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A fast and stable method is proposed for calculating the time-varying shielding current density in a high-
temperature superconducting (HTS) film containing cracks. If an initial-boundary-value problem of the shielding
current density is formulated by the T-method, integral forms of Faraday’s law on crack surfaces are also im-
posed as boundary conditions. As a result of the spatial discretization of the initial-boundary-value problem,
semi-explicit differential algebraic equations (DAEs) are obtained. Although the DAEs can be solved with stan-
dard ordinary-differential-equation (ODE) solvers, much CPU time is required for their numerical solution. In
order to shorten the CPU time, the following high-speed algorithm is proposed: the block LU decomposition
is incorporated into function evaluations in ODE solvers. A numerical code is developed on the basis of the
proposed algorithm and detectability of cracks by the scanning permanent-magnet method is numerically inves-
tigated. The results of computations show that, when multiple cracks is contained in an HTS film, resolution of
the scanning permanent-magnet method will be degraded remarkably.
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1. Introduction
Recently, a high-temperature superconductor (HTS)

has been used for numerous engineering applications:
magnet, energy storage system, power cable and magnetic
shielding apparatus. Since the evaluation of the shield-
ing current density is indispensable for the design of en-
gineering applications, several numerical methods [1–3]
have been so far proposed to calculate the shielding cur-
rent density.

After discretized with the implicit scheme and the
finite element method (FEM), an initial-boundary-value
problem of the shielding current density is transformed to a
problem in which nonlinear algebraic equations have to be
solved at each time step. Although this method can be also
applied to the shielding current analysis in an HTS film
containing cracks [3, 4], it is extremely time-consuming.
Such time consumption is caused by a linear term with a
dense matrix in the nonlinear equations. This method is
called a conventional method, hereafter.

The authors proposed a high-speed method [2] for cal-
culating the shielding current density in an HTS film. After
discretized with the FEM, the initial-boundary-value prob-
lem reduces to a system of first-order ordinary differen-
tial equations (ODEs) that has a strong nonlinearity. How-
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ever, the system cannot be always solved by means of an
ODE solver even when an adaptive step-size control algo-
rithm [5] is incorporated to the solver. In order to suppress
an overflow in the algorithm, the J-E constitutive relation
is slightly modified so that its solution may satisfy the orig-
inal constitutive relation. As a result, the proposed method
has a much higher speed than the conventional one. How-
ever, the method is not applicable to the case where cracks
are contained in an HTS film. This is mainly because the
spatial discretization of the initial-boundary-value problem
yields differential algebraic equations (DAEs) for this case.

The purpose of the present study is to develop a fast
and stable method for analyzing the shielding current den-
sity in an HTS film containing cracks and to numerically
investigate the scanning permanent-magnet method (SPM)
[6] by means of the method.

2. Governing Equations
We first assume that an HTS film has the same cross

section Ω over the thickness and that it is exposed to the
time-varying magnetic field B/µ0. By taking its thickness
direction as z-axis and choosing its centroid as the origin,
we use the Cartesian coordinate system ⟨O : ex, ey, ez⟩.
Furthermore, the HTS film is assumed to contain cracks
whose cross sections are curved segments in the xy plane.
Note that the boundary ∂Ω of Ω is composed of not
only the outer boundary C0 but also the inner boundaries
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Fig. 1 An HTS film containing cracks.

C1,C2, · · · ,Cm. Apparently, C1,C2, · · · ,Cm denote crack
surfaces (see Fig. 1). In the following, x and x′ denote po-
sition vectors of two points in the xy plane, whereas t and
n are a unit tangent vector and a unit normal vector on ∂Ω,
respectively. In addition, b denotes a thickness of the HTS
film.

In HTS films, the electric field E and the shielding
current density j are closely related to each other through
the J-E constitutive relation. As the relation, we assume
the following power law [2–4, 7, 8]:

E = E(| j|) j
| j| , E( j) = EC

(
j

jC

)N

,

where jC and EC denote the critical current density and
the critical electric field, respectively, and N is a positive
constant.

