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ABSTRACT

A radially adaptive numerical scheme is developed to solve the Grad–Shafranov equation for axisymmetric magnetohydrodynamic
equilibrium. A decomposition with independent solutions is employed in the radial direction, and Fourier decomposition is used in the
poloidal direction. The independent solutions are then obtained using an adaptive shooting scheme together with the multi-region matching
technique in the radial direction. Accordingly, the adaptive toroidal equilibrium (ATEQ) code is constructed for axisymmetric equilibrium
studies. The adaptive numerical scheme in the radial direction improves considerably the accuracy of the equilibrium solution. The decom-
position with independent solutions effectively reduces the matrix size in solving the magnetohydrodynamic equilibrium problem. The
reduction of the matrix size is about an order of magnitude as compared with the conventional radially grid-based numerical schemes. Also,
in this ATEQ numerical scheme, no matter how accuracy in the radial direction is imposed, the size of matrices basically does not change.
The small matrix size scheme gives ATEQ more flexibility to address the requirement of the number of Fourier components in the poloidal
direction in tough equilibrium problems. These two unique features, the adaptive shooting and small matrix size, make ATEQ useful to
improve tokamak equilibrium solutions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091015

I. INTRODUCTION

Solving the magnetohydrodynamic (MHD) equilibrium problem
is fundamental in plasma physics and plays an essential role, in particu-
lar, in the magnetic confinement approach to fusion. In axisymmetric
geometries, the equilibrium problem is reduced to solving the
Grad–Shafranov equation.1,2 Since this equation is nonlinear, a numeri-
cal solution is necessary in general. In advanced tokamaks,3 two circum-
stances conspire to make the solution of the Grad–Shafranov equation
particularly challenging. First, advanced tokamaks rely on broad current
distributions to increase b, the ratio of kinetic to magnetic pressure.
This leads to a current profile peak near the edge and to the sensitivity
of the stability limit to details in the geometry of the plasma edge.
Second, they rely on the H-mode for confinement. The pressure gra-
dients in H-mode drive localized, peaked bootstrap currents near the
edge that add to the difficulty in two ways, first by increasing the stiff-
ness of the Grad–Shafranov problem and second by increasing the accu-
racy needed to calculate the stability of edge localized modes (ELM)4 as
well as resistive wall modes (RWM).5

Great efforts have been made previously to develop numerical
solvers for the Grad–Shafranov equation. The applications for these
numerical solvers are diverse, ranging from the interpretation of
experimental observations6,7 to the design of operation scenarios,8

real-time control of experiments,7,9,10 the analysis of the stability and
transport properties of various configurations,11 and the optimization
of machine designs.3,12 The diversity of the applications leads to dif-
ferent requirements regarding properties of the algorithm such as
speed, accuracy, stability, and flexibility. These different requirements
are partly responsible for the multiplicity of solution strategies. The
1991 review article by Takeda and Tokuda13 describes early codes
including J-Solver,14 VMEC,15 TOQ,16 and others.17–19 Subsequent
efforts led to the development of the codes CHEASE,20 CORSICA,21

and EFIT.6 References 22–33 describe further works. As reviewed in
Ref. 13, the methods for solving the Grad–Shafranov equation are
categorized into two types: the Eulerian or “direct” and the
Lagrangian or “inverse” numerical schemes. The finite difference,
finite element, and Fourier decomposition methods are employed to
discretize the equation. In all cases, iteration is used to handle the
nonlinearity.

Despite the great successes achieved with the existing codes in
various scenarios, challenges remain for solving the equilibrium prob-
lem, especially for the cases with high beta, strong shaping, and
diverter geometries that give rise to separatrices. The need for adaptive
solvers was realized a long time ago. It has, for example, led to the
development of the VMEC code for 3D equilibria.15 Later, the edge
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equilibrium code (EEC) was developed in order to address the numeri-
cal challenges pertaining to the tokamak edge equilibrium problem.34

In this work, we introduce a new adaptive numerical scheme to
solve the Grad–Shafranov equation and describe its implementation in
the ATEQ (adaptive toroidal equilibrium) code for tokamaks. The
code uses a decomposition with independent solutions in the radial
direction and Fourier decomposition in the poloidal direction. It then
obtains the independent solutions with adaptive shooting together
with the multi-region matching technique in the radial direction. The
adaptive numerical scheme in the radial direction improves consider-
ably the accuracy of the equilibrium solution. The decomposition with
independent solutions effectively reduces the matrix size in solving the
magnetohydrodynamic equilibrium problem. The adaptive numerical
scheme has been successfully used in the linear MHD and kinetic sta-
bility codes, AEGIS35 and AEGIS-K.36

In addition to its adaptive nature, the reduction of the matrix size
by ATEQ is about an order of magnitude, as compared to the conven-
tional radially grid-based numerical schemes. Also, in this ATEQ
numerical scheme, no matter how accuracy in the radial direction is
imposed, the size of the matrices basically does not change. Note that
all numerical schemes for solving the Grad–Shafranov equation ulti-
mately reduce to solving matrix equations. The size of matrices then
matters. To achieve high accuracy, especially for tough problems
related to the axis, X-point, or pedestal, etc., one has to increase the
grid density in the radial and poloidal directions in the grid-based
codes, or the radial grid density and the number of poloidal Fourier
components in the Fourier-decomposition based codes. The dramatic
reduction of matrix size by ATEQ is important for this research. The
Fourier-decomposition based codes remain to be important tools in
this field, for example, CORSICA is used for ITER and VMEC is still
popular. The small matrix size scheme gives ATEQ more flexibility to
address the requirement of the number of Fourier components in the
poloidal direction for tough equilibrium problems.

