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Benchmark between electromagnetic gyrokinetic codes GKV and GENE based on the flux tube model has
been carried out by employing the high performance tokamak experiment data. The constructed flux coordinates,
linear dispersion relation, and nonlinear turbulent transport show good agreements. Utilizing these codes, linear
mode structures of micro-tearing modes have been examined. It is found that the current density is highly local-
ized in the radial direction and peaks on the inner board side of the torus, while the broaden O-shape structure is
observed on the torus outer board side. This broadening originates from the magnetic drift, that is, the finite orbit
width of passing particles.
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1. Introduction
In high performance fusion plasma characterized by

high β = μ0n0T0/B2
0 values, micro-instabilities and associ-

ated turbulence have electromagnetic properties: stabiliza-
tion of ion temperature gradient modes (ITGs), and desta-
bilization of kinetic ballooning modes and micro-tearing
modes (MTMs) [1,2]. Although their physics is often ana-
lyzed by the gyrokinetic theory and simulations in a simpli-
fied magnetic geometry, quantitative evaluations of linear
instabilities and of turbulent transport relevant to experi-
ments require the detailed informations of the magnetic
configuration, a realistic multi-species collision operator.
For this purpose, a verification study based on a code-code
benchmark is helpful. In this paper, we carry out linear and
nonlinear benchmark tests of the electromagnetic gyroki-
netic code GKV [3] against GENE [4], using data based on
an ASDEX Upgrade H-mode discharge [5].

2. The GKV and GENE code
GKV was originally developed for the analysis of

phase-space turbulence and the turbulent transport in toka-
mak and helical systems [3], and has recently been
extended for implementing electromagnetic fluctuations,
MHD equilibrium interface, and multi-species collision
operator [6–11]. GENE has been developed and applied
for the analysis of the electromagnetic turbulence over a
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decade [4], which includes advanced physical models such
as magnetic fluctuations parallel to the confinement field
B̃‖, equilibrium sheared flows, and a global model [12].
In this benchmark, both codes solve the δ f gyrokinetic
Vlasov-Poisson-Ampère equations,
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where the gyrophase-average operators J0s =∮
(dξ/2π)eρs·∇ and Γ0s =

∫
dv3(FMs/ns)J2

0s are used
with the gyroradius vector ρs = b × msv/(esB).
The magnetic and diamagnetic drift velocities are
given by vds = b × (μ∇B + msv2

‖ b · ∇b)/(esB) and
v∗s = b× [Ts∇ ln ns + (msv2

‖/2+ μB− 3Ts/2)∇ ln Ts]/(esB).
Ns = b × ∇⊥J0s(φ̃ − v‖Ã‖) · ∇⊥( f̃s + esFMsJ0sφ̃/Ts)/B
represents E × B and magnetic flutter nonlinearity, and
Cs is the collision operator. We employ the conventional
local flux-tube model [13], with the flux coordinates
x = a(ρ − ρ0), y = (aρ0/q0)[q(ρ)θ − ζ], z = θ (where
the radial coordinate ρ with the plasma minor radius a,
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Fig. 1 (a) Color contour of flux function and the constructed flux
coordinates on a poloidal cross section. Field-aligned
profiles of (b) the magnetic field strength B and of (c) the
radial component of the electron magnetic drift velocity
vdex calculated from the metrics (where v‖ = 1.97vte and
μ = 0.53Te/B0) at ρ = 0.5.

poloidal and toroidal angles θ, ζ), the parallel velocity v‖
and the magnetic moment μ as velocity-space coordinates.

The ASDEX Upgrade H-mode discharge data
(AUG#29224 at ρ = 0.5 corresponding to the case B in
Ref. [5]) is used for the benchmark, which demands the
electromagnetic physics, experimental equilibrium inter-
face and multiple-species collision operator. We here ne-
glect B̃‖ and equilibrium sheared flows, and approximate
b · ∇b � ∇ ln B in the low-β limit.

3. Benchmark Results
3.1 Constructed flux coordinates

Accuracy of local flux tube simulations may depend
on the accuracy of the employed flux coordinates. To con-
struct flux coordinates from the MHD equilibrium data
(EQDSK format), GKV uses the interface code IGS [9],
which provides Hamada, Boozer, or Axisymmetric type
flux coordinates. In this benchmark the axisymmetric co-
ordinates are employed, since it coincides with the coor-
dinates employed in GENE (via the TRACER interface
[14]). Figure 1 shows the flux coordinates constructed
from the AUG#29224 data. The magnetic field and met-
ric data calculated in GKV and GENE agree well.

It is known that, for the up-down symmetric config-
uration (symmetric B, ∂xB, ∂yB, gxx, gyy, gyz, gzz,

√
g, and

anti-symmetric ∂zB, gxy, gxz for z → −z), the linearized
gyrokinetic equation is invariant under the parity trans-
formation (x, z, v‖) → (−x,−z,−v‖) [15], which ensures
the decomposition of the linear modes into the ballooning
(even) parity mode f̃s(−x, y,−z,−v‖, μ) = f̃s(x, y, z, v‖, μ),
such as ITGs, and the tearing (odd) parity mode
f̃s(−x, y,−z,−v‖, μ) = − f̃s(x, y, z, v‖, μ), such as MTMs.
Generally speaking the single-null configuration violates
this parity symmetry. However, since the up-down asym-
metric component of the equilibrium at ρ = 0.5 is quite

Fig. 2 Linear dispersion of MTM and ITG.

small as seen in Fig. 1, the linear modes observed in this
benchmark case can be classified in either parity structure.