Under the thin-plate approximation, there exists a
scalar function T (x, t) such that j = (2/b)∇ × (Tez) and
its time evolution is governed by the following integrodif-
ferential equation [1–4]:

µ0∂t(ŴT ) = −ez · (∇ × E) − ∂t⟨B · ez⟩. (1)

Here, ⟨ ⟩ denotes an average operator over the thickness
and Ŵ is the operator defined by

ŴT ≡ 2T (x, t)
b

+

"
Ω

Q(|x − x′|) T (x′, t) d2x′,

where Q(r) = −(πb2)−1[r−1 − (r2 + b2)−1/2]. Incidentally,
(1) is derived from Faraday’s law. In other words, (1) is
equivalent to Faraday’s law under the thin-plate approxi-
mation.

The initial and boundary conditions to (1) are assumed
as follows:

T = 0 at t = 0, (2)

T ∈ H(Ω̄), (3)

hi(E) ≡
∮

Ci

E · t ds = 0 (i = 1, 2, · · · ,m). (4)

Here, H(Ω̄) is a function space defined by H(Ω̄) ≡ {w(x) :
w = 0 on C0, ∂w/∂s = 0 on C1,C2, · · · ,Cm}, and s is an
arclength along crack surfaces C1,C2, · · · ,Cm. Equation
(3) is based on j · n = 0 on C0,C1, · · · ,Cm. In contrast, (4)

is integral forms of Faraday’s law on crack surfaces and it
assures uniqueness of the initial-boundary-value problem
of (1).

By solving (1) together with the initial and boundary
conditions, we can investigate the time evolution of T (x, t).
Once T (x, t) is determined at a certain time, the shielding
current density at the same time can be easily evaluated by
using j = (2/b)∇ × (Tez).

3. Numerical Methods
For the purpose of solving the initial-boundary-value

problem of (1), the authors developed the virtual voltage
method [3]. However, it costs much CPU time. In order
to resolve this difficulty, a new method is proposed. In this
section, the proposed method is explained in detail and its
speed is compared with that of the virtual voltage method.

After spatially discretized with the FEM, the initial-
boundary-value problem of (1) is transformed to the fol-
lowing semi-explicit DAEs:[

W11 W12

] dT
dt
= f1(t,T), (5)

g(T) = 0, (6)

where T ∈ Rn is a nodal vector originating from T (x, t)
and f1(t,T) ∈ Rn−m is a vector calculated from the right-
hand side of (1). Here, n denotes a total number of nodes
and it is assumed to satisfy n ≫ m. In addition, W11 and
W12 are an (n − m) × (n − m) matrix and an (n − m) × m
matrix, respectively, and they correspond to the operator
Ŵ. Furthermore, (6) is a discretized form of (4) and, hence,
g(T) is an m-dimensional vector. Note that (5) is derived
from (1) and (3). Thus, (5) also contains the boundary
condition (3).

Since (5) and (6) show the index-1 property, they can
be rewritten as the following ODEs:

dT
dt
= f (t,T), (7)

where f (t,T) ∈ Rn is defined by

W(T) f (t,T) = f ∗(t,T). (8)

Here, W(T) and f ∗(t,T) are given by

W(T) =

[
W11 W12

W21(T) W22(T)

]
, (9)

f ∗(t,T) =

[
f1(t,T)

0

]
. (10)

In addition, W21(T) and W22(T) are an m × (n − m) matrix
and an m × m matrix, respectively, and they are given by[
W12(T) W22(T)

]
= ∂g/∂T, where ∂g/∂T is a Jacobian

matrix. In the present study, the initial-value problem of
(7) is numerically solved by means of the 5th-order Runge-
Kutta method with Fehlberg’s adaptive step-size control al-
gorithm [5].
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In the 5th-order Runge-Kutta method, 6 evaluations
of f (t,T) are needed at each time step. In other words, 6
linear systems such as (8) have to be solved for f (t,T) at
each time step. As is apparent from the definition of W(T),
the submatrices, W11 and W12, of W(T) do not depend on
T. Hence, high-speed solution of the linear system (8) can
be realized by using the block LU decomposition of W(T).