The remainder of this paper is organized as follows: Sec. II intro-
duces the MHD equilibrium equations. Section III describes the for-
mulation of numerical equations. Section IV gives the numerical
procedure and results. Section V presents the benchmark studies and
comparison with the existing equilibrium codes. Finally, Sec. VI
presents the conclusions and discussion.

II. MHD EQUILIBRIUM EQUATIONS

In this section, we describe the MHD equilibrium equations and
the goal of this work. Force balance, Amp�ere’s law, and the absence of
magnetic charge form the following basic set of equations describing
the MHD equilibrium for a static plasma (V ¼ 0):38

J� B ¼ rp; (1)

r� B ¼ l0J; (2)

r � B ¼ 0; (3)

where B is the magnetic field, J represents the current density, p
denotes the pressure, l0 is the magnetic constant, and boldface denotes
the vectors.

The paper addresses axisymmetric toroidal equilibria. For such
equilibria, it is convenient to use a cylindrical coordinate system
ðX;Z;/Þ, where / is the toroidal angle, Z denotes vertical coordinate,
and X is radial coordinate from the toroidal axisymmetric axis on the

/ ¼ 0 plane. In this coordinate system, the magnetic field in the axi-
symmetric case can be represented as38

B ¼ r/�rvþ gr/; (4)

where v is the poloidal magnetic flux. Both pressure pðvÞ and gðvÞ are
flux functions.

Using the representation in Eq. (4) and equilibrium equations
(1)–(3), one can derive the following Grad–Shafranov equation:1,2

X2r � rv
X2
¼ �l0X

2p0 � gg 0; (5)

where prime denotes the derivative with respect to the poloidal flux v.
The MHD equilibrium is fully determined by v.

The two free functions pðvÞ and gðvÞ need to be specified to
determine v from Eq. (5). In practice, one usually specify p and g as
the functions of normalized flux v̂ ¼ v=va, where va is the poloidal
flux at the edge or on the last closed flux surface and the poloidal flux
is assumed to be zero at the magnetic axis.

The goal of the present paper is to lay out a new numerical
scheme to solve Eq. (5) and describe the ATEQ code that imple-
ments this scheme. The paper restricts attention to the fixed bound-
ary problem, i.e., solving Eq. (5) with the plasma boundary specified.
We defer consideration of the free boundary problem to future
work.

III. FORMULATION OF NUMERICAL EQUATIONS

In this section, we describe the numerical scheme to solve the
Grad–Shafranov equation (5) with the fixed boundary condition. We
begin by describing the decomposition of the Grad–Shafranov equa-
tion before giving the computation of the metric parameters. We then
describe the iteration scheme and boundary conditions. We conclude
this section with the description of the numerical scheme to solve the
equilibrium equations with the independent solution decomposition
in the radial direction and the Fourier decomposition in the poloidal
direction.

A. Decomposition of the Grad–Shafranov equation

In this subsection, we introduce the radial, poloidal, and toroidal
coordinates and project the Grad–Shafranov equation onto this coor-
dinate system. We then use Fourier decomposition to decompose the
equations.

To solve the Grad–Shafranov equation, we introduce the coordi-
nate system ðw; h;/Þ, with w labeling the radial grids and h being the
poloidal angle. The coordinates w and h are general, only requiring
that the Jacobian

J ¼ 1
rw�rh � r/

remains finite. In this coordinate system, one can obtain

1
X2
r v ¼ 1

X2

@v
@w
rwþ 1

X2

@v
@h
rh

¼ A1rh�r/þ A2r/�rw;

where
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A1 ¼
1
X2

@v
@w
J jrwj2 þ 1

X2

@v
@h
Jrw � rh;

A2 ¼
1
X2

@v
@w
Jrw � rhþ 1

X2

@v
@h
J jrhj2:

(6)

Therefore, one has

Jr � r v
X2
¼ @A1

@w
þ @A2

@h

¼ @A1

@w
þ iM 1

X2
Jrw � rh

� �
@v
@w

�M 1
X2
J jrhj2

� �
Mv:

Here, we have denoted @
@h ¼ iM withM being the matrix specifying

the poloidal Fourier numbers, since the Fourier decomposition with h
will be introduced later on. Using this decomposition, the
Grad–Schafranov equation (5) can be reduced to the following set of
first order differential equations:

@v
@w
¼ F11vþ F12A1; (7)

@A1

@w
¼ F21vþ F22A1 þ S; (8)

where

F11ðw; hÞ ¼ �i
rw � rh

jrwj2
M;

F12ðw; hÞ ¼
X2

J jrwj2
;

F21ðw; hÞ ¼ M
1
X2
J jrhj2M�M 1

X2
Jrw � rh

rw � rh

jrwj2
M;

F22ðw; hÞ ¼ �iM
1
X2
Jrw � rh

X2

J jrwj2
;

