
temperature gradient mode [1]. Inhomogeneous flows such
as poloidal mean sheared flow, zonal flow and toroidal
rotations are driven intrinsically [2–5] and/or externally
[6–8]. Strong inhomogeneity of the perpendicular flow can
be a free energy source of the Kelvin-Helmholtz (KH) in-
stability [9–12] and interchange mode [13, 14]. When the
parallel flow shear becomes strong, the parallel compres-
sion for ion acoustic waves can become negative to drive
KH-type instability. This instability is called the D’Angelo
mode [15, 16], which has been observed in basic plasma
experiments [17]. Turbulence simulation and theory sug-
gest the importance of the D’Angelo mode at scrape off
layers and spherical tokamaks [18, 19]. The coexistence of
the D’Angelo mode and drift wave has been observed [17].
On one hand, the drift wave induces the particle transport
that reduces the density gradient, and simultaneously drive
the momentum transport to form the parallel flow [20]. On
the other hand, the D’Angelo mode relaxes the parallel
flow gradient by momentum transport, and steepens the
density gradient via the particle pinch effect [16]. Thus, a
direct cross-interference between the particle and momen-
tum transport occurs in a system where instabilities due to
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the density gradient and the flow inhomogeneities coex-
ist. Therefore, the experimental identification of the insta-
bilities among such modes is becoming increasingly im-
portant. Although the characteristics of these instabilities
have been thoroughly investigated individually, the mutual
relations between such instabilities need to be clarified in
a systematic study.

Hence, in this study, we investigate the linear sta-
bility of magnetized plasmas in the presence of a den-
sity gradient, perpendicular flow curvature and parallel
flow shear. The relationships between the resistive drift
waves, D’Angelo and flute modes are clarified. In addition,
a guideline for identifying such instabilities is presented
here. The following parts of the paper are organized as
follows. The basic model is described in Sec. 2, and ana-
lytical formulas for each instability are presented in Sec. 3.
In Sec. 4, the mutual relations between the instabilities are
described, and a summary is presented in Sec. 5.

2. Model
We consider slab plasmas with a density gradient, per-

pendicular flow curvature and parallel flow shear in a sim-
ple geometry where the magnetic field is homogeneous.
This situation corresponds to those of the basic plasma ex-
periments [6, 7, 17]. The direction of the magnetic field is
chosen to be z-direction, and the direction of the gradient
of the density is set to be x-direction. A three-field reduced
fluid model is used, which is based on the Hasegawa-
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Wakatani model with coupling of the ion parallel flow [16],
where the field f = (N, φ,V)T is calculated. Here, the den-
sity N, electrostatic potential φ, and the ion parallel veloc-
ity V are normalized by mean density, electron temperature
and sound speed, respectively. We divide f into its mean
and fluctuating components as f =

〈
f
〉
+ f̃ . We keep the

terms due to spatial inhomogeneities of
〈

f
〉

(which causes
the instabilities). In this study, we focus on the linear prop-
erties of the instabilities with multiple free energy sources;
hence, we investigate the linearized equation. The basic
model equation, and the derivation of the linearized equa-
tion are given in Appendix.A. The linearized equation is
as follows,

∂t f̃ +L f̃ = 0. (1)

The linear operator L is given as

L = L1 +L2, (2)

L1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−D∇2

‖ − μN∇2⊥ D∇2
‖ ∇‖

−D∇−2⊥ ∇2
‖ D∇−2⊥ ∇2

‖ + ν − μφ∇2⊥ 0
∇‖ 0 ν − μV∇2⊥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(3)

L2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
〈
V
〉∇‖+∂x

〈
φ
〉
∂y −∂x

〈
N
〉
∂y 0

0 −∂x
〈
φ
〉
∂y+I 0

0 −∂x
〈
V
〉
∂y

〈
V
〉∇‖+∂x

〈
φ
〉
∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(4)

where L1 is the operator that describes the geometry and
physical properties of the plasma, and L2 is related to
the spatial inhomogeneity of the density, the electrostatic
potential, and the ion parallel flow. The density gradi-
ent, ∂x