Suppose W(T) can be written as a product of two ma-
trices,

W(T) =

[
L11 O

L21(T) L22(T)

] [
U11 U12

O U22(T)

]
≡ L(T)U(T). (11)

Here, L11, L22(T) and L(T) are lower triangular matrices
whereas U11, U22(T) and U(T) are upper triangular matri-
ces. In addition, L21(T) and U12 are an m × (n − m) matrix
and an (n−m)×m matrix, respectively. By substituting (9)
into (11), we get

W11 = L11U11, (12)

W12 = L11U12, (13)

W21(T) = L21(T)U11, (14)

W22(T) − L21(T)U12 = L22(T)U22(T). (15)

Thus, the block LU decomposition of W(T) can be
achieved by using the following four steps:

1. A submatrix W11 is LU decomposed to get L11 and
U11.

2. Equation (13) is solved for U12.
3. Equation (14) is solved for L21(T).
4. An m × m matrix W22(T) − L21(T)U12 is LU decom-

posed to get L22(T) and U22(T).

Note that, even if the nodal vector T is unknown, both step
1 and step 2 are executable. In contrast, it is not until T
is evaluated that both step 3 and step 4 can be carried out.
In other words, step 1 and step 2 have to be only once ex-
ecuted before the numerical solution of (7) is started. On
the other hand, the remaining two steps must be performed
at every evaluation of f (t,T).

Once the LU decomposition (11) of W(T) is obtained,
we can easily solve the linear system (8). Specifically,
L(T) f †(t,T) = f ∗(t,T) is first solved for f †(t,T) and
U(T) f (t,T) = f †(t,T) is subsequently solved for f (t,T).
Thus, not only step 3 and step 4 but also the numerical
solutions of two linear systems are needed for each evalua-
tion of f (t,T). Therefore, if we have already obtained L11,
U11 and U12, O((m + 2)n2) operations are required for cal-
culating f (t,T). This means that only O((m + 2)n2) opera-
tions are needed at each time step of the proposed method.
In contrast, O(n3) operations are necessary at each time
step of the virtual voltage method. Therefore, the proposed
method is expected to have a much higher speed than the
virtual voltage method.

Let us compare the speed of the proposed method
with that of the virtual voltage method. To this end, the

Fig. 2 The CPU time τCPU as functions of the number n of nodes
for the case with m = 1. Here, τCPU is measured for the
simulation of the SPM in which values of parameters in
Section 4.1 are used.

CPU times τCPU required for both methods are measured
on HITACHI SR16000/XM1 POWER7 of LHD Numeri-
cal Analysis Server in National Institute of Fusion Science.
The dependence of the CPU time on the number of nodes
is depicted in Fig. 2. As expected, the proposed method
is faster than the virtual voltage method for the case with
n ≳ 103. Especially, for the case with n = 3007, the execu-
tion of the virtual voltage method was forced to be termi-
nated because the CPU time had exceeded the upper limit,
8.64 × 104 s. Hence, for this case, the proposed method is
over 5.3 times faster than the virtual voltage method. From
these results, we can conclude that the proposed method
could be effective especially for a large-sized shielding cur-
rent analysis in an HTS film containing cracks.

4. Application to SPM
By using the method explained above, a high-speed

numerical code has been developed for analyzing the time
evolution of j. A typical j-distribution is shown in Fig. 3.
In this section, we numerically investigate detectability of
cracks by the SPM.

4.1 Model of SPM
An HTS film is assumed to have a rectangular cross

section Ω of length l and width w, and cross sections of
cracks are assumed to be line segments of length Lc. In
the following, the longitudinal direction of Ω is taken as
x-axis.

In the SPM, a cylindrical permanent magnet of radius
R and height H is moved along the film surface and, simul-
taneously, an electromagnetic force Fz acting on the film is
monitored. During the movement of the magnet, the dis-
tance L between the magnet bottom and the film surface is
kept constant (see Fig. 1 in [4]). In the following, the sym-
metry axis of the magnet is denoted by (x, y) = (xA, yA),
and its movement is assumed as xA = ±(vt − l/2) ≡ x±(t)
and yA = const. Here, v is a scanning speed. In other
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Fig. 3 The j-distribution for the same case as B (a = 20 mm)
in Fig. 5. Here, the distribution is obtained at time satis-
fying xA = 0 mm. In addition, the magnet movement is
assumed as xA = x+(t). In this figure, thick line segments
and green curves denote cracks and magnetic flux lines,
respectively.

words, the HTS film is scanned with the permanent magnet
in two opposite directions.