Sðw; hÞ ¼ 1
va
�J p0v̂ �

J
X2

gg 0v̂

� �
:

To solve the set of equilibrium equations, Eqs. (7) and (8), the fol-
lowing Fourier decompositions are introduced:

v

A1

S

0
B@

1
CA ¼ 1ffiffiffiffiffi

2p
p

XMmax

m¼�Mmax

vm
A1m

Sm

0
B@

1
CA exp imhf g: (9)

Here, Mmax represents the maximum Fourier component to be used.
Introducing the Fourier decomposition in Eq. (9), the set of Eqs. (7)
and (8) becomes the set of matrix equations with the coefficients
becoming the matrices as defined as follows:

F ij;mm0 ¼
1
2p

ðp

�p
dhFijðw; hÞeiðm

0�mÞh:

Note that for the non-up-down symmetric system, the Fourier compo-
nents are complex. The set of matrix equations in complex can be
written as

@

@w

v

A1

 !
�
F 11 F 12

F 21 F 22

 !
v

A1

 !
¼

0

S

 !
: (10)

Here, v and A1 are the vectors in the Fourier space with the total com-
ponents M ¼ Mmax þ 1 and F ij are the matrices with dimension
M�M. Therefore, Eq. (10) represents a set of 2M differential equa-
tions. The matrix equation, Eq. (10), can be rewritten concisely as
follows:

@u
@w
� Fu ¼ sðuÞ; (11)

where the source term s is usually a nonlinear function of u.

B. Computation of the metric parameters

In this subsection, we describe how the matrix F is computed in
the ATEQ code. This is related to the determination of the metric
parameters, such as jrwj2; rw � rh, etc.

As in the PEST code,38 we introduce the polar coordinates to
compute the following metric parameters:

Sr ¼ x2 þ z2;

H ¼ arctanðz=xÞ;

where x ¼ X � X0 and z¼Z with X0 being the major radius at the
magnetic axis locating at Z¼ 0. Since Xðw; hÞ and Zðw; hÞ are given
when introducing the (w; h) grids, one can also determine Srðw; hÞ
andHðw; hÞ. Consequently, one can derive both

@ðSr;HÞ
@ðX;ZÞ �

@Sr
@X

@Sr
@Z

@H
@X

@H
@Z

0
BBB@

1
CCCA and

@ðSr ;HÞ
@ðw; hÞ �

@Sr
@w

@Sr
@h

@H
@w

@H
@h

0
BBB@

1
CCCA:

Using these results, one can compute the metric parameters in the
ðSr ;H;/Þ coordinate system.

We first work on the Jacobian J . Note that

J ¼ 1
rw�rh � r/

¼ X���� @ðw; hÞ@ðX;ZÞ

����
¼ X

���� @ðX;ZÞ@ðw; hÞ

����:

Note further that

@ðSr;HÞ
@ðw; hÞ ¼

@ðSr;HÞ
@ðX;ZÞ

@ðX;ZÞ
@ðw; hÞ and

���� @ðSr ;HÞ@ðX;ZÞ

���� ¼ 2:

One obtains the Jacobian expression in the polar coordinates as
follows:

J ¼ X

���� @ðX;ZÞ@ðw; hÞ

���� ¼ X
2

���� @ðSr ;HÞ@ðw; hÞ

����:
Next, we work on other metric parameters. By straightforward

reduction, one can obtain
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@ðw; hÞ
@ðX;ZÞ ¼

@ðw; hÞ
@ðS;HÞ

@ðS;HÞ
@ðX;ZÞ

¼ @ðS;HÞ
@ðw; hÞ

� ��1 @ðS;HÞ
@ðX;ZÞ

¼ X
J

z
@Sr
@h

.
2Sr þ x

@H
@h

�x @Sr
@h

.
2Sr þ z

@H
@h

�z @Sr
@w

.
2Sr � x

@H
@w

x
@Sr
@w

.
2Sr � z

@H
@w

0
BBB@

1
CCCA;

where it has been noted that

@Sr
@w

@Sr
@h

@H
@w

@H
@h

0
BBB@

1
CCCA
�1

¼ X
2J

@H
@h

� @Sr
@h

� @H
@w

@Sr
@w

0
BBB@

1
CCCA:

Noting further that

jrwj2 ¼ @w
@X

@w
@X
þ @w
@Z

@w
@Z

;

jrhj2 ¼ @h
@X

@h
@X
þ @h
@Z

@h
@Z

;

rw � rh ¼ @w
@X

@h
@X
þ @w
@Z

@h
@Z

;

one obtains

jrwj2 ¼ X
J

� �2 1
4Sr

@Sr
@h

� �2

þ Sr
@H
@h

� �2
" #

;

jrhj2 ¼ X
J

� �2 1
4Sr

@Sr
@w

� �2

þ Sr
@H
@w

� �2
" #

;

rw � rh ¼ X
J

� �2

� 1
4Sr

@Sr
@w

@Sr
@h
� Sr

@H
@w

@H
@h

� 	
:

Using the toroidal symmetry property, we can also find that

jr/j2 ¼ 1
X2
; rw � r/ ¼ 0; and rh � r/ ¼ 0:

The expressions of metric parameters given above can be used to
compute the matrix F and the vector s in Eq. (11).

