
Plasma and Fusion Research: Regular Articles Volume 10, 1403058 (2015)

Development of Linearized Collision Operator for
Multiple Ion Species in Gyrokinetic Flux-Tube Simulations
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Linearized model collision operators for multiple ion species are implemented in a local flux-tube gyrokinetic
code. The newly implemented collision operator satisfies the conservation properties of particles, momentum, and
energy, as well as the adjointness relations for collisions between different particle species, which are numerically
confirmed by the test simulations. The linear zonal flow response with finite collisionality, is also compared
between the new collision operator and the simplified model collision operator.
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1. Introduction
In the magnetically confined toroidal plasma, the bi-

nary collision of charged particles is one of the most funda-
mental processes, and causes the classical and neoclassical
transport. In the turbulent transport, the collisions are also
important as the dissipative process allowing the system
to reach a statistically steady state [1]. In present experi-
ments, the magnetically confined plasma should consist of
different ion species, such as deuterium, carbon, and so on.
Therefore, the collisions between different ion species are
necessary to be taken into account in the turbulent trans-
port simulations of fusion plasmas. It is preferable to em-
ploy an accurate collision operator in the kinetic simula-
tions, which is easy to treat analytically and numerically
satisfying physically properties such as several conserva-
tion laws. Although several model collision operators have
been proposed and numerically implemented [2–8], in this
work, we implement the linearized model collision opera-
tor for multiple ion species plasmas [9] in the gyrokinetic
Vlasov code, GKV [10, 11]. Since the developed operator
is designed for satisfying the conservation laws of particle,
momentum, and energy, and physical constraints such as
the Boltzmann’s H-theorem and the adjointness relations,
we confirm that the newly implemented collision operator
works well satisfying the conservation laws, and the phys-
ical constraints within an acceptable error levels. Using
the implemented collision operator, we performed a gy-
rokinetic simulation of the linear response of a zonal flow,
where the collisional zonal flow damping process is more
accurately reproduced.

The rest of this paper is organized as follows. Sec-
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tion 2 briefly introduces the linearized model collision op-
erator developed in Ref. [9]. In Sec. 3, the details of the
representations for the implemented collision operator into
the GKV code are introduced. Section 4 is devoted to dis-
cuss the numerical tests of the operator for the conservation
laws and the self-adjointness relation, and presents the gy-
rokinetic simulation results of zonal flow damping. Con-
clusions are presented in Sec. 5.

2. The Linearized Collision Operator
Collisional processes are necessary as the final dis-

sipation mechanisms of the energy and entropy fluctua-
tions in the turbulent transport induced by microinstabili-
ties. Therefore, in the kinetic simulations, it is desirable
to employ a collision operator with a set of constraints
for a physically reasonable properties, an accurate colli-
sion model which preserves conservations of particles, mo-
mentum, and energy should be included. In our previous
work [9], the linearized model collision operator for mul-
tiple ion species plasmas were constructed, which satis-
fies not only the conservation laws for particle, momen-
tum, and energy, but also the adjointness relations and the
Boltzmann’s H-theorem.

2.1 The gyrokinetic collision operator
A well-established collision operator between plasma

particle species a and b is given by the Landau collision op-
erator [12] Cab( fa, fb). where the operator is bilinear with
respect to the distribution functions, fa and fb. If the distri-
bution functions are given by fa = fa0+δ fa, where fa0 is the
equilibrium part and δ fa is the small perturbation part, one
may use the linearized collision operator CL

ab which is de-
fined by CL

ab(δ fa, δ fb) = CT
ab(δ fa)+CF

ab(δ fb). Here, the test-

c© 2015 The Japan Society of Plasma
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particle part and the field-particle part of the collision oper-
ator are defined by CT

ab(δ fa) ≡ Cab(δ fa, fb0) and CF
ab(δ fb) ≡

Cab( fa0, δ fb), respectively. The equilibrium part of the dis-
tribution function is assumed to be Maxwellian, fa0 =

FaM ≡ na(ma/2πTa)3/2 exp(−mav
2/2Ta), where na, ma, and

Ta are the density, the mass, and the temperature of species
a. The perturbed particle distribution function is repre-
sented by δ fa =

∑
k⊥ δ fak⊥ exp (iS k⊥) with the eikonal S k⊥

which describes the rapid perpendicular variation. The dis-
tribution function for the wavenumber k⊥ is divided into
the adiabatic and non-adiabatic parts,

δ fak⊥ = −
eaδφk⊥

Ta
FaM + hak⊥ exp

(−ik⊥ · ρa
)
, (1)

where hak⊥ is the non-adiabatic part of the distribution
function, which is independent of the gyro-phase ϕ, the
gyro-radius vector ρa ≡ b × u/Ωa with Ωa ≡ eaB/mac,
and δφk⊥ is the electrostatic potential. Here, b, c and ea are
the unit vector parallel to the magnetic field, the speed of
light, and the charge of ion species a, respectively. The
gyrokinetic form of the collision operator C(GK)

ab is defined
by taking the gyro-phase average of the linearized collision
operator as follows:

