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Simulation of Contactless Crack Detection in HTS Films:
Application of H-Matrix Method to Fast Matrix-Vector
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Detectability of the multiple cracks in a high-temperature superconducting (HTS) film by a scanning per-
manent magnet method has been investigated numerically. To this end, a numerical code has been developed for
performing a shielding current analysis in an HTS film with cracks. Furthermore, the GMRES(k) method and
the H-matrix method are adopted in the code. By using the code, the scanning permanent magnet method can be
simulated successfully. The results of the computations show that the x-coordinate of the crack endpoint cannot
be estimated with increasing the magnet radius. On the other hand, the y-coordinate of the crack endpoint can be
detected accurately.
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1. Introduction
A superconductivity is a phenomenon characterized

by the zero electrical resistance when materials are cooled
to the critical temperature or less. As is well known, a
high-temperature superconductors (HTSs) are used for de-
veloping various devices and systems such as nuclear fu-
sion reactor, flywheel, MRI, and etc., and they are charac-
terized by some parameters. In particular, a critical current
density jC is one of the most important parameters, and it
is important to measure the value of jC accurately.

As a contactless method and a high-speed method for
measuring a critical current density jC in an HTS film,
Hattori et al. proposed the scanning permanent magnet
method [1]. In the method, a permanent magnet is moved
along a HTS surface. They found that a spatial distribution
of jC can be estimated from the distribution of an electro-
magnetic force acting on the film.

In order to simulate a scanning permanent magnet
method, a numerical code was developed for analyzing
the time evolution of a shielding current density in an
HTS film with multiple cracks [2, 3]. After an initial-
boundary-value problem of the shielding current density is
spatially discretized with the finite element method (FEM),
the resulting ordinary differential system is solved by us-
ing the backward Euler method and the Runge-Kutta (R-K)
method with an adaptive step-size algorithm. In particular,
it is found that the R-K method is a useful tool with in-
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creasing the number of nodes for the FEM. However, it is
necessary to consider the further high-speed of the shield-
ing current analysis for a large-scale problem.

The purpose of the present study is to investigate the
detectability of the multiple cracks in the HTS film. In
order to analyze a shielding current density, we apply the
GMRES(k) method and H-matrix method to the linear sys-
tems obtained from the Backward Euler method.

2. Governing Equations
In a scanning permanent magnet method, a cylindri-

cal magnet of radius R and height H is located just above
an HTS thin film, and a distance between a magnet bottom
and film surface is denoted by L. We assume a square-
shaped HTS film of length a and thickness b, and the
square cross-section of the film is denoted by Ω. If a crack
is contained in the film, Ω has not only the outer boundary
C0 but the inner boundaries C j ( j = 1, 2, · · · ,m).

In the present study, we use the Cartesian coordinate
system 〈O : ex, ey, ez〉, where the z-axis is parallel to the
thickness direction and the origin O is the centroid of the
film. In terms of the coordinate system, the symmetry axis
of the coil is determined as (x, y) = (xM, yM). For charac-
terizing the magnet flux density at (x, y, z) = (xM, yM, b/2)
for v = 0 mm/s. The movement of the magnet is assumed
as xM(t) = vt − a/2, where v is the magnitude of the scan-
ning velocity.

As is well known, a shielding current density j in an
HTS is closely related to the electric field E. The relation
can be written as
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E = E(| j|)[ j/| j|]. (1)

As a function E( j), we assume the power law

E( j) = EC[ j/ jC]N , (2)

where EC is the critical electric field and N is a constant.
By using the thin-layer approximation [4, 5], the

shielding current density j can be expressed as

j = (2/b)∇S × ez, (3)

and the time evolution of the scalar function S (x, t) is gov-
erned by the following integro-differential equation:

μ0∂t(ŴS ) + (∇ × E) · ez = −∂t〈B · ez〉, (4)

where a bracket 〈 〉 is an average operator over the thick-
ness of the HTS film. Also, Ŵ is defined by

ŴS =
�
Ω

Q(|x − x′|)S (x′, t)d2x′ + (2/b)S (x, t),

(5)

and an explicit function Q(r) in (5) is expressed as follows:

Q(r) = −(πb2)−1[r−1 − (r2 + b2)−1/2]. (6)

The initial and boundary conditions to (4) are assumed
as follows:

S = 0, on C0 (7)
∂S
∂s
= 0, on Ci (8)

h(E) ≡
∮

Ci

E · tdt = 0. (9)

Here, s and n are an arclength along Ci and a normal unit
vector on Ci, respectively.