C. Iteration scheme and boundary conditions

With the computation of metric parameters given in Sec. III B,
we describe the iteration scheme to solve the Grad–Shafranov equation
with proper boundary conditions.

Since Eq. (11) is nonlinear, an iteration process is necessary. One
can follow the usual iteration scheme to get the converged solution

@uðnþ1Þ

@w
� Fuðnþ1Þ ¼ sðuðnÞÞ: (12)

Here, n denotes the iteration step.
Equation (12) is a set of inhomogeneous differential equations of

first order. Its general solutions at step nþ 1 can be expressed as

u ¼
X2M
k¼1

cku
k þ us; (13)

where ck are the complex constants to be determined by the boundary
conditions, uk are the independent solutions to the homogeneous
equations, and us is the specific solution to take into account the
source term s on the right hand side of Eq. (12). For brevity, the step
index n has been dropped.

Since the number of equations is 2M, the solutions are
completely determined by the M boundary conditions in complex at
the magnetic axis and M boundary conditions in complex at plasma
edge va. The boundary conditions at plasma edge va are specified by
the given shape of the last closed flux surface in the fixed boundary
value problem. The boundary conditions at the magnetic axis are just
the requirement that the independent solutions are “small” in terms of
the terminology of differential equation theory. The “large” solution
causes the system energy to diverge, while the “small” solution is
square-integrable with respect to the energy integral. Near the mag-
netic axis, the homogeneous part of the Grad–Shafranov equation can
be approximated by the cylinder model. In this limit, the solutions are
given as follows:37

vm ¼ amrjmj þ bmr�jmj; for m 6¼ 0;

v0 ¼ a0 þ b0 ln r; for m ¼ 0;

where r is the minor radius and am and bm are constants. Therefore,
the boundary conditions for small solutions are simply bm ¼ 0. This
yields

dvm=dr
vm

¼ jmjrjmj�1; for m 6¼ 0; (14)

dv0=dr
v0

¼ 0; for m ¼ 0: (15)

The boundary conditions for A1m can be obtained using the definition
of A1 in Eq. (6).

Note that the general solution to the set of differential equations
is the summation of homogeneous solutions and specific solution and
the boundary conditions are satisfied by the constants ck tied to the
homogeneous solutions. Therefore, the boundary conditions for spe-
cific solution are arbitrary.

D. Solution of equilibrium equations

The principle to solve Eq. (12) is laid out in Sec. III C. The actual
implementation is more complicated. One needs to divide multiple
regions in the radial direction and then match the solutions in the
individual regions to get the global solution. In this subsection, we will
outline the actual numerical process in the ATEQ code to solve the
Grad–Shafranov equation.

TheM boundary conditions at the magnetic axis in Eqs. (14) and
(15) can be used to eliminate M independent solutions by shooting
outwardly with the boundary conditions at the axis as the initial condi-
tions. There are only M independent solutions uk left as a result. In
principle, the remaining M constants ck can be determined by the
other M boundary conditions at the plasma edge, while the specific
solution us can be also determined by the numerical shooting with the
boundary condition at the magnetic axis usð0Þ ¼ 0. The procedure
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looks straightforward. However, this straightforward procedure to shoot
all the way from the axis to the edge usually does not work due to the
numerical pollution of large solutions. One has to divide the whole
region into multiple regions and then match the solutions in the individ-
ual regions to get the global solutions. A similar numerical scheme has
been successfully used in the MHD stability code: AEGIS.35

Suppose there are L regions with their boundaries labeled, respec-
tively, as wl ðl ¼ 0; 1; 2;…; LÞ, where w0 and wL represent, respec-
tively, the magnetic axis and the last closed flux surface. For the first
region, one can shoot from w0 with the boundary conditions at the
magnetic axis to getM independent solutions. TheM independent sol-
utions at the other endw1 are used the construct the independent solu-
tion matrix: 1U2M�M ¼ ðu1;…; uMÞw¼w1

. Here, the left superscript
indicates the region and the right superscript 2M �M represents “the
number of Fourier components” � “the number of independent sol-
utions.” For the last region, one can shoot inwardly with the boundary
conditions at wL, i.e., by specifying v at the edge, to getM independent
solutions. Likewise, the M independent solutions can be used to form
the independent solution matrix at the other end wL�1:

LUM�2M
inward .

Here, the subscript “inward” has been introduced to indicate the
shooting in the last region is made inwardly. For the internal regions
(l ¼ 2;…; L� 1), there are 2M independent solutions in each region.
To construct the independent solutions in these regions, for example,
region l, one can obtain the 2M independent solutions by specifying
the independent boundary conditions at the lower end wl�1 and
shooting upwardly. The 2M independent boundary conditions at the
lower end can be simply the 2M columns in the identity matrix:
I 2M�2M . The 2M independent solutions at the upper end of each
internal region can be used to form the independent solution matrices:
lU2M�2M .

Similarly, one can construct the specific solution vectors. In dif-
ference from the homogeneous solutions, there is only one set of solu-
tions with 2M elements ls2M�1 in each region. They can be obtained
by specifying the initial conditions at the lower end as the null vector
02M�1 (vector with all elements being zero) and shooting to the upper
end, except the last region. The inward shooting is carried out in the
last region.