C(GK)
ab (hak⊥ , hbk⊥ ) ≡

∮
dϕ
2π

exp
(
ik⊥ · ρa

)
CL

ab(δ fak⊥ , δ fbk⊥ )

≡ CT(GK)
ab +CF(GK)

ab , (2)

where the test-particle and the field-particle parts of the
collision operator in gyrokinetic form are defined by

CT(GK)
ab ≡

∮
dϕ
2π

exp
(
ik⊥·ρa

)
CT

ab

(
exp(−ik⊥·ρa)hak⊥

)
, (3)

CF(GK)
ab ≡

∮
dϕ
2π

exp
(
ik⊥·ρa

)
CF

ab

(
exp(−ik⊥·ρb)hbk⊥

)
, (4)

respectively.
Now, we define CT0

ab as follows:

CT0
ab (g) ≡ νab

D L(g) +
1

2v2
∂

∂v

[
νab
‖ (v)v4FaM

∂

∂v

(
g

FaM

)]
, (5)

where L is the pitch-angle-scattering operator, L ≡
(1/2)(∂/∂u) · (v2I − uu) · (∂/∂u). The collision frequen-
cies for pitch-angle scattering and energy diffusion are
given by νab

D (v) ≡ (3
√
π/4)τ−1

ab [H(xb) − G(xb)]/x3
a and

νab
‖ (v) ≡ (3

√
π/2)τ−1

ab G(xb)/x3
a, respectively. Here, H(x) ≡

2π−1/2
∫ x

0
dt exp(−t2), G(x) ≡ [H(x) − xH′(x)]/(2x2),

H′(x) = 2π−1/2 exp(−x2), xa ≡ v/(2Ta/ma)1/2, and
(3
√
π/4)τ−1

ab ≡ 4πnbe2
ae2

b lnΛab/(m
1/2
a T 3/2

a ), where lnΛab is
the Coulomb logarithm. Using the operator CT0

ab , the test-
particle part of the gyrokinetic collision operator can be
written by

CT(GK)
ab =

∮
dϕ
2π

exp(ik⊥·ρa)CT0
ab

(
exp(−ik⊥·ρa)hak⊥

)

+(θab−1)
∮

dϕ
2π

exp(ik⊥·ρa)PaCT0
ab

(
exp(−ik⊥·ρa)hak⊥

)

+(θab−1)
∮

dϕ
2π

exp(ik⊥·ρa)CT0
abPa

(
exp(−ik⊥·ρa)hak⊥

)

+(θab−1)2
∮

dϕ
2π

exp(ik⊥·ρa)PaCT0
abPa

(
exp(−ik⊥·ρa)hak⊥

)
,

(6)

where θab ≡ [Ta(ma + mb)/(Tamb + Tbma)]1/2, and Pag ≡
FaM[(ma/Ta)ua(g) ·u+ (δTa(g)/Ta)(x2

a−3/2)] with ua(g) ≡
n−1

a

∫
d3v g u, and δTa(g)/Ta ≡ n−1

a

∫
d3v g (mav

2/3Ta − 1).
For each term in the right hand side of Eq. (6), we have
more concrete expressions using the Bessel functions Ja

0 =

J0(k⊥v⊥/Ωa) and Ja
1 = J1(k⊥v⊥/Ωa) as following

∮
dϕ
2π

exp(ik⊥ · ρa)CT0
ab

(
exp(−ik⊥ · ρa)hak⊥

)

= νab
D (v)Lhak⊥ +

1
2v2
∂

∂v

[
νab
‖ (v)v4FaM

∂

∂v

(
hak⊥

FaM

)]

−hak⊥
k2⊥

4Ω2
a

[
νab

D (v)
(
2v2‖ + v

2
⊥
)
+ νab
‖ (v)v2⊥

]
, (7)

(θab − 1)
∮

dϕ
2π

exp(ik⊥ · ρa)PaCT0
ab

(
exp(−ik⊥ · ρa)hak⊥

)

= (θab − 1)
FaM

na

[
Ja

0v‖
∫

d3v Ja
0

hak⊥

FaM
CT0

ab

(
FaMmav‖/Ta

)

+ Ja
1v⊥

∫
d3v Ja

1

hak⊥

FaM

v⊥
v‖

CT0
ab

(
FaMmav‖/Ta

)

+ Ja
0

(
x2

a −
3
2

) ∫
d3v Ja

0

hak⊥

FaM

2
3

CT0
ab

(
FaMx2

a

)]
, (8)

(θab − 1)
∮

dϕ
2π

exp(ik⊥ · ρa)CT0
abPa

(
exp(−ik⊥ · ρa)hak⊥

)

= (θab − 1)

[
Ja

0CT0
ab

(
FaMmav‖/Ta

)
n−1

a

∫
d3v Ja

0hak⊥v‖

+Ja
1
v⊥
v‖

CT0
ab

(
FaMmav‖/Ta

)
n−1

a

∫
d3v Ja

1hak⊥v⊥

+ Ja
0CT0

ab

(
FaMx2

a

)
n−1

a

∫
d3v Ja

0hak⊥
2
3

(
x2

a −
3
2

)]
, (9)