3.2 Linear dispersion
Employing the constructed flux coordinates, the lin-

ear dispersion relation of micro-instabilities is examined.
Choosing kx = 0, the ballooning space −23π ≤ z ≤ 23π
and velocity space −4 ≤ v‖/vte ≤ 4, 0 ≤ μB0/Ts ≤ 8 are
resolved by 552×64×32 grid points. Figure 2 shows good
agreements between the results of GKV and GENE. From
the difinition in GKV, the positive and negative frequency
waves propagate in the electron and ion diamagnetic drift
directions, respectively. Lower wave number kyρti < 0.3
modes rotating in the electron diamagnetic direction and
having tearing parity structures are MTMs, and the higher
wave number modes rotating in the ion diamagnetic direc-
tion and having ballooning parity structures are ITGs. We
found that the simple Lenard Bernstein collision operator
reduces the growth rate of MTM, and the collisionless tests
show ITGs become dominant even in the low wave number
regime. Thus the finite collisional drive is confirmed to be
affected by the details of the collision operator. Neverthe-
less, Sugama’s self-adjoint collision operator in GKV [16]
and Landau-Boltzmann collision operator in GENE [17]
here capture equivalent physics for the destabilization of
MTMs.

Hereafter, we will focus on the physics of MTMs.
Most of theoretical works were engaged in the sheared
slab geometry [2, 18], while some literatures dealt with
toroidal plasma with trapped particle effects but neglect-
ing the magnetic drift [19]. Recent gyrokinetic simulation
studies using GS2 [20], however, reported the importance
of the magnetic drift for the destabilization of MTMs in
spherical tokamak [21, 22]. Being stimulated by these re-
ports, we have carried out GKV simulations, to investi-
gate the linear properties of toroidal MTMs in ASDEX Up-
grade. The results are summarized in Table 1. As expected,
contribution of the perturbed ion distribution function (but
the polarization is retained in Poisson equation) and up-
down asymmetry of magnetic configuration are negligible.
Additionally, since the mirror force term is also less ef-
fective, effect of trapped electron dissipation pointed out
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Table 1 Linear growth rate γl and real frequency ωr with respect
to various numerical settings (for kyρti = 0.183 MTM).

Numerical setting γlR/vti ωrR/vti

Default 0.154 0.796
f̃i = 0 0.149 0.829

Up-down symmetrization 0.149 0.802
μ∇‖B/ms = 0 0.148 0.929
φ̃ = 0 0.100 0.712

vds = 0 0.061 0.799

Fig. 3 Electron parallel flow |ũe‖ky/(n0vte)|, electrostatic
potential |φ̃ky/(Ti/e)| and parallel vector potential
|Ã‖ky/(Ti/evA)| structures in radial x and field-aligned
z coordinates, where the amplitude is normalized by
evAÃ‖ky/Ti at (x, z) = (0, 0). The left column (a) - (c) and
the right column (d) - (f) correspond to the default and
the no magnetic drift (vds = 0) cases, respectively.

in Refs. [19] is not essential here. Neglect of electrostatic
potential φ = 0 or of magnetic drift vds = 0 significantly
reduce growth rate, which is similar trend with Ref. [21].

3.3 Linear mode structure of MTM and ef-
fects of magnetic drift

We further investigate the effect of magnetic drift on
MTM. MTM has a k‖ ∼ 0 resonant structure, which is rep-
resented by an extremely elongated mode structure in bal-
looning angle (see e.g., Ref. [21]). This elongated struc-
ture in turn creates fine radial modes in the sheared mag-
netic geometry [13], and the superposition of the different
kx modes with the same phase forms a radially localized
structure at the resonant surface.

Figure 3 shows radial x and field-aligned z space struc-
ture of a poloidal Fourier mode kyρti = 0.183, where we
employed high resolutions Δx = 0.0132ρti and Δz/π =
0.0156. The current structure shown in Fig. 3 (a) is highly
localized in the radial direction, which peaks on the inner
board side of the torus at z = ±π. The full width at half

Fig. 4 Electron distribution function | f̃eky/(n0v3
te)| in (x, z) space

with choosing the velocities v‖ = 1.97vte and μ =
0.53Te/B. For comparison, the passing particle trajec-
tory is plotted by a solid line, which starts from the torus
inner board side z0 = −π and x0 = −0.026ρti.

maximum of |ũe‖ky | at z = −π is Δfwhm = 0.08ρti, which
is almost the same as the simple slab estimate ΔEst.