〈
N
〉
, the parallel flow shear, ∂x

〈
V
〉
, and the cur-

vature of the azimuthal flow, ∂3
x
〈
φ
〉
, drive the drift wave,

the D’Angelo mode and the KH instability, respectively.
The ion-neutral collision frequency is denoted by ν, D =
A/(νei + νen) is the parallel diffusivity of electrons, A is
the ion-electron mass ratio, νei is the electron-ion collision
frequency, νen is the electron-neutral collision frequency,
and μN , μφ, μV are the viscosities. Here, the time and space
are normalized by the ion cyclotron frequency and the ion
sound Larmor radius, respectively. The operator I, which
is important for driving the flute mode, is given as

I = ∂3
x
〈
φ
〉∇−2
⊥ ∂y + ∂x

〈
N
〉∇−2
⊥ ∂x∂t

+ ∂x
〈
N
〉
∂x

〈
φ
〉∇−2
⊥ ∂x∂y − ∂x

〈
N
〉
∂2

x
〈
φ
〉∇−2
⊥ ∂y. (5)

Assuming the function form of the fluctuations as f̃ =∑
k f k exp(−iωt+ ik · x)+ c.c, we obtain the eigen equation

as ∑
j

Δi j fk, j = 0, (6)

Δ = −iωI +Lk. (7)

Here, Lk is calculated from L, where the derivatives, ∂t

and ∇ are replaced by −iω and ik. The dispersion relation
is obtained as

detΔ = 0. (8)

From the eigen equation, the eigenfunctions of the density
and the parallel flow fluctuations are formally written as

Ñk =
Δ32Δ13 − Δ33Δ12

Δ11Δ33 − Δ13Δ31
φ̃k, (9)

Ṽk =
Δ31Δ12 − Δ11Δ32

Δ11Δ33 − Δ13Δ31
φ̃k. (10)

The dispersion relation shown in Eq. (8) includes the free
energy sources for the instabilities due to ∂x

〈
N
〉
, ∂x

〈
V
〉

and
∂3

x
〈
φ
〉
.

3. Analytical Formulas for Instabili-
ties
Based on the linear dispersion relation (8), we investi-

gate the relationships between the multiple instabilities. In
order to obtain analytical insights, we derive expressions
for the eigenfrequencies of each instability in a limit of
ν, μN , μφ, μV → 0, keeping the effects of the flow and the
density gradient.

Equation (8) can be expressed in a limit of
ν, μN , μφ, μV → 0.

(
Dk2
‖
) [
Ω
{ (

1 + k−2
⊥

)
Ω + k‖

〈
V
〉 − k−2

⊥ ω∗ − iI
}

+k‖kyk−2
⊥ ∂x

〈
V
〉 − k2

‖ k
−2
⊥

]
+i

(
k2
‖ −Ω2

) (
Ω + k‖

〈
V
〉 − iI

)
= 0, (11)

where Ω = ω− ky∂x
〈
φ
〉− k‖

〈
V
〉

is the eigenfrequency with
the Doppler shift by the perpendicular and parallel flows,
and ω∗ = −ky∂x

〈
N
〉

is the electron drift frequency.

Cases of k‖ � 0
Equation (11) can be rewritten as

Ω2−αΩ−β−iε(Ω)=0, (12)

α=
ω∗ − k2⊥k‖ + ik2⊥I

1 + k2⊥
, (13)

β=
−k‖ky∂x

〈
V
〉
+ k2
‖

1 + k2⊥
, (14)

ε(Ω)=
k2⊥

Dk2
‖
(
1+k2⊥

) (
Ω2−k2

‖
) (
Ω+k‖

〈
V
〉−iI

)
. (15)

Assuming Dk2
‖ � ω and neglecting the term I, we treat

ε(Ω) perturbatively. We expand the solution as Ω = Ω(0) +

Ω(1) + . . . with the ordering of O(Ω/Dk2
‖ ). The lowest and

first order solutions are obtained as

Ω(0) =
1
2

(
α ±

√
α2 + 4β

)
, (16)

Ω(1) = i
ε(Ω(0))

2Ω(0) − α. (17)

i) β→ 0
When the parallel flow shear is small β → 0, the unstable
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solution can be expressed as

ω ≈ ω∗
1 + k2⊥

− k2⊥k‖
〈
V
〉

1 + k2⊥
+ ky∂x

〈
φ
〉
+ k‖

〈
V
〉

+ i
k2⊥ω∗

(
ω∗ + k‖

〈
V
〉)