(θab − 1)2
∮

dϕ
2π

exp(ik⊥·ρa)PaCT0
abPa

(
exp(−ik⊥·ρa)hak⊥

)

= − (θab − 1)2 FaM

naτab

αab

(1 + α2
ab)1/2

×
[
ma

Ta

(
Ja

0v‖
∫

d3v Ja
0hak⊥v‖ + Ja

1v⊥
∫

d3v hak⊥v⊥
)

+
2Ja

0

1 + α2
ab

(
x2

a −
3
2

) ∫
d3v Ja

0hak⊥
2
3

(
x2

a −
3
2

)⎤⎥⎥⎥⎥⎦ , (10)

where αab ≡
√

Tamb/Tbma = xb/xa.
On the other hand, the field-particle collision term is

given by

CF(GK)
ab = − Tb

γab
CT

ab

(
FaMmav‖/Ta

)

×
[
Ja

0

∫
d3v Jb

0

hbk⊥

FbM
CT

ba

(
FbMmbv‖/Tb

)

+Ja
1
v⊥
v‖

∫
d3v Jb

1

hbk⊥

FbM

v⊥
v‖

CT
ba

(
FbMmbv‖/Tb

)]

− Tb

ηab
Ja

0CT
ab

(
FaMx2

a

) ∫
d3v Jb

0

hbk⊥

FbM
CT

ba

(
FbMx2

b

)
, (11)
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where ηab and γab are defined by

ηab ≡ −naTa

τab

3αab

(1 + α2
ab)5/2

(
Ta

Tb
+ α2

ab

)
, (12)

γab ≡ −nama

τab

αab

(1 + α2
ab)3/2

(
Ta

Tb
+ α2

ab

)
. (13)

2.2 Properties
In this subsection, we explicitly remark the several

properties that the linearized Landau collision operator
should satisfy for collisions between species a and b. The
conservation of particles should be satisfied for the test-
and field-particle parts, which are represented by∫

d3v CT
ab(δ fa) =

∫
d3v CF

ab(δ fb) = 0, (14)

while the momentum conservation,∫
d3v mauC

T
ab(δ fa)+

∫
d3v mbuC

F
ba(δ fa) = 0, (15)

and the energy conservation,∫
d3v

1
2
v2maCT

ab(δ fa) +
∫

d3v
1
2
v2mbCF

ba(δ fa) = 0, (16)

should be satisfied when each conservation is simultane-
ously included. The adjointness relations for the test-
particle part is represented by∫

d3v
δ fa
FaM

CT
ab(δga) =

∫
d3v
δga

FaM
CT

ab(δ fa), (17)

and for the field-particle operator,

Ta

∫
d3v
δ fa
FaM

CF
ab(δ fb)=Tb

∫
d3v
δ fb
FbM

CF
ba(δ fa). (18)

The H-theorem can be written by

Ta

∫
d3v
δ fa
FaM

[
CT

ab(δ fa) +CF
ab(δ fb)

]

+Tb

∫
d3v
δ fb
FbM

[
CT

ba(δ fb) +CF
ba(δ fa)

]
≤ 0. (19)

Equation (19) expresses the dissipative nature of collisions
which cause the distribution function to asymptotically ap-
proach the local equilibrium state. The adjointness rela-
tions and the H-theorem described by Eqs. (17)-(19) are
rigorously satisfied by the linearized Landau collision op-
erator only for the case of Ta = Tb [9]. If Ta � Tb and
ma 	 mb, Eqs. (17) and (18) are valid up to the lowest or-
der of (ma/mb)1/2. In the case of ma 
 mb, on the other
hand, the test-particle part CT

ab contains the term propor-
tional to (1 − Tb/Ta) that causes an error to the relation
(17) and the H-theorem (19). The relative magnitude of
the error in the sum of CT

aa(δ fa) + CT
ab(δ fa) are of the or-

der of (nb/na)(eb/ea)2(mb/ma)1/2(1 − Tb/Ta). Therefore,
when (mb/ma)1/2(1−Tb/Ta) is small enough, the term con-
tained in CT

ab(δ fa), which breaks the relations in Eqs. (17)
and (18), can be neglected without influencing the solution
δ fa.

3. The Collision Operator in GKV
3.1 GKV code

In our previous paper [13], we performed gyrokinetic
Vlasov simulations for ion temperature gradient (ITG) tur-
bulent transport in the Large Helical Device [14] (LHD)
plasma with the high ion temperature [15] by using the
gyrokinetic local flux-tube turbulence code [11] based on
GKV code [10]. In the GKV, which is extended recently
to multiple species plasma turbulence simulations, the
wavenumber-space representation of electrostatic gyroki-
netic equation for the perturbed gyrocenter distribution
function δ fak⊥ ,

(
∂

∂t
+ v||b · ∇ − μma

b · ∇B
∂

∂v‖
+ iωaD

)
δ fak⊥

− c
B

∑
Δ

b · (k′⊥ × k′′⊥)J0(k′⊥v⊥/Ωa)δφk′⊥δ fak′′⊥

=
ea

Ta
FaM

(−v||b·∇−iωaD+iωa∗
)