With the independent solution matrices and the specific solution
vectors in each region obtained, one can match them to obtain the
global solutions. There are L � 1 regional interfaces, and on each
interface, there are 2M matching conditions. Note that, since the
boundary conditions at axis and plasma edge have been applied, only
M constants in each of these two regions remain to be determined.
They are represented in vectors of M rows: 1cM�1 and LcM�1. In the
internal regions, however, there are 2M constants in each region,
which are denoted as lc2M�1 ðl ¼ 2;…; L� 1Þ. Therefore, the
2MðL� 1Þ matching conditions determine fully the constants lcMl ,
where l ¼ 1; 2;…; L and M1 ¼ ML ¼ M; Ml ¼ 2M for l 6¼ 1 and L.
The matching conditions can be expressed as follows:

Y

1cM�1

2c2M�1

..

.

L�1c2M�1

LcM�1

0
BBBBBBBB@

1
CCCCCCCCA

2MðL�1Þ�1

¼

�1s2M�1

�2s2M�1

..

.

�L�2s2M�1

Ls2M�1inward�L�1s2M�1

0
BBBBBBBB@

1
CCCCCCCCA

2MðL�1Þ�1

;

(16)

where

Y �

1U2M�M �I2M�2M 02M�2M � � � 02M�M 02M�M 02M�M

02M�M 2U2M�2M �I 2M�2M � � � 02M�M 02M�M 02M�M

..

. ..
. ..

. ..
. ..

. ..
. ..

.

02M�M � � � 02M�2M � � � L�2U2M�2M �L�1I 2M�2M 02M�M

02M�M � � � 02M�2M � � � 02M�M L�1U2M�2M �LU2M�M
inward

0
BBBBBBBB@

1
CCCCCCCCA

2MðL�1Þ�2MðL�1Þ

:

Matrix Y is a band matrix. By inverting it, one can obtain the solution
of Eq. (16)

1cM�1
2c2M�1

..

.

L�1c2M�1
LcM�1

0
BBBBB@

1
CCCCCA

2MðL�1Þ�1

¼ Y�1

�1s2M�1

�2s2M�1

..

.

�L�2s2M�1
Ls2M�1inward�L�1s2M�1

0
BBBBB@

1
CCCCCA

2MðL�1Þ�1

:

(17)

With the constants obtained from Eq. (17), the solutions in each
region are then simply

lu ¼
XMl

k¼1

lck
luk þ lus; ðl ¼ 1;…; LÞ: (18)

These give the numerical scheme being implemented in the ATEQ
code to solve the Grad–Shafranov equation.

IV. NUMERICAL PROCEDURE AND RESULTS

In this section, we describe how to implement the numerical
scheme in Sec. III. This leads to the development of ATEQ code. The
computational flow chart of ATEQ is given in Fig. 1. To be more spe-
cific to describe the computational flow, we use an ITER-like equilib-
rium as an example. The major radius 6.2 m, minor radius 2 m,
elongation 1.78, triangularity 0.4, the vacuum magnetic field at the
geometric center of plasma column is 6T, the total current 15.9 MA,
and the volume average beta value is 3.371%. Figure 2 shows the cross
section with the “a” part showing the initial grid setup and the “b”
part showing the magnetic surfaces computed by the ATEQ code.
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The case will also be used for the benchmark studies with the TOQ
code. Further details about the equilibrium will be described there.

First, one needs to set up radial and poloidal grids (w; h) as
shown in Fig. 2(a). The grids are constructed to surround the magnetic
axis (xaxis, zaxis). Because the magnetic axis is unknown beforehand,
iteration is needed. The value of the previous step (n) is used to

construct the grids to advance to the next step nþ 1. Following the
iteration scheme in Eq. (12), the source term on the right hand side of
Eq. (12) is evaluated by using the solution for poloidal flux
uðnÞðwðnÞ; hðnÞÞ in the previous step. Note that the pressure and cur-
rent profiles are prescribed by the normalized poloidal flux. The total
poloidal flux va needs also to be determined iteratively. At the first
step, the quantities at the previous step are prescribed by initial guess-
ing. The matrices F and s can then be computed with previous step
grids as described in Sec. III B. Using the splines, the matrices F and s
are made to be radially continuous functions.

Here, it is noted that the proper choice of initial (w; h) grids can
affect how many Fourier components are required. For the usual equi-
libria without X points included the choice is rather arbitrary, i.e., a
wide range of grid choices can work well. For the equilibria with X
points included proper choice of initial grids is important. In the
ATEQ code, the initial grids are specified as follows. First, the grids
with ellipticity k and triangularity d are set up inside the specified
plasma-vacuum boundary according to the formula

X ¼ xaxis þ rðcos h� d sin2 hÞ; (19)

Z ¼ zaxis þ kr sin h; (20)

with r ¼ ½ðX � xaxisÞ2 þ ðZ � zaxisÞ2�1=2. Here, k and d can be poly-
nomial functions of w. This means that one can adjust the ellipticity
and triangularity from the axis to the outmost surface. In most cases,
the linear dependence is sufficient. Next, the difference between the
specified plasma boundary and the outmost surface given by Eqs. (19)
and (20) is distributed radially. The distribution can be adjusted
through an exponential multiplier of w. Also, the w grids can be
packed near the axis and boundary. In our experience, with these flexi-
bilities, roughly 100 Fourier sidebands are sufficient to get a good equi-
librium solution with X points included. It is using this type of initial
grid setting that the Solov�ev solution with X points to be described
later is reproduced numerically. There is always a possibility to use the
(w; h) solution at step n for the grids at step nþ 1. Nevertheless, it can

FIG. 2. Equilibrium results for the ITER-geometry-like case. (a) The initial (w; h) grids. (b) The converged magnetic flux surfaces.