Throughout the present study, the physical and geo-
metrical parameters are fixed as follows: R = 0.8 mm, H
= 2 mm, L = 0.5 mm, BF = 0.1 T, jC = 1.0 MA/cm2, EC

= 1 mV/m, N = 20, b = 1 µm, l = 32 mm, w = 10 mm, Lc

= 2 mm, yA = 0 mm, and v = 10 cm/s. Here, BF/µ0 is the
magnitude of the magnetic field at (x, y, z) = (xA, yA, b/2)
for the case with v = 0 cm/s.

4.2 Crack detection using SPM
As a measure of crack detection, we use the defect

parameter [4] defined by d ≡ sgn(∆F+z ·∆F−z )|∆F+z ·∆F−z |1/2.
Here, ∆F±z denotes a change in Fz due to cracks for xA =

x±(t) (double-sign corresponds). Since ∆F±z depends only
on t and xA is a monotonous function of t, ∆F±z becomes
a function of xA. Hence, the defect parameter d can be
treated as a function of xA.

Let us first investigate how the defect parameter is in-
fluenced by a single crack. The cross section of a crack
is assumed to be a line segment connecting two points,
(0 mm, ±Lc/2), in the xy plane. The defect parameter d is
calculated as a function of xA and is depicted in Fig. 4. This
figure indicates that the crack is contained in the shortest
single interval I(yA) such that I(yA) ⊇ {xA : | d(xA, yA) | ≥
α, |xA| ≤ l/2}. Here, α is an infinitesimal positive constant.
As is apparent from Fig. 4, a d-xA curve is characterized by
resolution ρ ≡ | I(yA) |. If α is assumed as α = 2×10−2 mN,
we get ρ � 5.9 mm.

Next, we numerically investigate whether or not two
cracks can be distinguished by the SPM. For this purpose,
cross sections of two cracks are assumed to be the follow-
ing two line segments in the xy plane: a line segment con-
necting two points, (−a/2,±Lc/2), and a line segment con-
necting two points, (a/2,±Lc/2). Here, a is the distance
between two cracks. As explained above, resolution ρ of
single-crack detection is about 5.9 mm. Hence, if the in-
equality a ≳ 5.9 mm is satisfied, two cracks are expected
to be separately detected by the SPM.

Dependences of the defect parameter d on xA are nu-
merically determined for a = 10 mm and for a = 20 mm,
and they are depicted in Fig. 5. Contrary to expectations,
the inequality | d | < α is not satisfied even at xA = 0 mm

Fig. 4 Dependence of the defect parameter d on the scanning
position xA. Resolution ρ is also shown in this figure.

Fig. 5 Dependences of the defect parameter d on the scanning
position xA. Here, A: a = 10 mm and B: a = 20 mm.

for the case with a = 10 mm. In contrast, it is fulfilled there
for the case with a = 20 mm. In other words, two cracks
are regarded as a single crack for the case with a = 10 mm,
whereas they are completely distinguishable for the case
with a = 20 mm. This result implies that multiple cracks
will remarkably affect resolution of the SPM.

5. Conclusion
We have investigated numerical methods for analyz-

ing the shielding current density in an HTS film contain-
ing m cracks. After spatially discretized with n nodes,
an initial-boundary-value problem of the shielding current
density reduces to semi-explicit DAEs that can be writ-
ten as ODEs. However, evaluation of function f (t,T) on
the right-hand side of the ODEs requires O(n3) operations
because a linear system with a dense matrix needs to be
solved at each evaluation. In order to accelerate function
evaluations, we have proposed the method in which evalua-
tion of f (t,T) costs only O((m+2)n2) operations. A numer-
ical code for calculating the shielding current density has
been developed on the basis of the proposed method and,
as an application of the code, detectability of cracks by the
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SPM has been numerically investigated. Conclusions ob-
tained in the present study are summarized as follows.

• The proposed method can be a powerful tool espe-
cially for a large-sized shielding current analysis in
an HTS film containing cracks.
• If an HTS film contains multiple cracks, resolution of

the SPM might be degraded remarkably.
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