J0(k⊥v⊥/Ωa)δφk⊥+C(GK)
a ,

(20)

is solved. Here, ωaD = k⊥ · uaD and ωa∗ = k⊥ ·
ua∗ are the magnetic and diamagnetic drift frequencies
with uaD = (c/eaB)b × (μ∇B + mav

2
‖ b · ∇b) and ua∗ =

(cTa/eaB)b × [∇ ln na + (mav
2/2Ta − 3/2)∇ ln Ta], respec-

tively. In Eq. (20), the symbol
∑
Δ means double summa-

tions respect to k′⊥ and k′′⊥, which satisfy k⊥ = k′⊥ + k′′⊥.
Although GKV code has been extended to be applicable to
the electro-magnetic turbulence simulation [16], for sim-
plicity in this paper, we consider the low-β electrostatic
limit with assuming the adiabatic electron response. Thus,
the electrostatic potential δφk⊥ is determined by Poisson’s
equation,

∑
a�e

∫
d3v ZaJa

0δ fak⊥ −
∑
a�e

Z2
ae

Ta
na(1 − Γa

0)δφk⊥

=
n0e
Te
δφk⊥(k⊥λD)2 +

nee
Te

(
δφk⊥ − 〈δφk⊥〉ZF

)
, (21)

where Za represents the charge number of the species a,
〈δφk⊥〉ZF is the zonal flow component of the flux surface
average of δφk⊥ , and λD is the Debye length. Also, Γa

0 =

exp(−ba)I0(ba) with ba = (k2⊥Ta/(maΩa)) where I0 denotes
the zeroth-order modified Bessel function.

3.2 Implementation
In this subsection, the concrete representations of the

collision operator implemented in GKV code are shown.
The term for collisions in Eq. (20) consists of the field-
particle part and the test-particle part as follows:

C(GK)
a =

∑
b

C(GK)
ab =

∑
b

(
CT(GK)

ab +CF(GK)
ab

)
. (22)

Using the representations

CT
ab

(
FaMv‖

)
= −θab

FaM

τab
(1 + α2

ab)v‖
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×
⎛⎜⎜⎜⎜⎝3
√
π

2
G(αabxa)

xa
+ (θab − 1)

αab

(1 + α2
ab)3/2

⎞⎟⎟⎟⎟⎠ , (23)

CT
ab

(
FaMx2

a

)
= −θab

FaM

τab

⎡⎢⎢⎢⎢⎣(θab − 1)
2αab

(1 + α2
ab)3/2

(
x2

a −
3
2

)

+
3
√
π

2xaα
2
ab

(
H(αabxa) − αabxaH′(αabxa)(1 + α2

ab)
)]
, (24)

the field-particle part of the operator in Eqs. (11) or (22)
can be expressed as

CF(GK)
ab = −FaM

θabθba

τabτba

[
mamb

γabTa

(
3
√
π

2
(1 + α2

ab)
G(αabxa)

xa

+(θab − 1)
αab

(1 + α2
ab)1/2

⎞⎟⎟⎟⎟⎠

×
⎧⎪⎪⎨⎪⎪⎩Ja

0v‖

⎛⎜⎜⎜⎜⎝3
√
π

2
(1 + α2

ba)N (1)
ba + (θba − 1)

αba

(1 + α2
ba)1/2

N (4)
b

⎞⎟⎟⎟⎟⎠

+Ja
1v⊥

⎛⎜⎜⎜⎜⎝3
√
π

2
(1 + α2

ba)N (6)
ba + (θba − 1)

αba

(1 + α2
ba)1/2

N (7)
b

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

+Ja
0

Tb

ηab

{
3
√
π

2
α−2

ab

[
H(αabxa)

xa
− αab(1 + α2

ab)H′(αabxa)

]

+
αab

(1 + α2
ab)3/2

(θab − 1)

(
x2

a −
3
2

)⎫⎪⎪⎬⎪⎪⎭
×
{

3
√
π

2
α−2

ba

[
N (2)

ba − αba(1 + α2
ba)N (3)

ba

]

+
2αba

(1 + α2
ba)3/2

(θba − 1)N (5)
b

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦ . (25)

Similarly, using the representations

CT0
ab

(
FaMv‖

)
= −3

√
π

2xa

FaM

τab
(1 + α2

ab)v‖G(αabxa), (26)

CT0
ab

(
FaMx2

a

)

=− 3
√
π

2xaα
2
ab

FaM

τab

(
H(αabxa)−αabxaH′(αabxa)(1+α2

ab)
)
, (27)

the test-particle part of the collision operator in Eqs. (6) or
(22) can be represented as

CT(GK)
ab = CV(GK)

ab +CD(GK)
ab , (28)

where CD(GK)
ab is the different temperature part,

CD(GK)
ab = −(θab − 1)

3
√
π

2
FaM

na
τ−1

ab

×
[
ma

Ta
(1 + α2

ab)(Ja
0v‖N (1)

ab + Ja
1v⊥N (6)

ab )