Dk2
‖
(
1 + k2⊥

)2
, (18)

which corresponds to the resistive drift wave (including
the effects of the parallel and perpendicular flows). The
real frequency is Doppler shifted by the velocity field as
seen in the third and fourth terms of the right hand side of
Eq. (18). The parallel mean flow induces an asymmetry in
the growth rate with respect to the sign of k‖. The growth
rate of the mode satisfying k‖

〈
V
〉
> 0 becomes large, and

that of the mode with k‖
〈
V
〉
< 0 becomes small.

ii) |β| > α/4, β < 0
The D’Angelo mode becomes unstable when the parallel
flow shear satisfies α2 + 4β < 0, which can be expressed in
terms of the parallel velocity shear as

k‖ky∂x
〈
V
〉
> k2
‖ +

(
ω∗ − k2⊥k‖

〈
V
〉)2

4
(
1 + k2⊥

) . (19)

This condition corresponds to α2 + 4β < 0, where the un-
stable branch is obtained fromΩ(0). The eigenfrequency of
the unstable branch is derived as

ω ≈ ω∗
2
(
1 + k2⊥

) − k2⊥k‖
〈
V
〉

2
(
1 + k2⊥

) + ky∂x
〈
φ
〉
+ k‖

〈
V
〉

+
2ε(Ω(0))√|α2 + 4β|

+ i
1
2

√
|α2 + 4β|. (20)

The effect of ε(Ω(0)) contributes to the real frequency un-
like the drift wave case. The necessary condition for the
D’Angelo mode to become unstable is Eq. (19), where the
k‖-spectrum of the D’Angelo mode is completely asymme-
try with respect to the sign of k‖.

Case of k‖ = 0
The dispersion relation of the mode with k‖ = 0 is obtained
as

Ω = iI. (21)

The eigenfrequency can be expressed as

ω ≈ ky
{
∂x

〈
φ
〉
+ k−2
⊥

(
∂3

x
〈
φ
〉 − ∂x

〈
N
〉
∂2

x
〈
φ
〉) }

+ i
(
−kxkyk

−4
⊥ ∂x

〈
N
〉
∂3

x
〈
φ
〉)
, (22)

where k−2⊥ kx∂x
〈
N
〉 
 1 is assumed. When

kxky∂x
〈
N
〉
∂3

x
〈
φ
〉
< 0 is satisfied, the mode with k‖ = 0

becomes linearly unstable due to the coupling of ∂x
〈
N
〉

and ∂3
x
〈
φ
〉
. Note that this instability is different from

the KH instability and the rotation driven interchange
mode (RDI) [13]. In order to explain the relation of the

instability obtained here with the conventional KH and
RDI modes, the eigenequation Eq. (6) is rewitten as

k2
⊥φ̃k + ∂x

〈
N
〉
ikxφ̃k

− ky
ω−ky∂x

〈
φ
〉 (
∂3

x
〈
φ
〉
+∂x

〈
N
〉
∂2

x
〈
φ
〉)
φ̃k=0. (23)

Here, the KH and RDI modes are destabilized by the third
and fourth terms, respectively. Note that the KH and RDI
modes are stable when the radial eigenfunction is a plane
wave, eikx x. Radial eigenmode analysis is necessary to in-
clude these instabilities. In this study, we assume the the
function form as eikx x, and remove the KH and RDI. As
seen from the dispersion relation Eq. (22), the instability
we are considering is driven by the coupling between the
density and vorticity gradients.

The eigenfunctions of the density and parallel veloc-
ity fluctuations are explained in Appendix. B; these are
important for the experimental identification of the insta-
bilities. The characteristics of the quasi-linear fluxes of the
particle and parallel momentum are also discussed in this
appendix.

4. Mutual Relations between the In-
stabilities in Parameter Space
We consider situations where several free energy

sources for the instabilities coexist. The dispersion relation
in Eq. (8) is a cubic equation, implying that it has three so-
lutions. In order to understand the relationships between
the drift wave, D’Angelo and flute modes, the dispersion
relation is calculated as shown in Fig. 1. In the case of the
pure drift wave, Fig. 1 (a), (c), which corresponds to the
condition that the parallel flow shear and the gradient of
the vorticity are not present, the purely symmetric solu-
tion in k‖ is obtained. When the parallel flow shear exists,
the symmetry in k‖ is violated, and the unstable D’Angelo
mode appears where the real frequency of the drift wave
and the ion sound wave degenerate. The linearly unstable
flute mode k‖ = 0 appears and the D’Angelo mode disap-
pears when the vorticity gradient ∂3

x
〈
φ
〉

is present as shown
in Fig. 1 (e), (f).