FIG. 1. Computational flow chart of the ATEQ code.
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only be used if the solution at step n is sufficiently smooth and well-
behaved.

Next, the whole radial domain is split into L regions. As described
in Sec. IIID, adaptive shooting is implemented to get the independent
solution matrices in each region. By solving for lcMl using Eq. (17),
one can construct the global solution through Eq. (18). At this step, we
first check if the magnetic axis (xaxis, zaxis) and total poloidal flux va
converge. Usually, total poloidal flux converges in one or two steps,
using the following formula for prediction:

vðnþ2Þa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðnþ1Þa vðnÞa

q
:

Instead, to find the magnetic axis (xaxis, zaxis), one needs a few itera-
tions. The code shoots outwardly from the assumed magnetic axis
(xaxis, zaxis). After achieving the solution, the minimum of poloidal flux
v is determined. The location of this minimum is used as (xaxis, zaxis)
for the shooting in the next step. This process is repeated until the
starting (xaxis, zaxis) matches the location of the v minimum computed
to a required accuracy.

Figure 3 shows the iteration process for determining the magnetic
axis to get the final solution in Fig. 2(b). The dashed curve in Fig. 3(a)
shows the poloidal magnetic flux on the mid-plane computed with a
guess value of magnetic axis in an earlier step. By searching for the
minimum of the poloidal flux, a new magnetic axis location is found
as shown by the solid vertical line. It is iterated until the magnetic axis
coordinates (xaxis, zaxis) converge. Figure 3(b) shows the converged
result. Because the iteration for magnetic axis and the iteration for the
overall solution of poloidal magnetic flux are implemented simulta-
neously, the overall solution is often converged as the axis searching
converges. The requirement for the number of poloidal Fourier com-
ponents is also verified. The example shown in Fig. 2 uses 50
sidebands.

With the magnetic axis (xaxis, zaxis) and total poloidal flux va
being converged, one can further iterate to get the converged solution

vðw; hÞ. With this solution, one can obtain the numerical solution for
the poloidal magnetic flux vðX;ZÞ. The magnetic surfaces with
vðX;ZÞ ¼ const are plotted in Fig. 2(b).

V. BENCHMARK STUDIES AND COMPARISON
WITH EXISTING CODES

This section describes the benchmark studies. We begin with the
analytical Solov�ev equilibrium with the X points included.39 Next, the
comparison with the existing numerical equilibrium code TOQ16 is
detailed. We also build a backward substitution module to double
check the numerical equilibrium solutions. It simply substitutes the
solution vðX;ZÞ back into the Grad–Shafranov equation to check if
the equation is satisfied to a sufficient accuracy.

The benchmark with the Solov�ev solution is not a trivial task.
This is because the X-points are present in the Solov�ev equilibrium.
The equilibrium computation with the X-points included is challeng-
ing because much more Fourier components are needed. The analyti-
cal Solov�ev solution is given as follows:

vSolovev ¼
1
2

bX2
0 þ c0X

2

 �

Z2 þ 1
8
ða� c0ÞðX2 � X2

0Þ
2; (21)

where the parameters are given as follows in the benchmark studies:
X0 ¼ 10, a¼ 1, b ¼ �0:83, and c0 ¼ 0:92. This solution corresponds
to the pressure and poloidal current flux profiles given as follows:

�p0 ¼ a and � gg 0=X2
0 ¼ b: (22)

As pointed out in Ref. 39, the second-order solution in Eq. (21) is actu-
ally an exact solution of the Grad–Shafranov equation.

The numerical procedure for the benchmark studies to the ana-
lytical Solov�ev equilibrium solution is as follows. From the Solov�ev
solution in Eq. (21), one can determine the last closed flux surface.
The last closed flux surface is then used as the plasma boundary condi-
tion in the ATEQ code. The same pressure and poloidal current flux
profiles as given in Eq. (22) are used to compute the numerical

FIG. 3. The iteration process to determine the magnetic axis. (a) The initial guessing. (b) The converged result. Dashed curves indicate the poloidal flux and the vertical solid
lines indicate the proposed magnetic axis at the respective iteration step.
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solution vðX;ZÞ with the ATEQ code. The solution is then compared
with the analytical Solov�ev solution in Eq. (21).

Figure 4(a) gives the initial (w; h) grids and Fig. 4(b) shows the
converged magnetic flux surfaces computed by the ATEQ code. The
number of Fourier sidebands is 102. The process just follows the chart
given in Fig. 1. The numerical results agree well with the analytical
solution in Eq. (21). To show the agreement, the poloidal magnetic
flux at the mid-plane on the low field side both from the analytical
solution in Eq. (21) (solid curve) and from the computational result by
ATEQ (dashed curve) are plotted in Fig. 5. Two curves completely
overlap, although the initial guessing as shown in Fig. 4(a) deviates
dramatically from the actual solution in Fig. 4(b) in the ATEQ
computation.