+
2
3

Ja
0(x2

a −
3
2

)α−2
ab

(
N (2)

ab − αab(1 + α2
ab)N (3)

ab

)]

−(θab−1)
3
√
π

2
FaM

na
τ−1

ab x−1
a

[
Ja

0v‖
ma

Ta
(1 + α2

ab)G(αabxa)N (4)
a

+Ja
1v⊥

ma

Ta
(1 + α2

ab)G(αabxa)N (7)
a

+
2
3

Ja
0α
−2
ab

[
H(αabxa) − αabxa(1 + α2

ab)H′(αabxa)
]
N (5)

a

]

−(θab−1)2 FaM

na
τ−1

ab
αab

(1+α2
ab)1/2

[
Ja

0v‖
ma

Ta
N (4)

a +Ja
1v⊥

ma

Ta
N (7)

a

+
2

1 + α2
ab

Ja
0

(
x2

a −
3
2

)
N (5)

a

⎤⎥⎥⎥⎥⎦ , (29)

and CV(GK)
ab is given by

CV(GK)
ab =

(
2νab

0 (v)x2
a −

k2⊥
4Ω2

a
νab

D (v)(2v2‖ + v
2
⊥) + νab

‖ (v)v2⊥

)
ha

k⊥

+νab
‖ (v)x2

a(1 − α2
ab)v‖

∂

∂v‖
ha

k⊥

+

⎛⎜⎜⎜⎜⎜⎝νab
‖ (v)x2

a(1−α2
ab)+

1
2
νab

D (v)

⎛⎜⎜⎜⎜⎜⎝ v
2
‖
v2⊥
+1

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ v⊥ ∂∂v⊥ ha

k⊥

+
(
νab
‖ (v) − νab

D (v)
)
v‖v⊥

∂2

∂v‖∂v⊥
ha

k⊥

+
1
2

(
νab
‖ (v)v2⊥ + ν

ab
D v

2
‖
) ∂2

∂v2⊥
ha

k⊥

+
1
2

(
νab
‖ (v)v2‖ + ν

ab
D (v)v2⊥

) ∂2

∂v2‖
ha

k⊥ . (30)

Here, we define νab
0 (v) ≡ (3

√
π/4)αabτ

−1
ab x−2

a H′(xb). In the
developed code, we employ fourth-order finite difference
schemes in the velocity space derivatives, and the velocity
moments of the variables employed in the above expres-
sions are given by

N (1)
ab ≡

∫
d3vJa

0ha
k⊥v‖

G(αabxa)
xa

, (31)

N (2)
ab ≡

∫
d3vJa

0ha
k⊥

H(αabxa)
xa

, (32)

N (3)
ab ≡

∫
d3vJa

0ha
k⊥H′(αabxa), (33)

N (4)
a ≡

∫
d3vJa

0ha
k⊥v‖, (34)

N (5)
a ≡

∫
d3vJa

0ha
k⊥

(
x2

a −
3
2

)
, (35)

N (6)
ab ≡

∫
d3vJa

1ha
k⊥v⊥

G(αabxa)
xa

, (36)

N (7)
a ≡

∫
d3vJa

1ha
k⊥v⊥. (37)

4. Numerical Tests
To validate the developed collision operator, we per-

form the calculations for the Maxwellian relaxation pro-
cess, the thermal equilibration, and the collisional damping
of the zonal flow potentials, and also evaluate numerical
errors found in the conservation properties and the self-
adjointness relations discussed in Sec. 2. For simplicity,
we consider the drift kinetic limit of the model collision
operator (k⊥ρi 	 1) except for the zonal flow damping test
in Sec. 4.3, as the polarization effect is influential in the
zonal-flow damping.

4.1 Maxwellian relaxation
The relaxation processes with the test-particle colli-
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sion operator can be described by

∂

∂t
δ fa = CT

ab(δ fa). (38)

If the test-particle operator forms the Lenard-Berstein type
[17], which is employed in previous GKV simulations,

CT
ab(δ fa) = C(LB)(δ fa)

= νa

[
1
v⊥
∂

∂v⊥

(
v⊥
∂

∂v⊥
δ fa +

v2⊥
v2ta
δ fa

)

+
∂

∂v‖

(
∂

∂v‖
δ fa +

v‖
v2ta
δ fa

)]
, (39)

since the collision frequency in the operator is independent
of velocity, the distribution function uniformly evolves to
the Maxwellian form in the velocity space from its initial
distribution. Here, νa denotes the collision frequency, and
vta = (Ta/ma)1/2 is the thermal velocity of the ion. Now
we consider the initial distribution function as a bell-shape
function,

δ fa(t = 0) = exp

⎡⎢⎢⎢⎢⎢⎣−
(
v

3vta

)4⎤⎥⎥⎥⎥⎥⎦ . (40)

Time evolution of the distribution function by the ion-
ion collisional relaxation process due to Eq. (38) with the
Lenard-Berstein form in Eq. (39) is shown in Fig. 1-(a)
for the case of νa = 0.0076 (vti/R0), where the distri-
bution goes to the Maxwellian uniformly in the veloc-
ity space. Here, R0 is the major radius. Figure 1-(b)
shows the time evolution of the distribution function by
the test-particle operator for ion-ion collisions given by
Eq. (28) in the drift-kinetic limit with equal temperatures
and νii = τ−1

ii = 0.038 (vti/R0). The frequency of the opera-
tor has the velocity-dependence, so that it becomes higher
for smaller velocity but lower for larger velocity. There-
fore, in the figure, we can see that the distribution function
relaxes to the Maxwellian faster in the small |v‖| region than
in the large |v‖| region.