In order to obtain a guideline for identifying the in-
stability, we present the characteristics of the mode spec-
tra based on the linear growth rate. The parameters here
are chosen to be similar to those of a basic plasma exper-
iment on PANTA [17]. The plasma radius is a = 10 [cm],
the device length in z-direction is λ = 4 [m], and

〈
V
〉
=

0.7, kx = 1/a, μN = μV = 10−2, μφ = 10−4, νei = 500, νen =

10, ν = 3.5 × 10−2. Treating ∂x
〈
N
〉
, ∂x

〈
V
〉

and ∂3
x
〈
φ
〉

as parameters, the linear growth rate in the mode number
space is shown in Fig. 2, which is expected to correspond
to the mode spectra. We use the relation, ky = m/a/2
and k‖ = 2πn/λ, where m and n are the perpendicular
and parallel mode numbers, respectively. Figures 2 (a)-
(c) are obtained by changing the density gradient with
∂x

〈
V
〉
= −0.15, and ∂3

x
〈
φ
〉
= 0. Figure 2 (a) shows the
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Fig. 1 Dispersion relations; (a), (b) pure drift wave, (c), (d) D’Angelo mode and drift wave, (e), (f) Flute and drift wave. Each case is
calculated with (∂x

〈
N
〉
, ∂3

x

〈
φ
〉
) = (0, 0) for (a), (b), (−0.2, 0) for (c), (d), and (−0.2, 0.02) for (e), (f).

Fig. 2 Growth rate γ in (m, n)-space: (a) D’Angelo mode case, (b) intermediate mode of D’Angelo mode and drift wave, and (c) drift
wave dominant case, and (d) flute mode dominant case.

characteristic spectrum of the D’Angelo mode, where the
modes with k‖ky∂x

〈
V
〉
> 0 are excited. This spectrum is

asymmetry in n-space, where the n-spectrum width is wide
(Δn ∼ 10). Here, the regions where the linear growth rate
is positive are indicated by the closed black lines. Note
that the other area is filled with damped waves. The black
broken line corresponds to the condition for the most un-
stable modes, k‖ = ky∂x

〈
V
〉
/2 [16]. When the density

gradient becomes large, the D’Angelo mode becomes sta-
ble, and the resistive drift wave is destabilized as shown
in Fig. 2 (c). The resistive drift wave is excited with finite
small n, which is almost symmetric in the sign of n. The
width of the n-spectrum is much narrower than that of the
D’Angleo mode as Δn ∼ 1. Weak asymmetry is observed
in Fig. 2 (c), which is due to the parallel mean flow as de-
scribed by Eq. (18). The intermediate case of the D’Angelo
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Fig. 3 Change of eigenfrequency and growth rate with the change of (a) (b) density gradient, (c) (d) parallel flow shear, and (e) (f) gradient
of electrostatic potential curvature.

mode and the drift wave corresponds to Fig. 2 (b). The drift
wave is observed at n > 0, and the intermediate mode ap-
pears at n < 0. Figure 2 (d) corresponds to the flute mode,
which is obtained with ∂3

x
〈
φ
〉
= 0.05, ∂x

〈
V
〉
= 0. The flute

mode with n = 0 coexists with the drift wave with n > 0.
In this case, the interference between the flute mode and
the drift wave is expected.

Figure 3 illustrates the dependence of the real fre-
quency and the growth rate of the instabilities on spatial
inhomogeneities. The representative modes are selected as
(m, n) = (3,±1), (5,−3), (1, 0) for the drift wave, D’Angelo
and flute modes, respectively. The dependence on the den-
sity gradient is shown in Fig. 3 (a) and (b), which is cal-
culated by using ∂x

〈
V
〉
= −0.2, ∂3

x
〈
φ
〉
= 0.05. The fre-

quency of the modes other than the flute mode increases
with the density gradient. The growth rate of the drift
wave constantly increases with −∂x

〈
N
〉
. The growth rate

of the D’Angelo mode decreases in the small density gra-
dient cases, and increases to be drift wave-like mode in the
high density gradient cases. Since the drift wave with the
negative n satisfies the condition kyk‖∂x

