
Plasma and Fusion Research: Regular Articles Volume 11, 2406060 (2016)

An Intuitive Interface for Visualizing Numerical Data in a
Head-Mounted Display with Gesture Control∗)

Yuichi TAMURA, Hiroaki NAKAMURA1) and Susumu FUJIWARA2)

Konan University, Kobe 658-8501, Japan
1)National Institute for Fusion Science, Toki 509-5292, Japan

2)Kyoto Institute of Technology, Kyoto 606-8585, Japan

(Received 30 November 2015 / Accepted 22 February 2016)

This study aims to create an interface for visualizing numerical data on a head-mounted display (HMD)
and introduce functions to allow control of this visualization via hand gestures. HMDs have the advantage of
providing a user with a 360-degree field of view without taking up a lot of space. However, it is difficult to control
visualized numerical data intuitively with this type of display because the user cannot see his/her own hand. We
therefore introduced functions allowing the user to control the virtual scene with visualized virtual hands. We
developed a system in which a virtual menu is presented to the users and they can change the visualization method
by pushing virtual panels. The user can move freely in the visualized virtual scene. Moreover, to help users share
their thoughts, we have introduced a drawing function that enables users to indicate points and areas of interest
in the visualized scene.
c© 2016 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: visualization, numerical simulation, virtual reality, head-mounted display, gesture recognition, virtual
menu

DOI: 10.1585/pfr.11.2406060

1. Introduction
Virtual reality technology has been widely used in vi-

sualization research. This includes the visualization of
numerical data, in particular, using a CAVE type system
(Fig. 1). In this virtual reality system, a user wears stereo-
scopic glasses and watches stereoscopic images. The user
can therefore see himself/herself and control objects with
his/her own hands. However, this device requires a large
amount of space and is difficult to use readily. As an
alternative, a head-mounted display (HMD) (Fig. 2) can
also be used for observing stereoscopic information. In
this system, the user wears a display and can see a three-
dimensional (3D) scene. The advantage of this system is
that the user can observe a full 360-degree scene and can
use the device in a restricted space. However, the user can-
not see his/her own hands. It is therefore inconvenient for
the user to control the virtual scene using his/her hands or
hand-held devices. We have therefore developed an inter-
face for the intuitive control of an HMD environment.

Considerable research has been devoted to virtual
menus and their utilization in HMD environments [1–3].
These researches have focused on the usability of vir-
tual menus and their applications in training tasks, rather
than on scientific visualization. Moreover, in previous re-
searches, the user was required to use a special device
such as a data glove when gesturing. Research on virtual
menus for scientific visualization has also been conducted

author’s e-mail: tamura@konan-u.ac.jp
∗) This article is based on the presentation at the 25th International Toki
Conference (ITC25).

Fig. 1 A CAVE-type 3D display system.

Fig. 2 A head-mounted display (HMD) system.

as VFIVE [4–6]. However, this research has focused on vi-
sualization on large immersive display environments such
as the CAVE system. A visualization system combining
the VFIVE and HMD system has been proposed [7]. How-
ever this system does not include a gesture recognition
function. One study [8] proposed a visualization system
for an HMD for visualizing computational flow dynamics.
However, this system is only applicable to a specialized
field.

c© 2016 The Japan Society of Plasma
Science and Nuclear Fusion Research

2406060-1



Plasma and Fusion Research: Regular Articles Volume 11, 2406060 (2016)

The purpose of this study is to develop a general-
purpose and intuitive visualization for use in an HMD envi-
ronment with gesture control. The interface we developed
allows interaction with visualized objects by pushing vir-
tual panels using visualized virtual hands. The user can
draw lines and points using his/her own hands.

2. System Configuration
2.1 Hardware configuration

Figure 3 shows the hardware configuration of our pro-
posed system. The system consists of an HMD (Oculus
Rift 1) and a leap motion sensor 2. The leap motion sensor
is attached to the front of the HMD. The user wears the
HMD and watches a 3D visualized scene through lenses
for both eyes, attached inside the HMD. A motion sensor
is attached to the HMD which can detect the user’s head
rotation. Hence, the user can look around the scene by
rotating his/her head. The oculus rift’s angle of view is ap-
proximately 100 degrees. The leap motion sensor detects
the positions and angles of the user’s hands and fingers.
This allows the user to control the virtual scene. The ef-
fective range of the sensor is approximately 3 cm to 60 cm
from the device. Figure 4 shows the effective range and

Fig. 3 HMD hardware configuration: A leap motion sensor is
attached to the front of the Oculus Rift. The direction of
the z axis of the leap motion is forward, i.e., away from
the user.

Fig. 4 The coordinate system and the effective area of the leap
motion sensor.

1https://www.oculus.com
2https://www.leapmotion.com

angle for detecting the user’s hands.