4.2 Thermal equilibration
In this section, we conduct a test of thermal equilibra-

tion processes with the model collision operator in a three-
ion species plasma. Here, we consider the multi-species
plasma consists of deuterium (D), helium (He) and car-
bon (C). If each ion species has the perturbed Maxwellian
distributions with different background temperature and its
fluctuations, we have

δ fa=FaM

(
δna

na
+

ma

Ta
ua ·u+ δTa

Ta

(
mav

2

2Ta
− 3

2

))
, (41)

where ua is the mean flow. Thermal equilibration among
the ion species proceeds as described by the following
equation:

∂

∂t
δ fa =

∑
b

(
CT(DK)

ab (δ fa) +CF(DK)
ab (δ fb)

)
, (42)

Fig. 1 Time evolutions of the distribution function under the col-
lisional relaxation processes, obtained by different test-
particle collision operators; (a) the Lenard-Berstein op-
erator with νa/(vti/R0) = 0.0076 and (b) the model col-
lision operator Eq. (28) with νii/(vti/R0) = 0.038 for the
same species ion-ion collision. The plots are obtained in
v⊥ = 0.

where the temperature fluctuations and the mean flow relax
to δTa/Ta = δTb/Tb and ua = ub, respectively. Figure 2
plots the time evolutions of the temperature fluctuations
δTa/Ta during the equilibration process, where the initial
distributions are given by Eq. (41) with ua = 0, THe/TD =

1.2, and TC/TD = 0.8. The initial charge densities are
given by ZDnD : ZHenHe : ZCnC = 0.20 : 0.75 : 0.05.
We observe that δTa/Ta converges under the thermal relax-
ation imposed by the implemented collision operator. For
this calculation, (Nv‖ ,Nv⊥) = (96, 48) grid points in (v‖, v⊥)-
space with vmax = 6vta, which are used in typical GKV
simulations, are employed. The thermal equilibration pro-
cess proceeds with the heat exchange between multiple
species with different temperatures, the distribution func-
tions converge to the same form after a sufficiently long
time. According to the H-theorem, Eq. (19), the entropy
are monotonically produced due to the collisional heat ex-
change. The distribution functions at t/(R0/vtp) = 0 and
t/(R0/vtp) = 2000 are plotted in Fig. 3, where it is clearly
seen that each distribution function goes to the same form.
Here, vtp is the thermal velocity of proton.
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Fig. 2 Time evolutions of the temperature fluctuations δTa/Ta

of Helium (a = He; red curve), Deuterium (a = D; blue),
and Carbon (a = C; green).

Fig. 3 Distribution functions δ fa on v⊥ = 0 at t/(R0/vtp) = 0
(solid curves) and t/(R0/vtp) = 2000 (dashed curves). The
red curves represent the results for a = He, the blue is
a = D, and the green is a = C.

4.3 Zonal flow evolution
As an application of the developed collision operator

to the gyrokinetic calculations, we evaluate the collisional
linear response of the zonal flow potential. The zonal
flows are given by an electrostatic potential perturbation
that varies in the radial direction but remains constant on
the flux surface. Hence, the zonal flow component 〈δφk⊥〉ZF

in Eq. (21) is evaluated at ky = 0, where ky denotes the per-
pendicular wavenumber along the poloidal direction. In
the tests, we calculate time evolutions of the zonal flow po-
tential in the linear response to the Maxwellian initial per-
turbation solving the linear gyrokinetic equation based on
Eq. (20) with the gyrokinetic collision operator for single-
ion species. Here, we assume the electron density pertur-
bation to be given by δne = (n0e/Te)(δφk⊥ − 〈δφk⊥〉ZF), and
we employ the Cyclone base case configuration [18] with
the parameters of εt = r/R0 = 0.18 and q = 1.42. Figure 4

Fig. 4 Collisional linear responses of the zonal flow potentials
of the single ion species plasma with the developed gy-
rokinetic collision operator (red curve) and the Lenard-
Bernstein operator (blue curve) with νi = (3

√
π/4)τ−1

ii .
The black curve shows the response in collisionless case.
The horizontal dashed lines are the long-time analytic
limits in the collisionless case (black) Eq. (43) and the
collisional case (red) Eq. (44). The plots are obtained in
kxρtp = 0.1.

plots the linear responses of the zonal flow potential with
the radial wavenumber of kxρtp = 0.1. The results are com-
pared between the developed gyrokinetic collision operator
and the Lenard-Bernstein model with νa = (3