〈
V
〉
> 0, this mode

is weakly driven by the parallel flow shear in addition to
the density gradient. Thus, the mode with n = −1 becomes
most unstable at the intermediate region of the D’Angelo
mode dominant state and the drift wave dominant state.
Figures 3 (c) and (d) show the dependence on the parallel
flow shear. The real frequencies of the D’Angelo mode and
the drift wave with the negative n become small with the
parallel flow shear, and that of the drift wave with the posi-
tive n increases. The growth rates of the drift waves are not
sensitive to the parallel flow shear. The dependence on the
gradient of the potential curvature is shown in Figs. 3 (e)
and (f). The frequency of the every instability increases
with ∂3

x
〈
φ
〉
. The growth rate of the drift waves becomes

small with ∂3
x
〈
φ
〉
, while that of the D’Angelo mode is not

sensitive.
We focus on the behavior of the most unstable mode in

the parameter space of ∂x
〈
N
〉
, ∂x

〈
V
〉
, and ∂3

x
〈
φ
〉
. Figure 4

illustrates the parallel mode number of the most unstable

Fig. 4 Parallel mode number of the most unstable mode in pa-
rameter space. The drift wave and the D’Angelo mode
are denoted by ’DW’ and ’DA’, respectively.

mode. In the region where the D’Angelo mode is domi-
nant, the parallel mode number is n < −2, and is n = 1 in
the drift wave dominant region. In its intermediate region,
the drift wave with n = −1 can be most unstable. When
the gradient of the potential curvature becomes large, the
dominant mode changes from n = 1 to n = 0. The effect
of the perpendicular flow on the D’Angelo mode is not so
sensitive that the transition to the flute mode is not obtained
in the weak density gradient cases. The real frequency and
the growth rate of the most unstable mode are shown in
Fig. 5. Although the boundary of the each dominant insta-
bility is not clear for the real frequency and growth rate as
shown in Fig. 5, the boundary for the parallel mode num-
ber is clear. Thus, the parallel mode number is the key
parameter for determining the type of the instability.

The characteristics of the spectra of each instability
are summarized in Table 1, where it can be seen that
the spectrum of the parallel mode number is important
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Fig. 5 (a) Real frequency and (b) growth rate of the most unstable mode in parameter space.

Table 1 Characteristics of each instability, where m and n are the azimuthal and axial mode numbers.

necessary condition n Δn: spectrum width

drift wave n
〈
V
〉
> 0 n = 1 or −1 small

D’Angelo mode nm
〈
V
〉′
> 0 |n|: large large

Flute mode ∂3
x
〈
φ
〉
: large n = 0 small

for identifying the instabilities. Note that, in addition to
the modes shown in the table, there is the intermediate
mode in the region where the growth rates of the D’Angelo
mode and the drift wave are similar. The sign of the par-
allel mode number of the intermediate mode is same as
the D’Angelo mode, while the absolute mode number is
|n| = 1, similar to the drift wave.

5. Summary
We systematically investigate the linear analyses of in-

stabilities in the inhomogeneous magnetized plasmas with
a density gradient, and parallel and perpendicular mean
flows. The dispersion relation, which includes the multi-
ple instabilities, is derived. The relationships between the
resistive drift wave, D’Angelo and flute modes are clari-
fied. Characteristics of the expected fluctuation spectra are
discussed based on the linear growth rates. The dominant
instability is categorized in a parameter space. The paral-
lel mode number is the important parameter for identifying
such instabilities.
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Appendix A. Derivation of Linear
Dispersion Relation

The Hasegawa-Wakatani model with coupling of the
ion parallel flow is considered. The basic model equation
is given by

∂t f +L1 f = N( f , f ), (A.1)

where the linear operator L1, and the nonlinear termN are
given as

L1=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−D∇2

‖ − μN∇2⊥ D∇2
‖ ∇‖

−D∇−2⊥ ∇2
‖ D∇−2⊥ ∇2

‖ + ν − μφ∇2⊥ 0
∇‖ 0 ν − μV∇2⊥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
(A.2)

N( f , f )=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
[
N, φ

] − V∇‖N
∇−2⊥

[∇2⊥φ, φ
] − ∇−2⊥

{∇N · dt∇⊥φ}[
V, φ

] − V∇‖V

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (A.3)

where [φ, . . .] = ∂xφ∂y − ∂yφ∂x is the convective deriva-
tive. We divide f into the mean and fluctuating compo-
nents as f =