2.2 Software
Our proposed system is based on the Unity 3D en-

gine 3, which was originally developed for designing com-
puter games, specifically in 3D. One of the advantages of
this engine is its support for various devices, particularly
virtual reality technology. Virtual reality devices have been
proposed by many developers. In visualization research,
they are used to control the virtual scene. However, it
is difficult to connect an existing 3D scene to a new de-
vice because of hardware incompatibility and differences
in programming environments among other reasons. To
bridge these gaps, we used the Unity 3D engine to link the
HMD and the leap motion sensor with visualized numeri-
cal data.

3. Visualization and Virtual Menu
The virtual menu we developed consists of several vir-

tual panels. The user can select either “static mode” or “dy-
namic mode”. Figure 5 shows the virtual menu presented
in front of the user’s eye in static mode. The user’s hand is
also displayed in the virtual scene, and the user can select
functions by pushing panels using this virtual hand. If a
virtual panel is pushed, the color of the panel changes. In
this example, temperature values from a numerical simu-
lation result is visualized using contour function, and lines
have been added using the “draw function.”

3.1 Virtual menu modes
Figure 5 shows the “static virtual menu”. In this mode,

the virtual menu is always located in front of the user and
does not move. However, this menu causes disruption
when the user wants to observe the visualized numerical
data. Therefore we added an “on/off” button for the vir-
tual menu. For viewing visualized objects without the vir-
tual menu, the user can switch off most of the virtual pan-

Fig. 5 The virtual menu (static virtual menu).

3http://unity3d.com/

2406060-2



Plasma and Fusion Research: Regular Articles Volume 11, 2406060 (2016)

els, except the “on/off” panel itself by pushing the “on/off”
button. In static mode, the user’s inability to freely change
the position of the virtual menu causes difficulties when
changing parameters. We therefore introduced a “dynamic
virtual menu” mode. Figure 6 shows an example of this
mode being used. In dynamic mode, the virtual menu is
located at the fingertips of the user’s left-hand as shown in
Fig. 7. The virtual panels are situated at a short distance
from the fingertips. This is done because the user selects
the virtual panels with their other (right) hand. If the pan-
els were located at the fingers, the fingers of the right hand
would overlap those of the left hand, causing misrecogni-
tion or non-recognition of the fingers. An advantage of the
dynamic menu mode is that it allows the user to hide the
virtual panels in an intuitive manner. Figure 6 shows the
panels when the user extends all his/her fingers, and Fig. 8
shows the panels when the user extends one finger. The

Fig. 6 The dynamic virtual menu when the user extends all fin-
gers All panels are present.

Fig. 7 The coordinate system of the dynamic virtual menu.

Fig. 8 The dynamic virtual menu when the user extends one fin-
ger (middle finger). Only one “scalar data panel” is avail-
able.

former shows all the panels, but the latter shows just one
panel. Our system can detect whether each finger is ex-
tended or not, and if a finger is bent, the panel assigned to
that finger is hidden. With this system, the user can intu-
itively and dynamically use the virtual menu.

The panels are assigned to the fingers as shown in
Fig. 7. The menu appears when the sensor detects the
user’s left hand. The user pushes a panel using a right-
hand finger. For example, if the user pushes the “Scalar
Data” panel, one or several subpanels open. In Fig. 8, the
“contour” panel opens. In this case, there is only a “con-
tour” panel because there is only one set of scalar data in
the simulation results. To add a function, it is necessary
to create a panel in the virtual scene and write a script
for using the function. The panel is easily set by drag-
ging and dropping a panel into the virtual scene using the
Unity engine’s application development environment. For
adding the function, the user needs to write scripts using
the ActiViz library. However, since various initialization
processes have been already completed, the user can im-
plement functions by simply writing a few lines of script.
Moreover, the system uses Visual Tool Kit (VTK) [9], a
widely used visualization library, and it is easy to find im-
plementations of functions on the web.

The user needs to select the static or the dynamic
menu before starting up the application. After startup, it
is not possible to change the menu mode. Although the
user select the mode before startup, the user does not need
to write a different script for visualization in each mode.
The script is shared in both modes. One reason for not
removing the static menu mode is that the accuracy of fin-
ger detection is a little low. Another is that there are cases
where the static menu is more suitable, for example, if the
user does not change parameters frequently.

3.2 Visualization function
For visualizing numerical data, the system uses VTK,

a widely used visualization library. However, it is impos-
sible to use VTK directly with the Unity 3D engine be-
cause the Unity 3D engine does not support C++ while
VTK is written in C++. We therefore use the ActiViz li-
brary, which is a C# wrapper tool for VTK, developed by
the VTK development team.

