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Effects of poloidal shear flow on the stability of interchange modes in a Large Helical Device (LHD) con-
figuration are numerically studied. Three-dimensional (3D) numerical codes are utilized for the equilibrium and
stability calculations. A static equilibrium is employed and a model poloidal flow as a flux function is incorpo-
rated in the initial perturbation. The results show that the initially applied flow can suppress the growth of the
interchange mode if the flow is sufficiently large.
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1. Introduction
In the recent experiments in the Large Helical De-

vice (LHD), a phenomenon similar to a locked mode was
observed [1, 2]. In this case, the m = 1/n = 1 mode
grows rapidly just after the mode rotation stops and causes
a partial collapse of the profile in the electron tempera-
ture. Here, m and n are the poloidal and toroidal mode
numbers, respectively. This phenomenon indicates that the
shear flow of the plasma may be a candidate which sup-
presses the growth of the mode. Thus, we numerically
study the effects of the shear flow on the magnetohydrody-
namics (MHD) stability against the pressure driven modes
in the LHD plasmas by utilizing three-dimensional (3D)
numerical codes.

2. Numerical Procedure and Flow
Model
In order to investigate the effect of the plasma flow,

we should analyze the stability of the equilibrium includ-
ing the flow consistently. However, any 3D equilibrium
calculation scheme consistent with a global flow has not
yet been established. Hence, as the first step of this flow
stability analysis, we employ a static equilibrium. Then,
we set a model global flow in the initial perturbation of the
dynamics calculation.

We use the HINT code [3] for the calculation of the
static equilibrium. This code solves the equilibrium equa-
tions in the cylindrical coordinates (R, φ,Z). Here, R and Z

author’s e-mail: ichiguch@nifs.ac.jp
∗) This article is based on the presentation at the 25th International Toki
Conference (ITC25).

are the horizontal and the vertical axes, respectively, and φ
is the toroidal angle. We use the MIPS code [4] for the sta-
bility calculation. This code solves the full MHD equations
for the HINT equilibrium in the same cylindrical coordi-
nates. We examine the linear stability and the nonlinear
dynamics of perturbations in the equilibrium by following
the time evolution of the plasma.

Here, we consider the global flow as a function of
the flux surface. In this case, it is convenient to spec-
ify the profile of flow components in a flux coordinate
system (ρ, θ, φ). Here ρ is the label of magnetic flux,
and θ is the poloidal angle that is simply determined as
tan θ = Z/(R − Rcnt), where Rcnt denotes the major radius
of the equilibrium magnetic axis. Then, the flow compo-
nents can be given in the form of V = (0,Vθ(ρ),Vφ(ρ)) in
the coordinates.

Since the MIPS code solves the MHD equations
in (R, φ,Z), we must obtain the components of V =

(VR,Vφ,VZ) at each grid point. By utilizing the relations
V · ∇Peq(ρ) = 0 and V2

θ = V2
R + V2

Z , we obtain
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Here equilibrium pressure Peq is used for the label of the
flux instead of ρ. Since Vθ and Vφ are given as the functions
of ρ, we need to know the relation between the cylindrical
and the flux coordinate systems. In order to obtain the re-
lation, we utilize the fact that the input of Peq is given as
the function of ρ and the resultant value is obtained as the
function of (R, φ,Z) in the HINT calculation. By taking
the inverse of the function of Peq(ρ) numerically, we ob-
tain ρ = ρ(Peq(R, φ,Z)), which is used for the evaluation of
Vθ(ρ) and Vφ(ρ) as the function of (R, φ,Z).

3. Equilibrium Calculation
We employ the LHD configuration with Rax = 3.6 m,

γc = 1.13. Here, Rax and γc are the horizontal posi-
tion of the vacuum magnetic axis and the parameter of
the aspect ratio of the helical coils, respectively. In the
equilibrium calculation, we assume the pressure profile of
Peq = P0(1−ρ2)(1−ρ8) and the axis beta of β0 = 4%, where
ρ denotes the square root of the normalized toroidal mag-
netic flux. Figure 1 shows the bird’s eye view of this Peq.
Figure 2 shows the summary of the equilibrium quantities.
Thé ι = 1 surface is located in the plasma column, wheré ι
is rotational transform. There exists a significant pressure
gradient and Mercier stability is unfavorable (DI > 0) at
this surface.

We employ the profile of Vθ similar to the experimen-
tal result, which is given by

Vθ/VA = ln[10(1.1 − ρ)] exp[−9(1 − ρ)2](1 − ρ8).

(4)

Fig. 1 Bird’s eye view of equilibrium pressure profile at the hor-
izontally elongated cross section.

Fig. 2 Profiles of equilibrium pressure, rotational transform,
Mercier index, and normalized poloidal flow.

The profile is also plotted in Fig. 2. A substantial shear
flow is applied at the´ι = 1 surface. Hereafter, we iden-
tify the value of the flow by the maximum value of Vθ/VA,
where VA denotes the Alfvén velocity. We also assume
Vφ = 0.

4. Stability Results
In the stability calculation, we add the poloidal shear

flow to the input perturbation given by the random noise,
and follow the time evolution of the plasma. In the present
calculation, we assume the dissipation parameters so that
the resistivity, the viscosity, and the perpendicular and the
parallel heat conductivities are η/μ0 = 10−6, ν = 10−5,
κ⊥ = 10−6, and κ‖ = 10−3, respectively. Each parameter is
normalized by VARax. Figure 3 shows the time evolution
of the total kinetic energy including the initial flow contri-
bution. At first, we analyze the no flow case Vθ/VA = 0 as
a reference. In this case, an unstable mode grows linearly
and is saturated at t ∼ 400τA, where τA denotes the Alfvén
time.