3. Numerical Methods
3.1 Discretization

In the present study, we discretize the initial-
boundary-value problem of (4) in time and space using
the finite element method (FEM) and the Backward Euler
method, respectively. A region Ω is divided into a number
Ne of square elements. On the other hand, a crack is given
by a line segment.

By using the Backward Euler method, the initial-
boundary-value problem of (4) is transformed into the non-
linear boundary-value problem as follows:

(∗1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(S (n+1)) = 0, in Ω (10a)
S (n+1) = 0, on C0 (10b)
∂S (n+1)/∂s = 0, on Ci (10c)∮

Ci

E(n+1) · tds = φi, (10d)

N(E(n+1)) = 0. (10e)

Here, a superscript (n) is a value at time t = tn(≡ nΔt). In
addition, G(S(n+1)) is defined by

G(S (n+1)) ≡ μ0ŴS (n+1) +Δ(∇× E(n+1)) · ez − u, (11)

where u is

u = μ0ŴS (n) − (〈B(n+1) · ez〉 − 〈B(n) · ez〉). (12)

Note that numerical solution contains the error due to
which a boundary condition (9) is not satisfied. In or-
der to resolve this problem, we propose the virtual voltage
method [5]. In the method, we use a numerical bound-
ary condition (10e), where N(E) is evaluated from h(E).
Therefore, the solution of the problem (*1) include not
only S (n+1) but also φi.

When the FEM and the Newton method are applied to
the problem (*1), we get simultaneous equations system:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(S) C F(φ)
CT O O

DT (S) O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δS
λ

δφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g(S,φ)

0
−h∗(S)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (13)

at each time step of the Newton method. Here, S is the
n-vector, and the n is a number of nodes for the FEM. The
(m−n)-by-n matrices A(S)(≡ W+ J(S)) is determined from
Ŵ, where J(S) is the Jacobian matrix. The matrix C, F(φ),
D(S), and the vector g(S, φ) are obtained by the cracks.
As a result, the initial-boundary problem of (4) is reduced
to the simultaneous equations system at each time step of
the Newton method. The procedure for the system is as
follows:

1. By solving the simultaneous equations, we get the
correction δS and δφ.

2. We update an approximate solutions by means of
S( j) ⇐ S( j−1) + δS and φ( j) ⇐ φ( j−1) + δφ.

Two procedures are repeated until the termination condi-
tion:

max (||δS||/||S||, ||δφ||/||φ||) ≤ ε, (14)

is satisfied. Here, ε is a constant, and || || denotes the
maximum norm. Under the numerical method, we de-
velop the numerical code for analyzing the time evolution
of the shielding current density in an HTS film with multi-
ple cracks.

3.2 High-speed method for shielding current
analysis

In this subsection, we propose a high-speed analysis
of a shielding current density in an HTS film. To this end,
we use the GMRES(k) method as a solver of simultaneous
equations (13), and we measure the CPU time for the sim-
ulation of a scanning permanent magnet method Here, a
convergence criterion of the GMRES(k) method is denoted
by εG.

As is well known, a matrix-vector product is calcu-
lated at the each iteration in the GMRES(k) method. In
order to calculate the matrix-vector product with a further
high-speed, we apply the H-matrix method [6] with the
adaptive cross approximation [7–9] to the matrix W. In
the H-matrix method, the computation of the matrix-vector
product can be reduced by compressing the matrix.
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Fig. 1 Residual history of the Newton method for the case with
(a) xM = −9.9 mm and (b) xM = −4.3 mm. Here, k = 500
and n = 2601.

Throughout the present study, the physical and geo-
metrical parameters are fixed as follows: a = 20 mm, b = 1
µm, jC = 2 MA/cm2, EC = 1 mV/m, N = 20, L = 0.5 mm,
H = 2 mm, BF = 0.3 T, v = 10 cm/s, and ε = 10−7. In ad-
dition, we suppose the two cracks, C1 and C2, are included
in the HTS film, and its shape is a line segment which is
parallel to the x-axis. The crack distance d and the crack
size Lc are given by d = 4 mm and Lc = 1.6 mm.