The first step a user performs is to convert his/her nu-
merical data into a VTK format file. Once the data have
been converted, all the VTK functions can be easily im-
plemented. In Fig. 5, an isosurface of temperature is visu-
alized. This illustrates a simulation of the self-assembling
behavior of amphiphilic molecules [10–14]. In this case,
the simulation results consist only of temperature data;
hence, only an isosurface (scalar data) is visualized. Cer-
tainly, vector data can also be visualized using VTK func-
tions.

3.3 Draw function
In a CAVE-type system, multiple users can simulta-

2406060-3



Plasma and Fusion Research: Regular Articles Volume 11, 2406060 (2016)

neously watch visualized scenes and discuss the results of
a numerical simulation. However, this is impossible in an
HMD system, because the HMD is designed as a personal
device. One solution to this problem is to connect several
HMDs via a network. Another is to save scene memories,
or “memos”, that record an interesting areas or phenomena
in a simulation result. If the user indicates the area they are
interested in, another user can watch this later and discuss
it. For this purpose, we introduced a draw function that en-
ables a user to select a region of the scene by drawing lines
and points. The lines and points are drawn using the loca-
tion of the palm of the hand. Although it is more natural to
draw using a finger since the accuracy of finger locations
detected by the system is low, palm positions were used.
Figure 9 shows the result of drawing a triangle five times.
This result shows the lower accuracy resulting from using
a finger rather than the palm. The upper side of the triangle
is clearly observed in both cases, but the lower side is not
successfully drawn when using a finger. This is because the
user’s finger is hidden by his/her own hand when drawing
the lower side due to the position of the leap motion sensor
mounted on the user’s head. In addition, we introduced a
point reduction function to prevent memory overflow. If
the user indicates more than 20,000 points, this function
deletes the points and instead produces a 3D line.

3.4 Navigation
We introduced a navigation function that works via

gesture recognition. Figure 10 shows how visualized vir-

Fig. 9 A comparison of the accuracy of drawing triangles using
a palm or a finger. On the left are lines drawn using a
palm and on the right using an index finger. The coordi-
nate system used for this result is shown in Fig. 4.

Fig. 10 Navigation in the virtual environment using an arm.

tual objects are moved and rotated. To use the naviga-
tion function, the user touches the “Navigate” panel and
spreads out the fingers of the right hand. Then, the object
moves in the direction that the arm indicates and rotates in
accordance with the rotation angle of the arm. If the user
bends any finger, the virtual object stops.

4. Conclusion
We propose an intuitive visualization system for use

with an HMD system. Our proposed system consists of a
visualization function that uses a VTK library and a draw
function selected via a virtual menu. The virtual menu is
located in front of the user, and the user can switch between
a “static mode” and a “dynamic mode”. In the static mode,
the virtual menu is fixed in the user’s display and does not
move. In the dynamic mode, virtual panels are shown at
the fingertips of the user’s left hand and the user controls
the virtual scene by pushing these panels with the right-
hand fingers. The panels appear when the user extends
his/her fingers. This allows the user to naturally control
the virtual scene. Moreover, we introduced a draw function
with which the user can select parts of the virtual scene for
storage for later viewing. Using the proposed system, a
user can observe and intuitively control simulation results.

As the measurement accuracy of the hand recognition
sensor is low, the draw function is not fully effective for
intuitive representation. To overcome this limitation, we
used functions to smooth curves and automatically connect
points.

Acknowledgment
This study is partly funded by a Grant-in-Aid for Sci-

entific Research KAKENHI (26330237 and 15K06650),
MEXT, Japan and the Hirao Taro Foundation of the Konan
University Association for Academic Research, Japan.

[1] D.A. Bowman and C.A. Wingrave, Proc. Virtual Reality,
pp. 149-156 (2001).

[2] S. Jayaram et al., Comput. Graph. Appl. 19, 6 (1999).
[3] J.M. Ritchie et al., Virtual Reality 11, 4 (2007).
[4] A. Kageyama et al., Prog. Theor. Phys. Suppl. 138, 665

(2000).
[5] N. Ohno et al., J. Plasma Phys. 72, 6 (2006).
[6] A. Kageyama et al., Int. J. Model. Simulat. Sci. Comput. 4,

1340003 (2013).
[7] S. Kawahara and A. Kageyama, Plasma Fusion Res. 10,

1201087 (2015).
[8] V.J. Shahnawaz et al., Proc. ASME Design Engineering

Technical Conferences, pp. 1-7 (1999).
[9] Kitware, Inc., VTK User’s Guide 11th edition (Kitware,

Inc., 2010).
[10] S. Fujiwara et al., J. Plasma Phys. 72, 1011 (2006).
[11] S. Fujiwara et al., Mol. Simul. 33, 115 (2007).
[12] S. Fujiwara et al., J. Chem. Phys. 130, 144901 (2009).
[13] S. Fujiwara et al., Plasma Fusion Res. 6, 2401040 (2011).
[14] S. Fujiwara et al., Plasma Fusion Res. 10, 3401029 (2015).

2406060-4