Comparisons with the existing equilibrium codes are also per-
formed. Here, we describe a benchmark example with the TOQ equi-
librium code.16 A typical case is described as follows. A TOQ sample
initiation file with equiltype ¼0 ffprime0 is taken. To be more specific
to compare with TOQ, here the same numerical parameter notations
as in the TOQ manual are used to describe the equilibrium parame-
ters. The shape of boundary type is specified by ishape¼ 2, which is
described as follows:

X ¼ rzeroþ rmax � ðcos h� xshape � sin2 hÞ;
Z ¼ eshape � rmax � sin h;

(23)

where the basic parameters are specified as follows: the major radius
rzero ¼ 6:2m, the minor radius rmax ¼ 2m, the elongation
eshape¼ 1.78, and the triangularity xshape¼ 0.4. This leads the equi-
librium cross section to be given in Fig. 2.

The pressure gradient (p0) and poloidal current flux parameter
(gg 0) profiles are specified, respectively, by setting modelp¼ 3 and
modelf¼ 1, which are described as follows:

p0 ¼ 1� 0:4v̂ þ 0:4v̂2 � v̂3; (24)

gg 0 ¼ 1� v̂: (25)

Note here that the profiles are specified with the normalized poloidal
magnetic flux v̂, varying from 0 to 1 from the magnetic axis to plasma
boundary. The tolerance is set to be toleq ¼ 10�5 in the TOQ iteration
with successively increasing grid densities. Here, we have used the
nonlinear pressure profile in Eq. (24), which is different from the
TOQ sample initiation file, in order to avoid the linear profile case
considered in the Solov�ev case. The pressure and poloidal current flux

FIG. 4. Equilibrium results for Solov�ev solution. (a) The initial (w; h) grids. (b) The converged magnetic flux surfaces.

FIG. 5. The poloidal magnetic flux at mid-plane on the low field side both from the
analytical Solov�ev solution in Eq. (21) (solid curve) and the ATEQ computational
result (dashed curve). Two curves completely overlap.
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profiles are given in Fig. 6 with respect to the minor radius on the
outer vertical mid-plane. Although the p0 and gg0 are the same as
specified in Eqs. (24) and (25) for TOQ and ATEQ codes, the pressure
(p) and poloidal current flux (g) profiles can be slightly different since
they are given in the minor radius, instead of the normalized poloidal
flux. The slight difference of poloidal magnetic flux solution as dis-
cussed later can cause the difference. The volume average beta is
3:371%, the normalized beta is 2.54, and li ¼ 0:730 in this
equilibrium.

Figure 2(b) shows the equilibrium magnetic flux surfaces by the
ATEQ code. The slight difference between TOQ and ATEQ results is
not perceivable in the flux surface plot. Figure 7 is introduced to show
the poloidal magnetic flux v and the safety factor q vs the minor

radius, which are computed, respectively, by the TOQ (red) and
ATEQ (blue) codes. One can see that both v and q solutions agree
rather well. The slight difference results from the different accuracies
for TOQ and ATEQ codes as discussed later on in the backward sub-
stitution check. Note that the red (TOQ) and blue (ATEQ) curves in
Figs. 6 and 7 terminate roughly at the same minor radius. This indi-
cates that the Shafranov shifts computed by the two codes agree.

In passing, it is pointed out that the region number L is about
30� 40 to recover the Solov�ev solution. For the case without X points,
the required number L is less. It usually does not work if L¼ 1, i.e.,
shooting all the way from the axis to the plasma edge. Some Fourier
components become extremely larger, while some others are very
small. This feature makes the final matching matrix at the edge in
poor condition. The multiple region matching solves the difficulty.
Because the matrix size in ATEQ is determined by the number of
regions, instead of the radial grid points, and the number of regions is
much less than the grid points, adding some more regions does not
cause many difficulties.

To further check the computation results, we implement the
backward substitution check both for TOQ and ATEQ. In this check-
ing procedure, the numerical solution v is substituted back to the
Grad–Shafronov equation, Eq. (5), to compute the relative errors at
each grid point. Because the v is determined, p and g become one
dimensional. The solution ðv; hÞ are used as the coordinates for check-
ing. The five-point differential scheme is used to evaluate the deriva-
tives. This check is done surface by surface. The relative error for each
grid point is defined by the difference between the left and right values
divided by the larger one between them. The surface-averaged relative
errors are plotted in Fig. 8 vs the normalized magnetic flux. Because of
the adaptive numerical scheme, high accuracy or low relative error is
achieved by the ATEQ calculation. For TOQ computation, a very low
tolerance toleq ¼ 10�5 has actually been imposed. The TOQ code
does exit with the converged results. The convergence criterion in the
TOQ code is based on the comparison between two consecutive steps,

FIG. 7. The equilibrium poloidal magnetic flux v and safety factor profiles vs the
minor radius on the outer mid-plane for the benchmark case as computed by TOQ
(red) and ATEQ (blue).