Firstly, we investigate the influence of the Newton
method on the convergence determinant of GMRES(k)
method. In Figs. 1, we show the residual history of the
Newton method. We see from Fig. 1 (a) that, for εG = 10−1,
the value of the residual norm almost becomes constant,
whereas the Newton method converges in 11 and 4 itera-
tions for εG = 10−2 and εG = 10−3, respectively. On the
other hand, we cannot obtain the solution at this step for
εG = 10−3 (see Fig. 1 (b)). In addition, for εG = 10−4 and
εG = 10−5, the Newton method converges in 4 iterations.
Consequently, it is necessary that the convergence deter-
minant is εG ≤ 10−4. In the following, the value of εG is
fixed to εG = 10−5.

Next, we investigate the influence of the restart coeffi-
cient k on the CPU time. In Fig. 2, we show the dependence

Fig. 2 Dependence of the CPU time on the restart coefficient k
for the case with n = 2601.

of the CPU time on the restart coefficient k. From this fig-
ure, the CPU time decreases with increasing the value of
k monotonously for 25 ≤ k ≤ 75, and it almost becomes
a constant. Especially, the CPU time drastically increases
for k = 25. As a result, it is found that the CPU time de-
creases by using the large value of k. Hereafter, we use k =
500 as the the value of the restart coefficient for analyzing
the shielding current density.

We found that, by using the GMRES(k) method to as
a linear-system solver, the time evolution of the shielding
current can be analyzed with high speed. In addition, the
speed of the GMRES(k) method can be accelerated by us-
ing the H-matrix method.

4. Detectability of Multiple Cracks
In this section, we numerically investigate the de-

tectability of the multiple cracks by the scanning perma-
nent magnet method. For this purpose, we adopt a defect
parameter ds [5] as usual. By using the defect parameter,
a relatively value can be obtained near the cracks, and its
value almost vanishes around the film edge.

Firstly, we investigate the distribution of the defect pa-
rameter ds. In Figs. 3, we show the contour maps of the
defect parameter ds for the two types of the magnet radius
R. From Fig. 3 (a), ds has a small value on both sides of
the two cracks, whereas the maximum value of ds is taken
near the center of the HTS film. Figure 3 (b) indicates that
we obtain a region of the small value by using the small
radius. These results mean the crack position can be es-
timated from the smallest value of the defect parameter
ds. In Figs. 3, we also show the smallest value of ds by
a rhombus symbol in the first quadrant. Hereafter, the xy-
coordinates of this symbol are denoted by (x, y) = (xs, ys).
The results of the computations show that we get (xs, ys) =
(2.3 mm, 2 mm) and (xs, ys) = 0.67 mm, 2 mm for the case
with R = 3 mm and R = 0.5 mm, respectively.

Next, let us investigate the detect accuracy of the mul-
tiple cracks numerically. To this end, as a measure of the
accuracy, we define relative errors: ex ≡ |x∗c − xs|/x∗c and
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Fig. 3 Contour maps of the defect parameter ds for (a) R = 3
mm and (b) R = 0.5 mm.

ey ≡ |yc − ys|/yc, where x∗c is defined by x∗c ≡ Lc/2. The
relative error εx is calculated as a function of the magnet
radius R and is depicted in Fig. 4. We see from this figure
that the relative error ex decreases with R for R ≤ 1 mm,
and its value monotonously increases with R for R ≥ 1
mm. On the other hand, the value of ey becomes ey = 0%
for 0.5 mm ≤ R ≤ 3 mm, and the y-coordinate of the crack
position can be detected with a high accuracy.

5. Conclusion
Conclusions obtained in the present study are summa-

rized as follows:

1. The Newton method does not converge at a certain
time step when the convergence determinant of the
GMRES(k) method is greatly larger than that of the
Newton method. Also, we found the CPU time de-

Fig. 4 Dependence of the relative error ex on the magnet radius
R.

creases by the large value of the restart coefficient k.
2. The x-coordinate of the crack endpoint cannot be

fairly evaluated with increasing the magnet radius.
On the other hand, the y-coordinate of the crack end-
point can be detected accurately.

In the future, we plan to compare the numerical results and
the experimental ones next year.
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