fwhm/ρti =

qRω/(ŝkyρtivte) = 0.089, as reported in Ref. [23]. In ad-
dition, the current structure is broaden and forms an O-
shape on the torus outer board side at z = 0. The similar
broadening at z = 0 is also observed in the electrostatic
potential profile in Fig. 3 (b). We note that the fluctuations
almost have the tearing parity: the anti-symmetric struc-
ture for φ̃ky (−x,−z) = −φ̃ky (x, z), and the symmetric one
for ũe‖ky (−x,−z) = ũe‖ky (x, z), Ã‖ky (−x,−z) = Ã‖ky (x, z).
The kx = 0 component is dominant in Ã‖ which corre-
sponds to theoretically assumed “constant Ã‖” approxima-
tion. In the flux-tube model, the Laplacian operator is
∇2⊥ = gxx∂2

x + i2gxyky∂x − gyyk2
y , and the second derivative

∂2
xÃ‖ coincides with the localized current structure.

In contrast, the O-shape broadening at z = 0 has not
been observed in the case of neglecting the magnetic drift
vds = 0, which clearly shows that the magnetic drift affects
the mode structure of MTM. The O-shape mode structure
is associated with the particle trajectory given by paral-
lel and magnetic drift motions, i.e., the finite orbit width
of the passing particles. Neglecting the magnetic mirror
force, the electron motions in the x and z directions is ap-
proximated by ż = ±v‖b · ∇z and ẋ = vde · ∇x. Figure 4
directly compares the calculated passing particle trajectory
and the contour of electron distribution function | f̃eky | for
v‖ = 1.97vte and μ = 0.53Te/B. The result demonstrates
that the electron current density in x < 0 is caused by the
v‖ > 0 perturbation advected from z = −π, and that the
trajectory is bended by the magnetic drift. Equally, the
current density in x > 0 is caused by the v‖ < 0 per-
turbation started from z = +π. It is consistent with the
tearing parity, f̃eky (−x,−z,−v‖, μ) = − f̃eky (x, z, v‖, μ) and
ũe‖ky (−x,−z) = ũe‖ky (x, z). From these trajectory analysis,
perturbations of the electron distribution function seem to
be driven on the torus inner board side at z = ±π and ad-
vected to the outer board side (if perturbations were driven
on the torus outer board side, the X-point and O-point are
observed at z = 0 and z = ±π, respectively, in contrast to
the simulation result).

From Fig. 3 (a), we have evaluated the peak-to-peak
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Fig. 5 Time evolution of energy fluxes normalized by gyro-
Bohm flux QgB = n0Tivtiρ

2
ti/R

2
0. The solid, dash and

dotted lines represent ion energy flux QiE, electron en-
ergy flux caused by E× B flows QeE and magnetic flutter
QeM, respectively. For references, time-averaged values
obtained by GENE (from Fig. 5 in Ref. [5]) are plotted
by chain lines.

width of the electron current density at z = 0 as ΔFOW =

0.18ρti. If one approximates ż ∼ v‖/(qR0) and ẋ ∼ (mev2
‖ +

μB0) sin z/(eB0R0), with thermal speed v‖ = vte and μ =
Te/(2B0), the finite orbit width can be analytically given
by ΔEst.

FOW/ρti = 4q(mev2
‖ + μB0)/(mivtiv‖) = 0.132, which

roughly agrees with the width of the O-shape structure.

3.4 Turbulent transport: preliminary non-
linear benchmark

We have also carried out a nonlinear simulation of
MTM/ITG driven turbulence, where the domain sizes
−50.7 ≤ x/ρti ≤ 50.7, −68.6 ≤ y/ρti ≤ 68.6, −π ≤ z ≤ π,
−4 ≤ v‖/vts ≤ 4 and 0 ≤ μB0/Ts ≤ 8 are resolved by
288 × 96 × 48 × 96 × 32 grid points, respectively. Agree-
ments of turbulent transport fluxes obtained by GKV and
GENE are confirmed in Fig. 5, where the effects of B̃‖ and
of parallel flow shear are shown to be negligible in a GENE
simulation. The successful nonlinear benchmark test pro-
vides a basis for further investigations of nonlinear physics
in MTM/ITG turbulence.

4. Summary and Discussion
Recent extensions of GKV introducing the tokamak

MHD equilibrium interface and the multi-species colli-
sion operator enable us the MTM/ITG simulations of an
ASDEX Upgrade high performance discharge. We have
confirmed good agreements between GKV and GENE in
the constructed flux coordinates, the linear dispersion of
MTM/ITG, and the nonlinear turbulent transport fluxes.
These provide the basis for the investigations of compre-
hensive physics of electromagnetic turbulence in condi-
tions relevant to experiments.

The linear mode structure of toroidal MTM is exam-

ined in detail. We have demonstrated that the magnetic
drift creates a radially broaden O-shaped current structure
along a field line, and its width corresponds to the finite
orbit width of passing particles. The broadning is also ob-
served in the electrostatic potential, and modifies the paral-
lel electric field profile, possibly affecting the instability. It
may be related to the previous works where the neglect of
the magnetic drift and electrostatic potential significantly
stabilizes the toroidal MTM in MAST [21]. Effect of the
magnetic drift in the toroidal direction vdey may also be
important, but remains for future studies.
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