FIG. 8. The surface-averaged relative errors vs the normalized magnetic flux with
the backward substitution check, respectively, for TOQ (red) and ATEQ (blue)
numerical results.

FIG. 6. The equilibrium pressure and poloidal current flux profiles vs the minor
radius on the outer mid-plane for the benchmark case between TOQ (red) and
ATEQ (blue).
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instead of the backward substitution check as in the ATEQ code.
This explains the larger surface-averaged relative error as compared
to the ATEQ code in the backward substitution check. We espe-
cially want to emphasize that this does not necessarily imply that
TOQ is not good, but only shows that different convergence criteria
can yield different solutions. If TOQ used the backward substitu-
tion method to determine the convergence, TOQ could possibly
also get good results. Also, the ATEQ code is based on an adaptive
numerical scheme, and better convergence can be expected. The
backward substitution check of ATEQ results further verifies its
numerical procedure.

We also performed checks with other codes, for example, VMEC
and EFIT. ATEQ achieves satisfactory results, generally giving better
convergence in the backward substitution check. The backward substi-
tution method thus confirms the validity of the ATEQ code.

VI. CONCLUSIONS AND DISCUSSION

We have presented a new, radially adaptive numerical scheme
that solves the Grad–Shafranov equation for axisymmetric MHD equi-
librium. This numerical scheme represents the solution through a sum
in terms of independent solutions in the radial direction and Fourier
decomposition in the poloidal direction. It computes the independent
solutions using an adaptive shooting scheme together with the multi-
region matching technique in the radial direction. The adaptive
numerical scheme improves considerably the accuracy of the equilib-
rium solution. We named the implementation of this scheme the
adaptive toroidal equilibrium code (ATEQ).

The decomposition with independent solutions effectively
reduces the matrix size for solving the magnetohydrodynamic equilib-
rium problem, as compared with numerical schemes based on a fixed
radial grid. The adaptive numerical scheme is expected to be especially
helpful to deal with stiff equilibrium problems. Our results also indi-
cate that the backward substitution method can be necessary to obtain
a reliable equilibrium solution.

Let us here further discuss the unique features of the ATEQ numer-
ical scheme. The numerical methods for solving the Grad–Shafranov
equation ultimately reduce the problem to solve the matrix equations.
The matrix size then matters and reducing the matrix size in discretizing
the Grad–Shafranov equation is important. In the grid-based numerical
schemes both in the radial and poloidal directions (finite difference or
finite element), the size of the matrix is Nr � Nt . Here, Nr and Nt are,
respectively, the numbers of grids in the radial and poloidal directions. In
the numerical scheme based on the poloidal Fourier decomposition, the
matrix size is Nr � Nf . Here, Nf is the number of the poloidal Fourier
components. To achieve high accuracy, especially for tough problems
related to the axis, X-point, or pedestal, etc., one has to increase the Nr

and Nt (or Nf). Consequently, the size of the matrices becomes large and
the matrices become hard to deal with numerically. In the ATEQ numer-
ical scheme, the radial direction is split into L regions with each region
addressed by the adaptive shooting of independent solutions. It reduces
the radial Nr grid problem into a L region matching problem. This cuts
down the Nr � Nt (or Nr � Nf ) matrix problem in the conventional
numerical schemes into a L� Nindep problem in the ATEQ numerical
scheme. Here, the number of regions L is about a few tens and Nindep is
the number of independent solutions, which is of the same order as Nf.
The reduction of the matrix size is by the factor L=Nr , which is about an
order of magnitude, as compared with the conventional radially grid-

based numerical schemes. Also, in this ATEQ numerical scheme, no
matter how accuracy in the radial direction is imposed, the size of the
matrices basically does not change. Such an improvement in the order of
magnitude rarely happens. It, therefore, represents a significant develop-
ment in this research.

The equilibrium problem is a little bit different from the stability
one. If one uses the exact flux solution as the radial grids, only a single
Fourier component for the magnetic flux v is required because it is
constant on the surfaces. Therefore, the required number of the
Fourier components, Nf, in principle can be somewhat optimized by
setting proper radial grids. Since the matrix size is reduced in the radial
direction in ATEQ, one has more flexibility to increase the number of
poloidal Fourier components if it is required. This is a distinct feature
of ATEQ as compared to the conventional Fourier decomposition
based codes. This improvement is useful.

It is realized in this field that a good numerical equilibrium solu-
tion near the axis and plasma boundary in the presence of the X points
is critical. It is a challenging issue for decades. As cited in the introduc-
tion, several efforts have been made. Our work provides another possi-
ble solution. To directly compare with other codes to treat the X point
equilibrium problem will be our next task. This may require close col-
laboration with other teams. Equilibrium codes often need certain spe-
cific procedure to execute them. Using the backward substitution
method, we found that the equilibrium accuracy varies a lot even with
the same code. That is why we are wary of doing code-to-code com-
parisons directly without the other party involved. Each code may
have their own particular features. We have compared with TOQ since
the example file is in the public domain. Even in this case, we have
provided additional clarifications. However, one thing we can do is to
compare with the Solov�ev analytical solution in the presence of X
points. If not at all, rather few codes have been published with such a
comparison as justification. This shows the capacity of ATEQ numeri-
cal scheme and code.
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