√
π/4)τ−1

aa .
For the calculations, we used (Nv‖ ,Nv⊥ ) = (256, 64) grid
points in the velocity space with vmax = 5vta. As seen in
the plots, the response functions of the zonal flow poten-
tial with the two operators oscillate similarly in the ini-
tial phase (t/(R0/vtp) < 20), but deviate after a long time
(t/(R0/vtp) > 20). Here, we note that the long-time limit of
the response function has been analytically obtained as

δφk⊥(t)
δφk⊥(0)

→ 1

1 + 1.6q2/ε1/2
t

, (43)

in the collisionless case [19]. On the other hand, in the
collisional case, the potential approaches the value,

δφk⊥(t)
δφk⊥(0)

→ ε
2
t

q2
, (44)

where the toroidal momentum conservation leads to that
steady state value [20]. In Fig. 4, we can see that the
residual potential in the developed collision operator case
approaches the finite value close to the analytic predic-
tion Eq. (44), while the Lenard-Bernstein model leads
to the over-damping. The developed collision operator
also yields the different collisionality from the Lenard-
Bernstein model by virtue of Eq. (22). Therefore, it is con-
sidered that the differences found in Fig. 4 are caused by
the fact that the velocity-dependent collisionality and field-
particle part are included in the developed operator with
more accurate momentum conservation.
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In addition, we consider the multi-species plasma con-
sists of deuterium (D), helium (He) and carbon (C), with
the initial conditions as same as Sec. 4.2. Figure 5 shows
the zonal flow response functions calculated with the de-
veloped collision operator for the single- and multi-species
cases. The zonal flow damping in the multi-species case
is also tested by using the developed collision operator in
the drift kinetic limit. In the plots, one finds the geodesic
acoustic mode (GAM) frequency is lowered by increase of
the effective Z number in the multi-species ion case. For
the longer-time response of zonal flows, a certain differ-
ence between the gyrokinetic and drift kinetic cases ap-
pears although the difference is small since we adopted a
small perpendicular wavenumber, i.e., k⊥ρtp = 0.1, in the
calculation. The above results suggest that components
of the multi-species plasmas may influence the turbulent
transport phenomena by changing the collisionality and the
zonal flow response function.

4.4 Error estimation
In order to estimate numerical errors in calculations

with the developed collision operator, we should consider
the acceptable level of the errors in the local gyrokinetic
simulations. Typical GKV simulations require a calcula-
tion duration time of tsim ∼ 102 (R0/vti) to reach the tur-
bulent transport saturation. Therefore, if we request an
acceptable error Δlim of less than 1% over the whole du-
ration, the cumulative error in the calculation with the col-
lision term tsim|Δlim| should not exceed 10−2, i.e, we spec-
ify |Δlim| < 10−4 as the upper-limit error. In the follow-

Fig. 5 Collisional linear responses of the zonal flow potentials
of the three ion species plasmas with the developed gy-
rokinetic collision operator (blue curve). The red curve
shows the result in the case of the single ion species
shown in Fig. 4, and the green curve shows the result in
the case of the three ion species plasmas with the devel-
oped operator in the drift kinetic limit. The plots are ob-
tained in kxρtp = 0.1.

ing tests, the grid points and box size of the velocity space
were those specified in Sec. 4.2.

4.4.1 adjointness relations

In order to estimate the errors of the developed colli-
sion operator for the adjointness relations in Eqs. (17) and
(18), we define the relative errors as follows:

Δ
(adj)T
ab ≡ τab

(∫
d3v

ha

FaM
CT

ab(gb) −
∫

d3v
gb

FaM
CT

ab(ha)

)

/ ⎛⎜⎜⎜⎜⎝
∫

d3v
h2

a

FaM

∫
d3v
g2

b

FaM

⎞⎟⎟⎟⎟⎠
1/2

, (45)

for the test particle part, and

Δ
(adj)F
ab ≡τab

(
Ta

∫
d3v

ha

FaM
CF

ab(gb)−Tb

∫
d3v
gb

FbM
CF

ba(ha)

)

/ ⎛⎜⎜⎜⎜⎝
∫

d3v
h2

a

FaM

∫
d3v
g2

b

FbM

⎞⎟⎟⎟⎟⎠
1/2

, (46)

for the field particle part. As the test distribution functions,
we employ the perturbed Maxwellian forms as follows:

ha=FaM

(
δna

na
+

ma

Ta
ua v‖ +

δTa

Ta

(
mav

2

2Ta
− 3

2

))
, (47)

gb=FbM

(
δnb

nb
+

mb

Tb
ub v‖ +

δTb

Tb

(
mbv

2

2Tb
− 3

2

))
, (48)

with the normalizations of the zero-th order moments,∫
d3v h = 1, and

∫
d3v g = 1. (49)

The error about the H-theorem is written as the negative
definition,

ΔH
ab = Ta

∫
d3v

ha

FaM

(
CT(GK)

ab (ha) +CF(GK)
ab (gb)

)

+ Tb

∫
d3v

hb

FbM

(
CT(GK)

ba (gb) +CF(GK)
ba (ha)

)
≤ 0 . (50)