Next, we follow the time evolution of the plasma in
the cases with Vθ/VA = 10−3, 10−2, and 10−1. In the case
of Vθ/VA = 10−3, the initial kinetic energy of the flow
Ek(flow) is much less than Eksat, where Eksat denotes the
saturation level of the kinetic energy in the no flow case.
The kinetic energy is constant up to t ∼ 300τA. This is
because the kinetic energy of the flow is much larger than
that of the unstable mode in this region. The kinetic en-
ergy increases beyond t ∼ 300τA, and shows almost the
same value as that of the no flow case beyond t ∼ 350τA.
In this region, the energy part of the unstable mode in the
no flow case is superior to that of the initial flow. Thus,
this initial flow is too small to affect the unstable mode.

In the case with Vθ/VA = 10−2, Ek(flow) is compa-
rable to Eksat. The kinetic energy is almost constant and
slightly varies for t > 400τA where the mode in the no flow
case is saturated. In the case with Vθ/VA = 10−1, Ek(flow)
is much larger than Eksat. The kinetic energy is constant in
the whole time region.

Figure 4 shows the mode pattern of the perturbed
pressure P̃rel at t = 320τA, which is defined as P̃rel =

P̃/max(P̃), together with the puncture plot of the field
lines. In the no flow case, the mode is in the linear phase at

Fig. 3 Time evolution of kinetic energy for Vθ/VA = 0, 10−3,
10−2, and 10−1.
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Fig. 4 Mode pattern of perturbed pressure P̃rel and puncture
plots of field lines at t = 320τA for (a) Vθ/VA = 0, (b)
10−3, (c) 10−2, and (d) 10−1.

this time. The pattern shows the typical interchange mode.
The mode numbers of the dominant component are m = 4
and n = 4, which are determined by the dissipation param-
eters. In the case of Vθ/VA = 10−3, the mode pattern is
almost the same as that of the no flow case. In the case
of Vθ/VA = 10−2, the mode number of the dominant mode

Fig. 5 Bird’s eye view of total pressure on horizontally elon-
gated cross section at t = 408τA for (a) Vθ/VA = 0, (b)
10−3, (c) 10−2, and (d) 10−1.

reduces to m = 2. This change of the mode number is sim-
ilar to that due to the dissipation effects such as viscosity
and heat conductivity. In the case of Vθ/VA = 10−1, any
explicit mode pattern cannot be recognized.

Figures 5 and 6 show the total pressure and the field
line plots with P̃rel at t = 408τA in the saturation phase
of the mode. In the no flow case, the pressure profile is
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Fig. 6 Mode pattern of P̃rel and puncture plots of field lines on a
horizontally elongated cross section at t = 408τA for (a)
Vθ/VA = 0, (b) 10−3, (c) 10−2, and (d)10−1.

significantly deformed so as to have m = 4 structure and
the field lines are stochastic in almost the entire plasma
area. In the case of Vθ/VA = 10−3, the behavior is almost
the same as that of the no flow case. The deformation of
the pressure profile is slightly weaker and the field lines

are stochastic except for the peripheral region. In the case
of Vθ/VA = 10−2, substantial stabilizing contribution to
the mode is seen. The deformation of the total pressure
is much smaller than that of the no flow case. In addi-
tion, the field lines are stochastic in the limited region. The
nested surfaces remain in the wide region except around
the surface. Also, the reduction in the mode number from
m = 4 to m = 2 indicates that the global shear flow stabi-
lizes an interchange mode with higher mode numbers more
effectively. In this nonlinear evolution, the mode rotation
due to the flow is also observed explicitly. In the case of
Vθ/VA = 10−1, the stabilizing contribution is further en-
hanced. No change can be seen in the pressure profile and
the flux surfaces also in the nonlinear region.

5. Summary
Effects of poloidal shear flow on the stability of inter-

change modes in an LHD configuration are studied utiliz-
ing 3D numerical codes. Static equilibrium is employed
and a model poloidal flow is incorporated in the initial per-
turbation. The effects of the shear flow are observed as
follows:

No flow: The growth of an interchange mode leads to sig-
nificant pressure collapse and field line stochasticity.

Ek(flow) 	 Eksat: The flow does not interact with the
mode in the linear phase and slightly weakens the col-
lapse and the stochasticity.

Ek(flow) ∼ Eksat: The flow reduces the mode number and
mitigates the collapse and stochasticity.

Ek(flow) 
 Eksat: Explicit degradation is not seen in the
pressure profile and the magnetic surface structure.

Thus, these results suggest that the initially applied model
flow has an effect to suppress the growth of the interchange
modes.

The initially applied flow in the present analysis
causes the deviation from the force balance of the static
equilibrium and induces a plasma motion due to the de-
viation. Such motion can interact with the growth of the
instability. Therefore, the present results does not exactly
correspond to the stability property of the steady state with
the flow. Nevertheless, the suppression of the mode makes
us to expect the stabilizing contribution of the global flow
also in the steady state. In order to confirm the stabiliz-
ing contribution, we need to obtain the steady state firstly.
For this purpose, we can utilize the result obtained with the
present scheme, such as the final state of the Vθ/VA = 10−1

case. This analysis is planned as a future study together
with the employment of the ExB rotation in modeling the
flow.
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