〈
f
〉
+ f̃ . Spatial inhomogeneity of f causes

the instabilities; the density gradient, perpendicular flow
curvature and the parallel flow shear destabilize the resis-
tive drift waves, the flute modes and the D’Angelo modes,
respectively. The nonlinear term is linearized as

N( f , f ) ≈ −L2(
〈

f
〉
) f̃ . (A.4)

The linearized equation is obtained as Eq. (1).
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Appendix B. Eigenfunctions and
Quasi-Linear Fluxes of Particles
and Momentum

The quasi-linear fluxes of the particle and parallel mo-
mentum are evaluated by using the linear eigenfunction,
Eqs. (9) and (10).

Case of k‖ � 0
Neglecting the viscosities μN = μφ = μV = 0, we derive
the analytical expressions of the eigenfunctions with the
assumption Dk2

‖ � ω as

Ñk≈
{
1 +

i

Dk2
‖Ω

(
Ω(Ω − ω∗) + k‖ky∂x

〈
V
〉 − k2

‖
) }
φ̃k,

(B.1)

Ṽk ≈
[k‖ − ky∂x

〈
V
〉

Ω

+i
k‖

Dk2
‖Ω

2

{
Ω (Ω − ω∗) − k2

‖ + k‖ky∂x
〈
V
〉}]
φ̃k.

(B.2)

The phase differences of the density and parallel flow fluc-
tuations with the electrostatic potential are governed by
Eqs. (B.1) and (B.2). The perpendicular flow affects the
phase differences of the density and parallel flow through
the Doppler shift. The parallel mean flow speed affects the
phase relation through the Doppler shift, while the parallel
flow shear directly affects the phase relations. The paral-
lel flow fluctuation becomes large with the increase of the
parallel flow shear as was observed in [21]. By using the
above expressions, the quasi-linear fluxes are obtained as

Γx =
〈
Ñ ṽx

〉
,

≈
∑

k

ky
Dk2
‖Ω

{
Ω(ω∗ −Ω) − k‖ky∂x

〈
V
〉
+ k2
‖
}
|φ̃k |2,

(B.3)

Πxz =
〈
ṽxṼ

〉
,

≈
∑

k

k‖ky
Dk2
‖Ω

2

{
Ω(ω∗ −Ω) − k‖ky∂x

〈
V
〉
+ k2
‖
}
|φ̃k |2,

(B.4)

where the radial velocity fluctuation is evaluated from the
E × B drift as ṽx = −ikyφ̃. The first term of the particle flux
in Eq. (B.3) becomes positive when the drift wave is im-
portant, which leads to the outward particle flux. The sec-
ond term contributes to the inward flux when the D’Angelo
mode is important, k‖ky∂x

〈
V
〉
> 0. The sign of the net par-

ticle flux is determined by the competition of these effects.
Concerning to the parallel momentum flux, the first term,
which is important for the drift wave case, can be positive
and negative depending on the breaking of the symmetry
in the sign of k‖ky. The second term, which is important
for the D’Angelo mode case, is always negative, so that
this term works as the relaxation of the flow profile. The
detailed formulation of the net momentum flux is reported
in [22].

Case of k‖ = 0
Similarly, the eigenfunction of the flute mode is obtained
as

Ñk ≈ ω∗
Ω
φ̃k, (B.5)

Ṽk ≈ −ky∂x
〈
V
〉

Ω
φ̃k. (B.6)

Then the fluctuation driven fluxes are derived as

Γx ≈ −
∑

k

k2
yγ

|Ω|2 |φ̃k |2∂x
〈
N
〉
, (B.7)

Πxz ≈ −
∑

k

k2
yγ

|Ω|2 |φ̃k |2∂x
〈
V
〉
, (B.8)

where γ = ImΩ. Thus, in the case of the linearly unstable
flute mode, the direction of the particle and parallel mo-
mentum fluxes are outward, and the density profile flattens.
The transport coefficients of the particle and momentum
fluxes take the same value in this case.

Depending on the type of instability, the effects of
the fluctuation driven fluxes of the particles and momen-
tum differ, and the properties of the background density
and velocity field are sensitively affected. Since the fluc-
tuation driven fluxes are determined from the summation
of all excited modes, the competition and coexistence of
the multiple instability become important to determine the
background profiles. Nonlinear simulations are necessary
for the study on the interaction between multiple instabili-
ties [23].
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