The calculated errors are summarized in Table 1. All the

Table 1 Relative errors of the collision operator for the self-
adjointness in multi-species plasmas with helium (He),
deuterium (D), and carbon (C).

a b Δ
(adj)T
ab Δ

(adj)F
ab ΔH

ab

He He −3.10 × 10−8 −1.15 × 10−17 −5.47 × 10−6

He D −6.24 × 10−7 3.28 × 10−16 −1.10 × 10−5

He C 1.82 × 10−6 5.52 × 10−17 −7.56 × 10−6

D He 9.05 × 10−7 −5.50 × 10−16 −1.84 × 10−5

D D −3.10 × 10−8 1.58 × 10−15 −3.12 × 10−5

D C 2.09 × 10−6 9.86 × 10−17 −2.50 × 10−5

C He −1.63 × 10−7 5.90 × 10−18 −3.02 × 10−6

C D 2.81 × 10−7 4.12 × 10−18 −1.03 × 10−5

C C −3.10 × 10−8 −1.25 × 10−17 −1.83 × 10−6
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Table 2 Relative errors of the collision operator for the conservations of particle, momentum, and energy in multi-species plasmas with
deuterium, helium and carbon.

a b Δ
(0)T
ab Δ

(0)F
ab Δ

(1)
ab Δ

(2)
ab

He He −4.13 × 10−5 1.63 × 10−6 7.27 × 10−6 −1.57 × 10−5

He D −2.99 × 10−5 4.93 × 10−7 4.71 × 10−6 −2.34 × 10−5

He C −6.53 × 10−5 1.44 × 10−5 8.62 × 10−6 −9.28 × 10−6

D He −5.75 × 10−5 3.24 × 10−6 3.17 × 10−5 −4.64 × 10−5

D D −4.13 × 10−5 1.63 × 10−6 2.73 × 10−5 −5.88 × 10−5

D C −6.28 × 10−5 3.23 × 10−5 3.45 × 10−5 −3.92 × 10−5

C He −3.66 × 10−5 2.21 × 10−8 8.18 × 10−9 −1.43 × 10−5

C D −4.47 × 10−5 −6.85 × 10−7 −3.30 × 10−7 −1.86 × 10−5

C C −4.13 × 10−5 1.63 × 10−6 1.82 × 10−6 −3.92 × 10−6

errors are within the acceptable level of the local gyroki-
netic simulations. Regarding the H-theorem, it is seen that
the all values of ΔH are negative.

4.4.2 conservation properties

Based on the conservation laws for particle [Eq. (14)],
momentum [Eq. (15)], and energy [Eq. (16)], we also
check the errors defined as

Δ
(0)T
ab = τab

∫
d3v CT(DK)

ab (ha)

/ ∫
d3v ha,

Δ
(0)F
ab = τab

∫
d3v CF(DK)

ab (ha)

/ ∫
d3v ha, (51)

for the particle conservation,

Δ
(1)
ab = τab

(∫
d3v mav‖CT(DK)

ab (ha)

+

∫
d3v mbv‖CF(DK)

ba (ha)

) / ∫
d3v mav‖ha, (52)

for the momentum conservation, and

Δ
(2)
ab = τab

(∫
d3v mav

2CT(DK)
ab (ha)

+

∫
d3v mbv

2CF(DK)
ba (ha)

) / ∫
d3v mav

2ha, (53)

for the energy conservation between the species a and b
with the test distribution function

ha=FaM

(
δna

na
+

ma

Ta
ua v‖ +

δTa

Ta

(
mav

2

2Ta
− 3

2

))
, (54)

where the zero-th order moment of the perturbed distribu-
tion function is normalized as∫

d3v ha = 1. (55)

Table 2 summarizes the errors in the conservation proper-
ties. Again, all the errors are within the acceptable levels
of the local gyrokinetic simulations.

5. Summary
In this paper, we reported implementation of a numer-

ical collision operator developed for multiple ion species
plasma to the local gyrokinetic flux-tube code, GKV. The
developed operator satisfies the conservation laws of parti-
cles, momentum, and energy, as well as the adjointness re-
lations even for collisions among different particle species.
The developed operator works well in numerical tests of
the relaxation process, the thermal equilibration, and the
collisional zonal flow damping. It is also confirmed that
the new operator satisfies the several conservation proper-
ties within the acceptable error levels in local gyrokinetic
turbulence simulations. The newly implemented collision
operator to the GKV code is sufficient for practical use in
the turbulent transport analysis of fusion plasmas, while
the numerical errors may be enhanced in the case of high
collisionality with heavy impurity ions, or in a longer time
simulations in case near the marginal stability influence.
We have confirmed that the numerical errors of the new op-
erator for the multi-species ions are within the acceptable
levels at least for the grid points and the box size of the ve-
locity space which are employed in the present GKV sim-
ulations. In the case of the multi-species plasmas includ-
ing electrons, the convergences of the numerical schemes
may be modified because the collision operator requires
higher resolution in the velocity space than the only ion
case. More detailed analysis for strong collisional case and
the convergences of the numerical schemes will be pursued
in future works.
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